7 d U X A 732
(2000. 5. 19)

HEBRT Y 7 BT BT) XA
TER— (BRAE). WE Mk, L ¥, BWEET (LAY

ER. BEWOH D EE EOAEBIHT S 7 N AHTHET. LOFL(EBFFAET <YV F) LWHF
BRRETS, FACHL T, ERFHELZHOBMTI AV RERELLN, TR O BTh THE
DRy —NVHTHR/MNShCRESN S, ARITE, BEAS—ALOAACKH L TRETEREC
3B EEE O((n+ m) log(n +m)) M7 AT Y X b LBRAAr—AERD S O((n+ m)log?(n+m))
BEO7AS) ALEEXD. ZIZTnEIAMTENZE0KTHY . m IIMENORMETH D,
LOFL TILBEDT <Y v 7 REL BV, BARROF NV ERATES, 20k, B1kdbD L3I,
A=V HDOKRE RS SVAHT B TTEEICT B,

Algorithms for Shape-Flexible Labeling of Points
Shin-ichi Nakano!,, Takao Nishizeki!, Takeshi Tokuyama#, Shuhei Watanabet

tDepartment of Information Engineering, Gunma University, Kiryu 376-8515, Japan, Email:
nakano@cs.gunma-u.ac.jp :
{Graduate School of Information Sciences, Tohoku University, Aobayama, Sendai 980-8579, Japan.
Emails: (nabe,nishi)@nishizeki.ecei.tohoku.ac.jp, tokuyama@dais.is.tohoku.ac.jp

Abstract. We deal with a map labeling problem, named LOFL (Leftside-Orderly Flexible Labeling),
to label a set of points in a plane with polygonal obstacles. The label for each point is selected from a
set of rectangles satisfying the leftside-orderly property and is placed near to the point after scaled by a
scaling factor & which is common to all points. In this paper, we give an optimal O({(n + m)log(n + m})
algorithm to decide the feasibility of LOFL for a fixed scaling factor o, and an O((n 4+ m)log?(n + m))
time algorithm to find the largest feasible scaling factor o, where n is the number of points and m is the
number of edges of polygonal obstacles. Figure 1 illustrate the improvement of the scaling factor achieved
by LOFL, where we can use three different kinds of labels all together.

hh“ ‘("‘ i = 11 |]!‘B
By BB T 1 % P 1
= e

Pu I =

— R
o

B 1: Placements using three kinds of labels.

1 Introduction

Annotating a set of points is a common task to
be performed in Geographic Information Systems.
1t is crucial that important objects in a map have
labels indicating their names or other attributes.
The objects to be labeled in a map highly depend
on user’s interest; for example, a drainage main-
tainer may want to have locations and identifica~
tion labels of manholes, although they are almost
useless information for ordinary users. Therefore,
a digital map should have a database of sets of
points representing locations of objects together
with labels of the objects, and should have a func-
tion to insert labels to a non-labeled map effi-
ciently.

The problem of locating labels in a map is called
the map labeling (or map lettering) [11, 16, 17,
18]. Approximating a label (a string of characters)
by its bounding rectangle, one can formulate the
map-labeling problem as the problem of locating a
set of n rectangles in a plane (with obstacles con-
taining m edges) in a way that (1) each rectangle
representing a label of an object should be near
to.the object, (2) rectangles do not overlap each
other, and (3) each rectangle does not overlap any
obstacle in the map. We allow a rectangle to touch
other rectangles or obstacles on its boundary. The
condition (1) will be mathematically formulated in
a suitable fashion.

We restrict ourselves to the point feature label
placement problem, where each object is a point
(object point) in the map. The rightmost point
of an object is often chosen as an object point.
Moreover, we only consider axis parallel rectangles
as labels. See [4, 9] for more complicated labeling
problems.

If the size of each character is given (therefore,
the size of each label is given), we want to decide
whether there exists a feasible solution satisfying
the conditions (1), (2), and (3) above. Such a prob-
lem is called the decision problem. We also want
to consider the optimization problem in which we

compute the maximum character size o, called a
scaling factor, for which there is a feasible solution.

The decision problem is hard in general: For-
mann and Wagner (7] showed that if there are four
candidates of the placement for each label, it is
NP-hard in general to decide the feasibility. In-
deed, it is NP-hard even if each label is a unit
square and must be placed in a way that the cor-
responding object point is at one of its four cor-
ners; we say that such a label is pinned at a corner.
Kato [10] showed that the problem remains to be
NP-hard if there are three candidates for each la-
bel.

