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A compressed text database based on the compressed suffix array is proposed. The compressed
suffix array of Grossi and Vitter occupies only O(n) bits for a text of length n; however it also
uses the text itself that occupies O(nlog|X|) bits for the alphabet £. On the other hand, our
data structure does not use the text itself, and supports important operations for text databases:
inverse, search and decompress. Our algorithms can find occ occurrences of any substring P of the
text in O(]P|logn + occlog® n) time and decompress a part of the text of length [ in O(l + log®n)

time for any fixed 1 > € > 0. Our data structure occupies only %nHo + n(6 + 3logH0)—]—°-gj—’l— +
2n + |Z]log |Z] + o(n) bits where Hy < log|Z| is the order-0 entropy of the text.

1 Introduction

As the number of machine-readable texts grows,
text search techniques become more important. Tra-
ditional algorithms perform sequential search to find
a keyword from a text; however it is not practical
for huge databases. We create indices of the text in
advance for querying in sublinear time. In the area
of text retrieval, the inverted index [7] is commonly
used due to its space requirements and query speed.
The inverted index is a kind of word indices. It is
suitable for English texts, while it is not suitable for
Japanese texts or biological sequences because it is
difficult to parse them into words. For such texts a
kind of full-text indices is used, for example suffix ar-
rays [13] and suffix trees [14]. These indices enable
finding any substring of a text. However, the size of
full-text indices are quite larger than that of word in-
dices. Recent researches are focused on reducing the
sizes of full-text indices [12, 6, 5, 9].

logsn—1

The compressed suffix array of Grossi and Vitter [6]
reduces the size of the suffix array of a text of length
n from nlogn bits to O(n) bits. We assume that the
base of logarithm is two. We can find any pattern
P in the text in O((|P| + log®) logn) time using the
text and the compressed suffix array. The compressed
suffix array is also used with succinct representation
of suffix trees in O(n) bits to find P in o(|P|) time.
Though they only considered binary alphabets, it can
be generalized for texts with alphabet size |%| > 2.
However, this representation also uses the text itself
to search patterns. The text is also necessary to text
databases because the purpose of a search is to obtain
a part of the text containing a given pattern. The
text occupies nlog|X| bits. Indeed, the data size is
always larger than that of the original text size.

Though some algorithms for finding words from a
compressed text have been proposed [4, 11], the al-
gorithms have to scan the whole compressed text.



As a result, their query time is proportional to the
size of the compressed text and they are not applica-
ble to huge texts. Though a search index using the
suffix array of a compressed text has also been pro-
posed [15], it is difficult to search arbitrary strings
because the compression is based on word segmenta-
tion of the text. Furthermore, this search index can
be also compressed by our algorithm.

The opportunistic data structure of Ferragina and
Manzini [5] allows to enumerate any pattern P in a
compressed text in (| P|+occ log® n) time for any given
1 > € > 0. The compression algorithm is the block
sorting [1] based on a permutation of the text defined
by the suffix array. It has good compression ratio and
fast decompressing speed. Space occupancy of the op-
portunistic data structure of Ferragina and Manzini
is O(nHk)—l—O(]Ogn (loglogn+|Z|log|X|)) bits where
Hj is the order-k entropy of the text. Unfortunately,
the second term is often too large in practice.

In this paper we propose compressed text
databases and query algorithms using the compressed
suffix array of Grossi and Vitter. We support three
basic operations for text databases, inverse, search
and decompress, without using the text itself. Since
we do not need the original text, the size of our data
structure can become smaller than the text size. The
inverse returns the inverse of the suffix array. It has
many applications, for example the lexicographic or-
der of a suffix in any part of the text can be effi-
ciently computed by using the inverse of the suffix
array. This enables efficient proximity search [10],
which finds sets of keywords which appear in the
neighborhood. Though the inverse of a suffix array
can be computed easily from the suffix array, it also
occupies nlogn bits. On the other hand, our data
structure can represent it by additional n + o(n) bits.

The search returns the interval in the suffix array
that corresponds to a pattern P from the text of
length n in O(] P}log n) time. The decompress returns
a substring of length ! in the compressed database
in O(l + log®n) time. Space occupancy is only
—nHo+n(6+310gH0)lo S +2n+ | log |£] +o(n)
bits where Hy is the order 0 entropy of the text and
1> €e>0is a fixed constant. Assume that n < 252
and Hy = 3, which is practical for English texts. If we
use € = 0.8, log®n =~ 16. Then the size of the index is
approximately 18n bits. On the other hand, the text
itself and its suffix array occupies 8n + 32n = 40n
bits. Therefore our search index reduces the space
complexity by 55%.

