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abstract A coterie is a family of subsets such that every pair of subsets in it has at least one element
in common but neither is a subset of the other. We introduce an operator ¢, which transforms a ND
(non-dominated) coterie to another ND coterie. A “regular” coterie is a natural generalization of a “vote-
assignable” coterie, which is used in some practical applications. We show that any regular ND coterie
C can be transformed to any other regular ND coterie D by judiciously applying o operations to C at
most |C| + |D| — 2 times.

As another application of the o operation, we present an incrementally-polynomial-time algorithm
for generating all regular ND coteries. We then introduce the concept of a “g-regular” function, as a
generalization of availability. We show how to construct an optimum coterie C with respect to a g-regular
function in O(n3|C|) time.
® key words:  Coteries, Mutual-exclusion, Non-dominated coteries, Regular coteries, Availability,
Reliability, Self-dual Boolean functions



1 Introduction

A coterie C under an underlying set U =
{1,2,...,n} is a family of subsets (called quo-
rums) of U satistying the intersection property
(i.e., for any pair S, R € C, SN R # § holds),
and minimality (i.e., no quorum in C contains
any other quorum in C) [8, 11]. The concept
of a coterie has applications in diverse areas
(see e.g., [6, 8, 11, 14]).

A coterie D is said to dominate another co-
terie C if, for VQ € C, there exists a quo-
rum Q' € D satisfying Q' C Q [8]. A coterie
C' is non-dominated (ND) if no other coterie
dominates it. ND coteries are important in
practical applications, since they have maxi-
mal “efficiency” in some sense [3, 8].

Given a family C of subsets of U, which
is not necessarily a coterie, we define a posi-
tive (i.e., monotone) Boolean function fo such
that fo(z) = 1 if the Boolean vector z €
{0,1}" is greater than or equal to the char-
acteristic vector of some subset in C, and 0
otherwise. It was shown in [10] that C is a
coterie (resp., ND coterie) if and only if fc
is dual-minor (resp., self-dual) [13]. Based on
this characterization, Boolean algebra can be
exploited to derive various properties of (ND)
coteries.

A coterie C is said to be vote-assignable if
there exist a vote assignment w : U — RT
and a threshold t € Rt such that w(S) > ¢ if
and only if § D Q for some Q € C [8, 9, 17],
where R is the set of nonnegative real num-
bers and w(S) = Y ,.qw(i). It is easy to
see that there is a one-to-one correspondence
between vote-assignable coteries (resp., ND
coteries) C' and dual-minor (resp., self-dual)
threshold Boolean functions fc (see Section
2). The vote-assignable coteries are important
and have been used in many practical appli-
cations (see e.g., [8, 9, 17, 18]). We assume
in this paper that a vote assignment w sat-
isfies w(i) > w(y) for all i < 7, since we are
interested in coteries which are non-equivalent
under permutation on U. A coterie C' is said
to be regular if, for every @ € C and every
pair (i,7) € U x U with i < j, 1 € Q and
j € @, there exists quorum @’ € C such that

Q' C (Q\ {5} uU{i}.! By definition, a vote-
assignable coterie C is always regular, though
the converse is not true in general.

Among the important problems regarding
coteries are:

(i) construct “optimal” ND coteries accord-
ing to a certain criterion, such as avail-
ability and load (equivalently, construct
an “optimal” positive self-dual function),
and

(i) generate all ND coteries (equivalently,
all positive self-dual functions) systemat-
ically.

As for (i), let us consider the availability
of a coterie. Assume that element 7 is oper-
ational with probability p;, where the proba-
bilities for different components are indepen-
dent. Given the operational probabilities p;,
1 € U, where we assume without loss of gen-
erality that 1 > p; 2 p2 > ... 2> pp = 0,
the availability of a coterie C is the probabil-
ity that the set of operational elements con-
tains at least one quorum in C. Availability is
clearly an important concept in practical ap-
plications, and it is desirable to construct a
coterie with the maximum availability.

The availability of coteries has been studied
extensively. It is known [1, 16] that the ele-
ments 1 € U with p; < 1/2 can be ignored,
i.e., there exists a maximum-availability co-
terie C' such that no quorum in C contains
i. (In the case where p; < 1/2 holds for all
i, C = {{1}} has the maximum availability
[1, 7, 15]). Thus, we shall assume that

pL > p2 > ... > pp 2 1/2

It is also known that, if either py = 1 or
p1 < 1/2, then C = {{1}} has the maximum
availability. If 1 # p; > 1/2, on the other
hand, it is demonstrated in [16, 18] that the
coterie Ciaz, given below, maximizes avail-
ability. First define the weight for ¢ € U by

w*(i) = loga(pi/(1—pi)),
and introduce the notation w*(S) =
Yiesw (i) for § € U. Now, @ € Cuaz
if

!This definition was motivated by the definition of
regular Boolean functions. See Section 2.3.