On the other side, if each label is a unit square
pinned at one of its two left corners, the problem
is polynomial time solvable. In general, if there
are at most two candidates of the placement for
each label, the problem is polynomial-time solv-
able since it can be formulated as a 2-SAT prob-
lem [7]. Moreover, approximation algorithms with
provable approximation ratios are given for several
useful versions of the map labeling [11, 16]. If we
fix the scaling factor and measure the quality of
the solution with the number of labels that can
be placed without overlapping, there are PTAS al-
gorithms provided that the ratio of heights of the
tallest label and the shortest label is bounded by
a constant [11, 12], although their time complex-
ities are rather high unless the intersection graph
associated with candidate labels is very sparse.

We deal with another type of a map-labeling,
called a shape-flexible labeling, where we can flexi-
bly choose the shape of each label from a candidate
set of rectangles. The chosen labels are placed in
the map after scaled by a scaling factor & which
is common for all labels. The problem of deciding
the feasiblity of a shape-flexible labeling problem is
NP-hard in general, and the complexity of solving
the problem heavily depends on features of can-
didate sets. If each candidate set is the set of all
rectangles with a given area, the labeling is called

an elastic labeling, and some special cases were in-

vestigated by Tturriaga and Lubiw [8].

In this paper, we propose a new class of shape-
flexible labeling problems, named Leftside-Orderly
Flezible Labeling (LOFL), where the candidate set
of rectangles given to each object point must be
a leftside-orderly set. The definition of a leftside-
orderly set will be given in the next section; a typ-
ical example is a set of rectangles pinned at their
left-upper corners.

QOur motivation is as follows: For example, con-
sider a label “Graduate School of Information Sci-
ences.” It needs width 39 (character units) if it is
written in a single line. However, it can be written
in two lines using width 20, or in four lines using
width 11 without breaking words. Thus, we can
fold a label to decrease the width. Moreover, in
the Chinese (also Japanese or Korean) language
system, we can write a character string vertically,
and hence we can transpose a label (i.e. exchange
its width and height). It is often seen that folding
and transposition can improve the labeling layout.
By formulating such a problem as LOFL, we can
compute the optimal folding and transposition of
labels to maximize the character unit.

We show that the decision problem for LOFL
can be solved in O({n + m)log(n + m)} time by a
simple plane-sweep algorithm. As a consequence,
the optimization problem for LOFL can be solved
in O((n+m) log(n+m) log T') time if the coordinate
values of points are represented by logI'-bit inte-
gers. We also give an O((n +m) log?(n+m)) time
algorithm for the optimization problem. To design
this algorithm, we use the parametric searching
paradigm in a novel way; we use parallel sorting
and point location query to design a “guide algo-
rithm” required for the parametric searching.

Qur method can be used as a subroutine in heuris-

tic algorithms for a practical labeling system. We
give some experimental results to compare several
labeling schemes related to LOFL.

2 Preliminaries

2.1 Leftside-orderly sets

A set T of intervals is totally ordered with respect
to inclusion if any pair I and I’ of intervals in
satisfies either I C I'or I' C I.

For a rectangle L representing a label, we denote
by left(L) the left edge of the rectangle L. Also,
we fix a point ¢(L) on left(L), which we call the
pinning point of L. Consider a set £ of rectan-
gles with pinning points. Suppose that we locate
the rectangles in £ so that their pinning points
are translated to the origin. Then, left(L) =
{left(L)IL € L} is a set of intervals on y-axis.
If left(L) is totally ordered, we say the set £ sat-
isfies the leftside-orderly property, and call the set
L a leftside-orderly set. See Figure 2 (a) for an
example. In this paper, a leftside-orderly set al-
ways implies that a pinning point is given for each
rectangle in the set.

We are given a set P = {p1,pa,...,pn} of n
object points on the plane. Let py = (2;,y;) fori=
1,2,...,n. We also consider a set @ of polygonal
(not necessarily rectilinear) obstacles in the plane,
which no label is permitted to overlap. We assume
that the obstacles do not intersect each other. Let
m be the number of edges of polygons in Q. A
leftside-orderly set £; of rectangular labels is given
to each object point p; € P. £; and £; may be
different from each other if # j.