The rest of this paper is organized as follows. In
Section 2 we describe the original suffix array [6].
In Section 3 we describe algorithms for rank func-
tion [8] and select function [16], which are heavily
used in the compressed suffix array. In Section 4 we
propose modified version of the compressed suffix ar-
ray. We also propose algorithms for compressed text
databases. In Section 5, we describe algorithms and
data structures for the ¥, function used in the com-
pressed suffix arrays, and analyze the size of the data

structure. In Section 6, we describe the sizes of the
original and our compressed suffix arrays.

2 The original compressed suf-
fix array

Let T[1..n] = T[1]T[2]---T'[n] be a text of length
n on an alphabet ¥. Assume that the alphabet size
% is finite. For each symbol in the alphabet, a dis-
tinct number in {1,2,...,|Z|} is assigned. The order
of symbols is defined by the numbers. We assume
that T'[n] = § is a unique terminator whose order is
assigned to 0. We also assume that n is a power of
two. A substring 7'[j..n] is called a suffix of T'. The
suffix array SA[1..n] of T is an array of integers j that
represent suffixes T'[j..n]. The integers are sorted in
lexicographic order of corresponding to suffixes.

The existential query, that is, whether a pattern
P[1..m] of length m exists in the text T or not, can
be performed by a binary search on the suffix array
in O(mlogn) time. Since suffixes which match with
a pattern P exist in a consecutive region of the suffix
array, the counting query that returns the number of
overlapped occurrences of the pattern is done in the
same time complexity as the existential query. The
counting query is performed by finding the rightmost
and the leftmost indices r and [ of the suffix array
that correspond to the pattern. Therefore positions
of all occurrences of the pattern can be enumerated
in time proportional to the number of occurrences
occ = r—1+1 after the counting query. The positions
are stored in SA[l], SA[l+1],... SA[T}. This is called
enumerative query.

The size of the suffix array is nlogn bits. The
text T is also used for string comparisons. Its size is
nlog |Z] bits.

The compressed suffix array has size O(n) bits
whereas it stores the same information as the suf-
fix array. It calculates an element of the suffix array
SAli] in O(log®n) time where 1 > ¢ > 0 is a fixed
constant. Therefore both an existential and a count-
ing queries are done in O((m + log®n)logn) time.
An enumerative query takes additional O(occlog® n)
time.

The compressed suffix array has a hierarchical data
structure. The k-th level implicitly stores indices of
suffixes which are multiple of 2%, An array SAg[1..ng]
(nk = %) stores the indices that are divided by 2.
The indices are stored in the same order as in the
suffix array SA.

The array SAy becomes the suffix array of a new
string Tk[l..nk]. A character TkL] consists of a con-
catenation of 25 characters T[j2%..(5 + 1)2% — 1].

Proposition 1 The array SAy coincides with the
suffix array of the string Tk.

Proof: The array SAj is created by extracting in-
dices j2F (1 < j < ny) from the SA, enumerating
them in the same order as in the SA and dividing
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X 1: An example of the compressed suffix array

them by 2*. Since a suffix Ty[f..nk] consists of the
same character as the suffix T[j2F..n], lexicographic
order of suffixes of T}, is equal to the lexicographic or-
der of suffixes T[j2%..n). Thus the array SAy forms
the suffix array of T. Therefore we use the same

technique of representation of SAy recursively.

We use levels 0, e, 2e,...,l where e = eloglogn
(1 >¢€>0)and ! = [loglogn]. The I-th level
explicitly stores g indices. Its size is at most
B%{ logn = n bits. The k-th level stores a bit-vector
By[1..ng] and a function ¥.[i] (1 <4 < ng) instead of
S Ag[l..ng]. Figure 1 shows the compressed suffix ar-
ray of a string T' = ebdebddaddebebdc. We use e = 2;
therefore three levels 0, 2 and 4 are stored. The ar-
rows show the correspondence between two suffixes
in different levels. '

An element Bg[i] of the bit-vector represents
whether S A ] is & multiple of 2° or not. If Bx[i] = 1,
SAg[i] = j2¢ and this index is stored in SAyy, im-
plicitly if £k + e < I or explicitly if kK + e = I. The
lexicographic order 4’ of a suffix in S A+ correspond-
ing to SAgli] is calculated by i = rank(Bg,i) where
rank(By, 1) returns the number of ones in By[L..i.
Therefore SAg|i] is represented by

SAli] = 2°S Agye[rank(By, 1))

if Beli] = 1.