(@) w(Q) (=w(U\Q))=w"(U)/2and 1 €

@ (1 is an element of U), or

(b) @ is a minimal subset of U with w*(Q) >
w*(U)/2, and @ does not contain any
quorum of type (a).

Since this coterie C,,q; is vote-assignable,
[1, 16, 18] proposed algorithms to compute
a vote assignment w from w*, called tie-
breaking, in order to remove case (a). An ex-
ponential algorithm is proposed in [18] to find
the “optimal” tie-breaking rule, while [1, 16]
present polynomial-time approximation algo-
rithms for it. The main problem with the
above definition of Cy,.,; is that there may
exist a subset S C U such that w*(S) =
w*(U \ S) (case (a)), because of which a sim-
ple vote assignment w (showing that Crag is
vote-assignable) is not easily obtainable, and
that the weight w*(¢) is, in general, not a
rational number, hence we cannot compute
w*(S) = >_;esw*(4) in polynomial time. For
the above reasons, no polynomial algorithm
for constructing a maximume-availability co-
terie was known. In this paper, we present
a polynomial-time algorithm for it. More pre-
cisely, we define a “g-regular” function as a
generalization of availability (see Section 5),
and then show that, given a g-regular func-
tion ®, we can compute a coterie C which
maximizes ® in O(n3|C|) time, where |C| is
the number of quorums in C.

Problem (ii) is known to be useful to solve
(i) |5, 8]. To solve (i), one might first enumer-
ate all (or some) ND coteries efficiently, and
select the best one under a certain criterion,
which may not be easily computable. This
procedure is useful when n is small, or when
we have enough time to compute it.

The generation of all ND coteries in a cer-
tain subclass of vote-assignable ND coteries
was discussed in [13], which is used to give
a lower bound on the number of all vote-
assignable ND coteries. However, the proce-
dure is not polynomial and computes a proper
subclass of vote-assignable ND coteries. H.
Garcia-Molina and D. Barbara [8] proposed an
algorithm to generate all ND coteries in a cer-
tain superclass of regular ND coteries. How-

ever, it is also not polynomial. J. C. Bioch
and T. Ibaraki [5] later came up with a poly-
nomial time algorithm to generate all ND co-
teries. We remark here that their algorithm is
not polynomial, if equivalent duplicates are to
be deleted from the output. In this paper, we
present a polynomial algorithm to generate all
reqular ND coteries. Since no regular ND co-
terie C is equivalent to any other regular ND
coterie C' (# C) under permutation, our algo-
rithm does not output ND coteries which are
equivalent under permutation. Although our
algorithm outputs only regular ND coteries, it
is practically useful, because we can restrict
our attention to regular coteries if the objec-
tive function of problem (i) is g-regular (e.g.,
the availability of a coterie).

After defining necessary terminologies in
Section 2 we discuss in Section 3 two oper-
ations, called p and o, which transform a pos-
itive self-dual function f (representing a ND
coterie) into another positive self-dual func-
tion (representing another ND coterie), by
making a minimal change in the set of min-
imal true vectors of f.

Section 4 shows that any regular self-dual
function f can be transformed into any other
regular self-dual function g by judiciously ap-
plying o operations to f at most | minT'(f)|+
|minT(g)| — 2 times. In Sections 5 and 6,
we consider the problems of computing an op-
timal self-dual function with respect to a g-
regular functional ® and generating all regu-
lar self-dual functions, as applications of the
above transformation.

In addition to the theory of coteries, the
concepts of self-duality and regularity play im-
portant roles in diverse areas such as learn-
ing theory, operations research and set theory.
The results of this paper are relevant to all
these areas.

Due to the space limitation, the proofs of
some results are omitted (see [12]).

2 Preliminaries

A Boolean function (a function in short) is
a mapping f : {0,1}" — {0,1}, where v €
{0,1}™ is called a Boolean vector (a wvector in
short). If f(v) = 1 (resp., 0), then v is called



a true (resp., false) vector of f. The set of
all true vectors (resp., false vectors) of f is
denoted by T'(f) (resp., F'(f)). For any two
functions f and g, we say that f is covered
by g (written f < g) if T(f) € T(g). For a
vector v, we define ON(v) = {j | v; = 1} and
OFF(v) = {j | v; = 0}.