Let N = 37 [£i]: N is the number of all can-
didate rectangles. In Geographic Information Sys-
tem, the cardinality of a leftside-orderly set for a
point is usually bounded by a constant. There-
fore, we assume N = O(n) in this paper, although
it is not difficult to generalize our argument to the
cases where N is much larger than n.

Let o be a positive real value, called a scaling
factor. We choose a suitable label from £; for each
p;i € P, scale it by the factor o, and place it in
the plane so that its pinning point is located at
pi. The placement is called feasible if (1) no two

labels overlap each other and (2) no label over-
laps any obstacle. Figure 2(b) illustrates a feasi-
ble placement for a set P of five points, to each of
which the set in Fig. 2(a) is assigned. Qur aimis to
find the largest scaling factor o for which a feasible
placement exists, and to compute the placement.

B 2: (a) A leftside-orderly set consisting of four
rectangles, and (b) a labeling by LOFL.

Without loss of generality, we assume that there
is no pair of labels L and L' in £; such that L C L/,
since we need not use the larger label L’ in our
solution if such a pair exists.

We define an ordering > on the set £; as follows:
L> L' for two labels L and L in £; if and only if
left(L) D left(L'). We say that L' is shorter than
L and wider than L if L > L', since L’ is shorter
in beight and wider in breadth than L because of
the assumption above.

Using the ordering, we can naturally give a lexi-
cographical ordering among the set of feasible solu-
tions (for a fixed o) as follows: We sort the object
points p1,p2,...,Pn in nonincreasing order with
respect to the z-coordinate values, and re-arrange
the numbering; hence, p; is the rightmost point

and py, is the leftmost point. Let L = (L1, L, ..., Ln)

and L' = (L},L5, ..., L) be two different feasi-
ble placements where L; and L} are labels for p;.
Then we define L > L’ if there is an index j such
that L; > L; and L; = L] for every i < j. The

minimum feasible placement with respect to this
ordering is called the “widest” solution.

2.2 Approximation hardness for la-
bel sets without leftside-orderly

property

Before presenting algorithms for LOFL, we re-
mark that the leftside-orderly property is crucial
for designing a polynomial time algorithm. In-
deed, it is NP-hard to compute a feasible place-
ment whose scaling factor is larger than }+¢ times
the optimal scaling factor for any positive constant
¢. The hardness result can be easily obtained by
modifying the reduction of the planar 3SAT prob-
lem to a labeling problem with three candidate la-
bels [10], and hence the proof is omitted in this ver-
sion. On the other hand, one cannot construct an
“alternating cycle” gadget representing a graph-
edge in the reduction if only a leftside-orderly set
is allowed to each point.

3 Decision Problem

3.1 Algorithm for the decision prob-
lem

In this section, we present an O((n +m) log(n +
m)) time algorithm to solve the decision problem
for a fixed scaling o. Without loss of generality,
we may assume ¢ = 1 in this section. We first
sort the object points in nonincreasing order with
respect to the z-coordinate values, and re-arrange
the numbering as we noted before. We start with
the following observation:

Lemma 3.1 Let L = (Ly,Ls,...,Ly,) be a feasi-
ble placement, and let 1 < i < n. If there is a
label L € £; which is wider than L; and intersects
none of the labels Ly, La, ..., L;—1 and the obsta-
cles, then we can replace L; by L to obtain another

feasible placement L', where

L' = (L1, L,y Lie1, L, Lig1, -, Ln)-

From this observation, we can design a simple
incremental algorithm, named DECIDE, to decide
the feasibility:

Procedure DECIDE
1. Fori=11o n;
1.1. ¥ every label in C; overlaps an obstacle or
a label placed so far,
answer that the problem is infeasible, and
exit; ‘
1.2. Assign p; the widest label L; that overlaps
neither any obstacle nor any label placed so far;
End For;
2. Report the placement L = (Ly, La,..., Ln)
as a feasible solution.

Clearly, we have:

Proposition 8.2 Algorithm DECIDE is correct,
and outputs the widest solution if the problem is
feasible.

It is easy to give a naive implementation of DE-
CIDE with O{(n + m)n) time complexity. We
can give a better implementation by using a stan-
dard plane sweep method, and show that it takes
O((n + m)log(n + m)) time. We remark that the
plane sweep method is widely used in the rectangle
placement and labeling problems; See for example,
van Kreveld et al. {11].

Theorem 3.3 The decision problem of LOFL can
be solved in O((n + m)log(n + m)) time.