If Beli] = 0, SAg[i] = j2° —v (1 < v < 2°) and
it is represented by v and an index i’ of SA; where
SAgli'] = j2°. The function ¥[i] is defined as fol-
lows:

Definition 1

. i st SAR[i
\Pk[z]s{lStS k[z

SAk[i] +1 (if SAk[’L] < nk)
i s.t. SAyi

% z 1 (if SAk[l] = nk)

<
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Therefore SAg[i] is calculated by using a relation
SAglt] = SAR[Tgli]] - 1

iteratively while B[i] = 0.
The algorithm to calculate SAg becomes as follows.

Algorithm SAg[i]

if k = [ then return SA[i];
v« 0;
while Bg[i] =0
do if i = pos} then return ny;
i = Wi li];
v —v+1;

return 2° - SA, [rank(By, )] — v.

The variable poé’,} is necessary if ny is not a multiple
of log® n. It represents the lexicographic order of the
last suffix T'[ng], that is, SAg[post] = ny.

Theorem 1 The compressed suffiz array returns
SA[i] in O(log®n) time for any fized constant 1 >
e > 0.

Proof: SA[i] is calculated by the function SAgli].
The function recursively calls itself constant (1/e)
times. In each call the ¥, function is used at most
log®n ~ 1 times because SAk[WL[i]] = SAki] +v
(v=0,1,...,log°n) always include an index which
is a multiple of log®. Since each call of rank and ¥y,
functions takes constant time from Lemma 1 in Sec-
tion 3 and Lemma 4 in Section refsec:psi, the theorem
holds. '

The original compressed suffix array is mainly used
to compress indices in leaves of a suffix tree because
there exists a technique to represent the shape of the
suffix tree of a binary string in O(n) bits [17]. This
representation uses the text to find the length of edges
in the suffix tree. In this paper we modify the com-
pressed suffix array to be used without the suffix tree
and the text. The size of search index may become
smaller than the text size. Thus it becomes a com-
pressed text database.

3 Rank and select functions

A function rank(B,i) for a bit-vector B[l..n] re-
turns the number of ones in B(I..i].

Lemma 1 [8] The rank function can be computed in
constant time by using a data structure of size n+o(n)
bits.

A function select(B, 1) returns the position of i-th
one in the bit-vector B[1..n].

Lemma 2 [16] The select function can be computed
in constant time by using a data structure of size n+
o(n) bits.



4 Modification of the
pressed suffix array

com-

In this section we modify the original compressed
suffix array in order to use it for compressed text
databases. First we show that the text T" is not nec-
essary to perform a binary search to find a pattern
P. Then we show that the text can be extracted
from the compressed suffix array. We also propose
some functions for compressed text databases.

4.1 Pattern matching using the com-
pressed suffix array without the
text

An occurrence of a pattern P[1..m] in a text T[1..n]
can be found in O(mlogn) time by a binary search on
the suffix array SA[1..n] of the text T. In the binary
search substrings T'[SA[z]..S A[i]+m—1] are compared
with the pattern. It will take O((m + log®n)logn)
time if the compressed suffix array is used because
it takes O(log® n) time to calculate SA[i]. We show
that the substring can be found without calculating
the value of SA[i] if the index i is given.

We use bit-vectors Di[1..ng] defined as

Dili] = { [1) lfti:r;is; T[S Ak[i]] # Tk[SAkli — 1]]

Then the bit-vector Dy is used to obtain the head
character T[S Ali]] of a suffix if its lexicographic order
i is known. We use an array C[1..|3]] in which C[j]
stores the j-th smallest character appeared in T, and
define a function C~1[i] as

C~ 5] = Clrank(Dy, 1)),
then the following proposition holds:

Proposition 2 T[SA[i]] = C~i] and it is calcu-
lated in constant time for a given 1.