The decision problem is at least as difficult as
the element uniqueness problem [15], and hence,
if m = O(n), the O(nlogn) time complexity is
optimal on the algebraic decision tree model,

4 Optimization problem

4.1 A precision-dependent algorithm

We consider the problem of finding the maxi-
mum feasible value of the scaling factor ¢. A sim-

ple binary search algorithm on ¢ works; the algo-
rithm for the decision problem can decide whether
we should try a larger ¢ or a smaller one than the
current scaling factor for the next search. If coor-
dinate values of all points are integral and T' is the
maximum of their absolute value, then it suffices to
run the algorithm given in Section 3.1 an O(log T')
number of times (note that I'? > n). Thus, we

have:

Theorem 4.1 The optimization problem of LOFL
can be solved in O((n + m) log(n + m) logT) time.

4.2 Precision-independent algorithms

The binary search algorithm above is efficient
for practical inputs for which logT' = O(log(n +
m)) holds. However, an efficient algorithm with
time complexity independent of I' is desirable from
the theoretical point of view. We design such an
O((n +m) log?(n+m)) time algorithm for the op-
timization problem.

4.2.1 Heterogeneous parametric searching

Meggido’s parametric searching [13] is a famous
method to transform a precision-dependent binary
search algorithm into a precision-independent al-
gorithm. Especially, the method is quite useful in
computational geometry. (See [2, 5] and their ref-
erences).

Suppose that F is a 0-1 valued monotone func-
tion on a parameter 6: there is a value f,p; such
that F(6) = 1if 8 < fop; and F(8) = 0if 6 > G,p.
Our aim is to compute the value fyp;. Paramet-
ric searching assumes that the following two algo-
rithms, A and D, for computing F(6) for a given
value § are available: The algorithm D is called
a decision algorithm, which is the fastest available
algorithm to compute F(#). Assume that D takes
O(Tp) time. The other algorithm A is called a
guide algorithm. We simulate the behavior of A
for 6 = f,5; without knowing the value opt in co-

operation with the decision algoirthm D, and find
the value 8,p; in the course of the simulation. It is
advantageous to use a guide algorithm that has a
parallel structure, although we do not use a paral-
lel machine in our computation. If A takes O(t4)
parallel time with M processors, then we can simu-
late A for 8 = f,p; without inputing the value 6,p;
in Q(taMlog M + toTplog M) sequential time.
Cole’s acceleration method [6] can often improve
the time complexity to O(t4 M log M +t4Tp).

Let us consider our LOFL problem. We define a
monotone function F as follows: F(o) = 1 if and
only if there is a feasible placement for the scal-
ing factor . We can use the parametric search-
ing paradigm regarding o as the parameter. We
use DECIDE for the decision algorithm. Unfor-
tunately, for our problem, a guide algoirthm with
ta = Oflog(n + m)} and M = O(n + m) seems to
be difficult to design. To overcome the difficulty,
we adopt a “heterogeneous” version of parametric
searching. The heterogeneous parametric search-
ing paradigm uses a “weaker” guide algorithm A
that cannot compute F(o) itself even if o is given
as an input. Instead, A computes another function
G(o), where the range of G(¢) is not {0,1} but is
a much larger category. The required condition is
that G{o) = G(o') always implies F(o) = F(¢’)
for any ¢ and ¢'. Intuitively, G gives a refine-
ment of F. In particular, we will use a guide algo-
rithm consisting of parallel sorting and point loca-
tion query algorithms.

The idea of the heterogeneous parametric search-
ing was implicitly given in Megiddo’s paper [13], in
which he solved a problem on the parametric min-
imum spanning tree of a graph by using a parallel
sorting algorithm as its guide algorithm. Also, it
is related to refined parametric searching proposed
by Aggarwal et al.[1] for computing the minimum
weight k-link path on a Monge DAG. However, to
the author’s knowledge, this is the first time that a
heterogeneous parametric searching algorithm us-
ing a2 guide algorithm involving a computational

geometric procedure is proposed.

4.2.2 The case without obstacles

In this subsection, we consider the case where
Q= 0. Let £ = UL, L; be the set of all candidate
labels, and let S{¢) be the set of corner points
of rectangles in £ after scaled by o and located
so that the pinning points come to their corre-
sponding object points in P. Our guide algorithm
computes sorted lists X (S(0)) and Y (S(o)) of the
points in S(o) with respect to the z-coordinate
values and the y-coordinate values, respectively.
The elements with the same ranking are tied in the
sorting procedure. Using DECIDE as the decision
algorithm, we compute the sorted lists X{S(o))
and Y (S(0)) for ¢ = o4py, where ooy is the scal-
ing factor in the optimal solution. The following
lemma. is easy to prove:

Lemma 4.2 IfX(5(r)) = X(5(0)) and Y (S(7)) =
Y (S(0)), there is a feasible solution of LOFL for
the scaling factor 7 if and only if there is a feasible
solution for o.

Thus, our guide algorithm gives a refinement of
the solution of the decision problem. Therefore
we can find the value o,p; by simulating the be-
havior of our guide algorithm to obtain the sorted
lists X(S(09pt)) and X(S(00pt)) with help of the
decision algoithm.

An t4 = O(logn) parallel time algorithm with
M = O(n) processors is known for the sorting
problem [3]. Since the decision algorithm takes
Tp = O(nlogn) time, it takes O(nlog®n) time
to process the parametric search above. This can
be further improved to C(nlog? n} time by using
Cole’s acceleration method [6].

4.2.3 The case with obstacles

If Q # 0, we need to consider overlapping of
labels with obstacles. Let V(Q) be the set of all
vertices of polygonal obstacles in Q.

As preprocessing of our parametric searching al-
gorithm, we prepare a point location data struc-
ture as follows: We first construct a triangulation
PD(Q) of the plane into O(m) triangles so that each
triangle is either contained in an obstacle or com-
pletely outside obstacles. All vertices, edges, and
triangles in D(Q) are called faces of D(Q). Then,
we prepare a point location data structure so that
we can find the face of D(Q) containing a query
point in O(log m) time. The triangulation and the
point location data structure can be constructed
in O{mlogm) time (e.g. [15]), and we do not need
to construct it in parallel since it is independent of
the value of the scaling factor.

Our guide algorithm first computes the sorting
lists X(S(o) UV(Q)) and Y(S(o) U V(Q)) of the
point set S(c} U V(Q) with respect to z- and y-
coordinate values, and then locates all points of
S(e) in D(Q) in parallel.

A pair 7 and ¢ of parameter values are called
eguivalent to each other if (1) X(S(e) UV (Q)) =
X(S(r) UV (@), (2) Y(S(e) UV (Q) =Y (S(r) U
V(Q)) and (3) each point in S(r} is contained in
the same face of D(Q) as the corresponding point
in S(o) is.

Lemma 4.3 If ¢ and 7 are equivalent, there is a
feastble solution of LOFL for the scaling factor
if and only if there is a feasible solution for o.

Hence, by simulating our guide algorithm, we
can compute Cop¢. After constructing the point
location data structure, the guide algorithm runs
in O(log(n + m}) time with O(n + m) processors,
and hence our (heterogeneous) parametric search
algorithm runs in O({n + m)log?(n + m)) time,
using Cole’s acceleration method [6]. Thus, we
have obtained the following theorem:

Theorem 4.4 In O((n+m)log?(n+m)) time, we
can find the mazimum scaling factor permitting a
feastble labeling of LOFL of n points in a plane
with polygonal obstacles of m edges.

5 Heuristics by using LOFL

In a practical GIS system, a map labeling prob-
lem is often given in a form which is thearetically
NP-hard. Therefore, heuristics methods or hybrid
methods are often effective in practice [16, 17, 18].
LOFL can be used as a powerful weapon to design
heuristics combined with other methods. Suppose
we have a feasible labeling with a scaling factor
¢ given by some method, and want to improve
the factor by changing the shape of labels. Let
Li be the label for p; € P in the labeling. In
place of the single label L;, to each p; € P, we
assign an appropriate leftside-orderly set £; such
that £; 3 L;. Thus, we have an instance of LOFL.
The scaling factor in the solution of this LOFL in-
stance is larger than or equal to ¢, and is often
much larger than ¢. This can be considered as a
“local improvement routine,” which is an impor-
tant tool in meta-heuristics.

6 Experimental results

For our experiment, we randomly generated 1000
instances of n integral object points in a square re-
gion of size 50000 x 50000 for each of n = 20, 40, 60,
and 80. We did not locate obstacles, We tried four
different labeling schemes. For each object point,
we assign the following candidate labels for the re-
spective labeling scheme: (1} A left-upper pinned
rectangle with height 3¢ and breadth 40. (2) A
set of left-upper pinned rectangles of area 1202
whose height-breadth ratios are 12, 3, 4/3, 3/4,
1/3, and 1/12 (they correspond to factorizations
of 12 to 12 x 1, 6 x 2 and 4 x 3). (3) A pair of
rectangles with height 3o and breadth 4o, one of
which is left-upper pinned and the other is left-
lower pinned. (4) A set of rectangles consisiting
of those in (2) and their reflected copies pinned at
the left-lower corner.