Proof: Since suffixes are lexicographically sorted in
the suffix array, the head characters T[S A[i]] of suf-
fixes are alphabetically sorted. Dg[i] = 1 means that
T[S A[i]] is different from T[SA[i — 1]). Therefore the
rank r = rank(Dy,%) represents the number of dif-
ferent characters in T[SA[1]], T[SA[2]},...,T[SA[:]],
and C[r] becomes the character T[S A[i]]. Concerning
the time complexity, the rank function takes constant
time from Lemma 1, and other operations also take
constant time.

This means that it is not necessary to calculate the
exact value of SA[i], which takes O(log®n) time, to
obtain the head character of the suffix T[SA[i]..n].
This is extended as follows. The function ¥ denotes
Ty.

Proposition 3

T[SA[) +v] = C™H¥[i]] for 0 < v < n — SAJi

Proof: From Definition 1,
SA[] +v = SAP[i]].
By substituting the 4 in Proposition 2 by ¥?[z],
TISAR) +v] = T[SAL[i)]] = O~ [¥°[i]
holds.

This proposition shows that a substring of length m,
T[SA[4]..SA[i] +m — 1] can be decoded in O(m) time
by using the ¥ and the C~! functions m times. The
algorithm becomes as follows. It calculate a substring
T[SA[]..SAl] + m — 1} in S[1..m] and takes O(m)

time.

Algorithm substring(i,m)
1. forj—1tom

2. do Sl — C1fi}
3. i Ui

4. return S;

For this purpose, we modify the compressed suffix
array to store values of ¥[1] for all 4.

1 2 3 4 5 6 7 8 91011 12 13 14 15 16
T e b d e b dd a d d e b e b 4 ¢
a b b b bc dd d d d d e e e e

Vo [8 911 13151 6 7 12 14 16 2 3 4 5 |
1 2 3 4 S5 6 7 8 91011 12 13 14 15 16

sa [814 5 21216 715 6 9 31013 & 1 11]
D,1 1 00 0 1 1 00006 01 0 0 0
rank 1 2 2 2 2 3 4 4 4 4 4 4 5 5 5 5

3

2: Decoding a substring

Here we have the following theorem.

Theorem 2 An existential and a counting query for
a pattern P{1..m] from the compressed suffix array of
a text T[1..n] takes O(mlogn) time.

Note that it takes O((m + log®n)logn) time if the
original compresses suffix array is used. Proof: The
search is performed by a binary search on the suffix
array SA[l..n]. In each iteration of the binary search,
a substring T[S A[i]..SA[i] +m — 1] is compared with
the pattern P[1..m]. The substring T[SA[i]..SA[i] +
m — 1] is decoded in O(m) time from Proposition 3,
which is the same time complexity as comparing two
strings of length m.

4.2 Decoding the text and the inverse
of the suffix array

Algorithm substring can decode a substring of the
text. However, it is not possible to decode an arbi-
trary substring T'[s..e] if the lexicographic order i of



the suffix T'[s..n] (SA[i] = s) is not known. Therefore
we want to calculate the inverse of the suffix array,
i = SA~![s]. We store the inverse array SA; ' ex-
plicitly in the [-th level. We also use the directory
for the select function for By. In each level we store
pos} = i such that SAg[i] = 1. The algorithm be-
comes as follows. :

Algorithm inverse(j)

1. e« |eloglogn]; I =|loglogn]; k «— O;
2. while k <

3 do r[k] + j mod 2¢; qlk] — 7/2%
4 Je3/2% ke k+e

5. i SAT L k—1l—g

6. while £ >0

7. doif gk} =0

8 then i pos}c;

9 for d — 1tork] -1

do i« Tpli};
11. else ¢« select(By,1);
12. for d — 0 to r[k] — 1
13. do i «— W[i];
14. k—k—e

15.return i.

Lemma 3 Algorithm inverse computes SA™1[j] in
O(log® n) time.

Proof: We prove the lemma by induction on the
level k. If k = [, SA;l[j] is explicitly stored. Assume
that i = SA;} [g] (g > 1) is known. We show that
SA;'[2¢g + 7] (0 < 7 < 2°) can be computed by the
algorithm. The suffix Tk[2%q..nt] corresponds to the
suffix Trie[g..n]. Assume that 26¢ = SAk[i']. Then
an equation i = rank(Dy, ') holds. We can compute
i' = SA;'[2°q] by i’ = select(Dgye,1). We can also
compute SA; (26 + 7] = T[]

For elements SA7![r] (0 < r < 2°), we can calcu-
late them by 7 ![pos}] because posi = SA;'[1] is
stored.