The labeling scheme (1) can be trivially solved,
and (2) is LOFL. The labeling scheme (3) can

1: Scaling factors of the labeling schemes

Number of points
Schemes | n=20 | n=40 | n=60 | n=80
(1) 447 235 155 115
(2) 1146 643 445 333
(3) 1044 550 359 250
4) 1477 835 598 467

be solved by using an algoirthm (2SAT) given by
Forman and Wagner [7]. We solved (4) approxi-
mately by using a combination of LOFL and 25AT.
We can mathematically estimate that the expected
value of the optimal scaling factor for the scheme
(1) is approximately n‘l\/m x 50000/v/12 ~
9000n=!. Table 1 shows the average scaling fac-
tor over 1000 instances for each of (1), (2}, (3),
and (4) for each n.

7 Concluding remarks

We often want to place as many labels as possi—‘
ble for a given instance of LOFL which is infeasi-
ble for a fixed scaling factor o. Design of efficient
algoirthms or heuristics for this problem is an im-
portant future problem.

SE X

[1] A. Aggarwal, B. Scheiber, and T. Tokuyama,
Finding a minimum weight k-link path in graphs
with the concave Monge property and applica-
tions, Discrete & Computational Geomelry 12
(1994) 263-280.

[2] P. Agarwal, M. Sharir, and S. Toledo, Applica-
tions of parametric searching in geometric opti-
mization, Proc. 8rd ACM-SIAM Symp. on Dis-
crete Algorithms (1992) 72-81.

[3] M. Ajtai, J. Komlos, and E. Szemeredi, Sorting in
clog(n) parallel steps, Combinatorica, 3 (1983),
pp.1-19.

[4] H. Aonuma, H. Imai, K. Imai, and T. Tokuyama,
Maximin locations of convex objects in a polygon

and related dynamic Voronoi diagrams, Proc. 6th
ACM Symp. on Computational Geometry (1990)
225-234.

[5] B. Chazelle, H. Edelsbrunner, L. Guibas, and M.
Sharir, Diameter, width, closest line pair, and
parametric searching, Proc. 8th ACM Symp. on
Computational Geometry (1992) 120-129.

[6] R. Cole, Slowing down sorting network to obtain
faster sorting algorithms, J. ACM 34 (1987) 200-
208.

[7) M. Formann and F. Wagner, A packing problem
with applications to lettering of maps, Proc. 7th
ACM Symp. on Computational Geometry (1991)
281-290.

[8] C. Iturriaga and A. Lubiw, Elastic labels around
the perimeter of a map, Proc. WADS’99 (1999)

{9] K. Kakoulis and I. Tollis, A unified approach
to labeling graphical features, Proc. 14th ACM
Symp. on Computational Geomelry (1998) 347-
356.

[10}] K. Kato, Studies on the Geometric Loca-
tion Problems, L1 Approximation and Charac-
ter Placing, Master Thesis, Kyushu University
(February 1989).

[11] M. van Kreveld, T. Strijk, and A. Wolff, Point
set labeling with sliding labels, Proc. 14th ACM
Symp. on Computational Geometry (1998) 337-
346.

[12] M. Halldérsson, private communication (1999).

[13] N. Megiddo, Applying paraliel computation algo-
rithms in the design of serial algorithms, J. ACM
30 (1983) 852-865.

[14] 1. Shamos and F. Preparata, Computational Ge-
ometry — An Introduction, Springer Verlag, 1985.

[15] F. Wagner and A. Wolff, Map labeling heuristics:
provably good and practically useful, Proc. 11th
ACM Symp. on Computational Geometry (1995)
109-118.

[16] F. Wagner and A. Wolff, A combinatorial frame-
work for map labeling, Proc. Graph Drawing "98
(1998) 13-15.

[17] M. Yamamoto, G. Camara, L. Lorena,
Tabu Search Heuristics for Point-
Feature Cartographical Label Place-
ment, Geolnformatica (2000} (also see

http://wwwlac.inpe.br/ lorena/missae/index.htm})