Concerning the time complexity, we use the ¥y
function at most 2¢ — 1 = log®n — 1 times and the se-
lect function once in a level and the number of levels
is a constant (%) Since both the ¥ function and the
select function take constant time, the lemma holds.

We can decode an arbitrary substring of a text by
using Algorithm substring and Algorithm inverse.

Theorem 3 A substring T'[s..s +1—1] of length | of
a text of length n can be extracted from the proposed
compressed suffic array of the text in O(l + log®n)
time.

Proof: The lexicographic order 7 of the suffix T'[s..n]
is computed in O(log®n) time by Algorithm inverse.
Then the substring is extracted in O(l) time by Al-
gorithm substring.

5 The data structure of the ¥y
function

In this section we show the following lemma:

Lemma 4 The value of ¥i[i] can be computed in
constant time by using data structures of size at most

nHy + ng(5 + 3log Ho) + o(n)
bits.
To achieve this size, we use the following property:

Proposition 4 ¥.[i]
T[S Ax[i]] = T[S Ax[4]]-

< Wild] of i < j and

Note that Wx[i] and ¥x[j] are always defined when
the condition holds, otherwise SAg[j] = nix and
T[SAx[7]], which contains the unique character $,
is different with T[S Ag[i]].
Proof: If Tu[SAgld]] = Tk[SAglj]], the lex-
icographic order of two suffixes T%[SAg[i]..1]
and T%[SAglj].ne] are determined by the
lexicographic  order of Ty[SAk[i] + 1.
and Ti[SAglj] + 1.ngl Since i < j,
T[SAgli] + L.ng] < Tu[SAg[j] + 1..ng], or equiva-
lently, Tk[SAk[\I’k[Z]]‘nk] < Tk[SAk[\IJk[]]]nk] This
means that ¥ [i] < P[], which concludes the proof.
This proposition shows that values of

the ¥y function are piecewise monotone increasing.
This leads to a compact representation of the ¥y
function. The values ¥.[i] are grouped according
to characters Ty[SAg[i]]. The values in a group are
encoded as a kind of lists. The value ¥;[i] is encoded
as Wili] — Wi[i — 1) if TR[SAk[i — 1])] = Tk[SAk[i]],
otherwise encoded as Wili], by a representation
of natural numbers, for example the é-code [3].
The values of ¥.[i] are used only for indices with
Bgli] = 0. Therefore the original compressed suffix
array stores only the necessary values. The number
of stored values is 206 2=1)

logén

The data structure of the ¥y function consists of
Dy, Sk, Ex, Pkl, P,f,kal and F,f Dy, is a bit-vector of
length ny defined above with the directory of o(ng)
bits for the rank function. It represents a group Sk
containing all ¥[:] such that T[S Ax[i]] = ¢. The Sk
consists of Sk.’s. Other structures are used to decode
W[4] values in constant time.

The Sk stores values of Wi[i] corresponding to
¢ = Ty[SAg[i]]. From Proposition 4, the values are
monotone increasing to ¢ in a group Sk.. We encode
U[i] as d; = Ug[i] — Ti[i — 1] by b-code if Dg[i] = 0.
If Dili] = 1, we use d; = ¥[i]. The §-code encodes
a number 7 (r > 1) in 1+ |logr] + 2|log(1 + [logT])]
bits. Table 1 shows examples of §-code.

We calculate the size of Sy in bits.

Lemma 5 2z, = nHy + 3nk(1 + log Hp) + o(n) for
k = eloglogn.



# 1: §-code
T 5(r)
1 1
2 10100
310101
4 101100
7 101111
8 1 00 100 000
15 | 00 100 111
Tkebdebddaddebebdc
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
saA[8 14 5 212 16 715 6 9 3 10 i3 4 1 11
TSAll 2 ® b b b c & a @ d ddeeee

D, 1100 0 1 1 0 0 0 0 0 1 0 0 O©
w o8 9 11 13]i5]1 6 7 12 14 16] 2 3 4 5
dyio J8 1 2 T

S[i5]1 5 1 5 2 2[2 1 1]

E, 0o o0 100 0 1001 01 0 0 00
Fil 1
Fi[ 1 0

16 ]
11 15 |

S, Sha She Sha S
001000101 00100000 1 0100 0100 001001111 0110 1000 1

[¥ 3: The data structure for the ¥y function

Proof: Let n. be the number of ¥[i] values corre-
sponding to ¢ = Tx[SAk[i]] = T[SAk[i]25..(SAk[i] +
1)2¥ — 1]. Then the number of bits to encode the
values for a ¢ € £2° becomes

> 1+ |logd,} + 2|log(1 + log dy)}

i_l(l—l—logz———{—Qlog (1+logz ))

i=1

Ne <1+Iogn—k+21og (1+logf>>
C (4

where the first inequality comes from Jensen’s in-
equality for concave function log.

We calculate the total number of bits to encode all
U[i] values for a level k. Let p. = 7, that is, the
probability that a character ¢ appears in the text Tk.
The entropy of the text T} is expressed by

1
How = Z pCIOg_

cex?*

Zke

IA

IN

The entropy has the following property [2}:
Hy < 2%H,

where equality holds when characters in T' appear
independently.
Now we express zj by the order-0 entropy Ho.

i

Z e (1—}-log@i + 2log <1+log%>>
T Ne

cex?*
1 1
= ng Z De (1—Hog~+2log(1+log——>>
N Pc Pe
cex?
< ( +H2k +210g(1+H2k))
< k(1 + 28Hy + 2log(1 + 25 Hy))
< np(l 4 25Hy + 2log max{(2, 251 Ho}))
3 2k+3
= n<H0+max{2—k, o log H0}>
< n <Ho + — log Ho> + 3nk(1 + log Hop)
If ¥ = 0, the first term becomes nHp.
If &£ = «cloglogn, the first term becomes
n | Ho + —%‘ggl%@ logHo> = nHg + o(n). Therefore

the lemma holds.

We also use directories for the ¥ function to de-
code a Ug[i] value in constant time. We define a
function decoded(F;,l) which decodes a bit-pattern
of length O(logn) bits in constant time using table
lookups. The decodedé(Pj, 1) function returns the sum-
mation of the first [ numbers encoded in F; by 4-
code. It takes constant time by using tables A [w, ],
Aylw,i] and A,[w,i} where w is a bit-pattern of
W = 12 bits and 1 < i < W. The element Az [w, ]
stores the summation of the first ¢ numbers encoded
by é-code in a bit-pattern w and the element A, [w, 7]
stores the total number of bits for the first i num-
bers. Elements A, [w',1] and Ay [w’, ) have the same
value for all w’ such that w’ has the same prefix of
length Ay [w,i] as the bit-pattern w. If the number
of bits to encode 7 numbers is greater than W, We
let Apfw,i] = j where j < i is the maximum number
of numbers stored in the bit-pattern w. In this case
we let Agy[w,i] and Ay [w, 4] be the summation of the
first § numbers and the number of bits for the first j
numbers, respectively.

The size of the tables becomes as follows. Each ta-
ble has 2% - W entries and each entry has size loglogn
bits. Therefore the size of the three tables is
3.2 . W . loglogn = Bf loglogn = o(n)
bits. Note that these tables are common for all ¥y
functions.

We can decode é-code in constant time if the length
of the encoding is O(logn) bits using a table of o(n)
bits. Therefore we encode ¥[i] explicitly for every
logn bits of encoding. We use a two-level structure.
The first level stores W[i] explicitly in an array F{
and stores pointers to the bit-pattern of ¥[i] in an
array P} for every lognlog zx bits of encoding. The
second level stores W[i] as the difference from values
stored in the first level in an array Fk and stores
pointers which are relative to P} in an array P2 for
every logn bits are used for the encoding. We use



a bit-vector Ey[l..nx] to represent whether Uy[i] is
encoded as it is or not. We also use directories for
the rank and the select functions for Ej.

Assume that r = rank(Ey,i). Then Ufi] is ex-
pressed by the difference from F,:;[LEE%:J]Iog 2z +
F2[r]. The difference is encoded in O(logn) bits.
If a Tg[j] value, which corresponds to FZ[r], be-
longs to a different Sk, we do not use FZ[r]. If
Fk[[longj log zx] and F2[ | belong to different Sk,
we do not use Fj [| 7| log 2] and let FZ[r] be the
difference from the first value of Sk.. On the other
hand, the pointer to the bit-stream that encodes ¥ k[‘i]

In Figure 3, values of ¥.[i] are stored explicitly in
F} for every 32 bits of S;. For every 16 bits, the
values are stored in F? as the difference from values
in F}. The first element of F? is 1 because it is the
first element corresponding to Skb.

The algorithm to decode the W[i] value becomes
as follows:

Algorlthm W (%)
¢ — rank(Dyg,1); r — rank(Ey,1);

2. i1«  select(Eg, |_log llogzr);  d2 —
select(Ey,r);

3. ¢ «— rank(Dg,i1); cg — rank(Dy, i2);

4. P(—-P-!—Pl[LlongJ]—l-Pz[r]

5. if ¢=¢; then

6. \PHF,%[LT;;—;‘:J]+F,?[T],3<—'L—12,

7. else if ¢ = cy then

8. U — F2[r); § &4~ da;

9. else ¥ « 0;

10. d — select(Dy,c) —
select(Dy, ¢2);

11. P P+ Ay[P.d];

12. J i — select(Dg, c);

13. if 5 > 0 then

14. ¥« W + decoded(P, j);

15. return ¥;

The number of bits for the directory becomes as
follows. The bit-vector E} occupies ny bits and the
directories for the rank and the select functlons for
Ey has size o(ng) bits each. The array P! occupies

m logz; = lo — bits. The array FIi occupies

X Zig 2
oz n”log = logn = T logn bits. The arrays Fp
and P2 occupy

zrloglogn  zxloglog 2k

—— log(l It

lo g(log nlog z) logn logn
= o(n)

bits each because Hy < log|Z| = O(1).

The Dy, is a bit-vector of length ny. We use direc-
tories for the rank and the select functions for Dj.
Their size is ng + o(ng) bits each.

The proof of Lemma 4 is obvious. Proof: [of
Lemma 4] From Lemma 5, the size of S is zx =
nHo + 3nk(1 + log Ho) + o(n). The size of other
structures is 2ny + o(ng) (see Table 2). By sum-
ming them, the size of Wy is 2z + 2ny + o(n) =
nHy + ng(5 + 3log Hp) + o(n).

3% 2: The sizes of data structures for ¥, function

size (bits) size (bits)
Sk Zk
Ey | ng + O(?’Lk) Dy | ng + O(Hk)
P,% o(ng) P,g o(ng)
F; o(ng) F; o(ng)

6 The size of compressed suffix
arrays

6.1 Proposed compressed suffix array

Our compressed suffix array wuses levels
0, e, 2e,. lWheree-eloglogn (1>€>0)and
[ = [log log n] Therefore we use  + 1 levels. The
last level stores the suffix array SAl and its inverse
array SA, explicitly. They occupy n bits each. The
k-th level stores a bit-vector By[l..ng], a function
WUy li] and their directories. Both the directories for
the rank function and the select function for By have
size o(nk) bits. The size of bit-vectors By[1..ny] for
all levels is

1 1
14+ — —_— el <
n< + 10367’? + logzen + )

Now we have the main theorem.

nlogtn
logfn —1°

Theorem 4 The size of the proposed compressed
suffiz array is

—nH0+n(6+3 log HO) +2n+|X] log |Z]+o(n)

1

bits.

6.2 Comparison with the original
compressed suffix array

The difference between the original compressed suf-
fix array and ours is the following:

e Ours uses an array of alphabet size instead of
the text itself.

o Ours stores Wx[i] values for all i, while the origi-
nal one stores them for 7 such that SAi] is not
a multiple of log® n.

¢ Ours stores the inverse suffix array SA;
last level.

Lin the

e Ours uses the directory for the select function in
addition to the directory for the rank function
for By.



Theorem 5 The size of the original compressed suf-
fiz array with O(log® n) access time (1 > € > 0) s
%nHol—o%n—;i +n(6+ SIOgHo)Té% +n

+nlog|Z| + o(n)
bits.

Corollary 1 The size of the proposed compressed
suffiz array is smaller than the original one by

n (Iog]E] - 1—01:—3; - 1) = |Z|log|X] — o(n)

bits.

7 Concluding remarks

We have proposed algorithms and data structures
for compressed text databases based on the com-
pressed suffix array. The original compressed suffix
array of Grossi and Vitter aims to compress leaves
of a suffix tree, while ours aims to compress both a
text and its suffix array. We showed that pattern
matching by using our compressed suffix array has
the same time complexity as the uncompressed suffix
array. This is not achieved by the original compressed
suffix array. We also proposed an algorithm to calcu-
late the inverse of the suffix array. It is useful to text
data mining.
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