The argument z of function f is represented
as a vector z = (x1,T9,...,Zn), where each
z; is a Boolean wvariable. A variable z; is
said to be relevant if there exist two vectors
v and w such that f(v) # f(w), vi # w;,
and v; = w; for all j # i; otherwise, it is
said to be irrelevant. The set of all rele-
vant variables of a function f is denoted by
Vi CV ={z1,29,...,2Zn}. A literal is either
a variable z; or its complement Z;. A term t
is a conjunction A;cp(yy i A Ajene Ty of lit-
erals such that P(t), N(¢) C {1,2,...,n} and
P)NN(t) = 0. A disjunctive normal form
(DNF) is a disjunction of distinct terms. It is
easy to see that any function f can be repre-
sented in DNF, whose variable set is Vy.

We sometimes do not distinguish a formula
(e.g., DNF) from the function it represents, if
no confusion arises.

2.1 Positive functions

For a pair of vectors v, w € {0, 1}", we write
v <wifv; <wjholdsforallj € V,andv < w
if v < w and v # w, where we define 0 < 1.
For a set of vectors § C {0, 1}", min> S (resp.,
max; S) denotes the set of all minimal (resp.,
maximal) vectors in S with respect to >. We
sometimes use min S (resp., max .S) instead of
miny S (resp., maxs S), if no confusion arises.
A function f is said to be positive or mono-
tone if v < w always implies f(v) < f(w).
There is a one-to-one correspondence between
minT(f) and the set of all prime implicants
of f, such that a vector v corresponds to
the term t, defined by ¢, = z;,xi, -+ - 3, if
vi; = 1,7 = 1,2,...,k and v; = 0 other-
wise. We also use the notation t7 to denote
the term z;, 2, - - - x;,, where {j1, jo, ..., Ji} =
{1,2,...,n}\ {i1,42,...,%k}- For the above
v = (1010), we have ty = Toz4.

It is known that a positive function f has
the unique minimal disjunctive normal form

(MDNF), consisting of all the prime impli-
cants of f, where N(t) = 0 for each prime
implicant ¢. In this paper, we sometimes rep-
resent the MDNF of a positive function such
as f = x1x9 + z9x3 + z3x1 by a simplified
form f = 12 4+ 23 + 31, by using only the
subscripts of the literals. The set of mini-
mal true vectors of this function is min7'(f) =
{(110), (011),(101)}, if f is a 3-variable func-
tion. Coteries can be conveniently modeled
by positive Boolean functions, based on the
fact that min T'(f) can represent a family of
subsets, none of which includes the other [10].
For example, the above minT'(f) represents a
coterie C = {{1,2},{2,3},{3,1}}.

2.2 Dual-comparable functions

The dual of a function f, denoted f, is de-
fined by

fia) =F(@),

where f and T denote the complement of f
and z, respectively. As is well-known, f¢ is
obtained from f by interchanging + (OR) and
- (AND), as well as the constants 0 and 1. It
is easy to see that (f + ¢)¢ = f%g%, (fg)¢ =
f%+ g% and so on. A function is called dual-
minor if f < f%, dual-major if f > f% and
self-dual if f = f¢. For example, f = 123 is
dual-minor since f% = 1+2+3 satisfies f < f9.

If f is positive, then f¢ is also positive.
In this case, an alternative definition of f¢
is given by the condition that v € T(f9) if
and only if v is a transversal of minT'(f);
i.e., it satisfies ON(v) N ON(w) # 0 for all
w € minT'(f).

Let Csp(n) (rvesp., Cpma(n) and Cpumi(n))
denote the class of all positive self-dual (resp.,
dual-major and dual-minor) functions of n
variables.

2.3 Regular and threshold functions

A positive function f is said to be regular
if, for every v € {0,1}"™ and every pair (4, j)
with i < j, v; = 0 and v; = 1, the following
condition holds:

fo) < flo+e® —ed)y, (1)



where e*) denotes the unit vector which has
a 1 in its k-th position and 0’s in all other
positions.

In order to define an important partial order
on {0,1}", we first define the concept of the
profile of a vector v € {0, 1}" as follows:

prof (k) =Y _vj,

i<k

where k =1,2,...,n. If v,w € {0,1}", where
v # w, satisfy prof,(k) < prof, (k) for all k,
then we write v < w (or w > v), and we say
that v supports w. If v < w or v = w, then we
write v 2 w (or w = v).

It is clear from the above definition that v <
w if and only if T >~ w, since profy(k) = k —
prof ,(k). Note that v < w implies v < w but
the converse is not always true. A function f
is said to be profile-monotone if v < w implies
f(v) < f(w). The following lemma is proved
in [13].

Lemma 1 ([13]) A function f is regular if
and only if f is profile-monotone.

For a set of vectors § C {0, 1}", miny S (resp.,
max, S) denotes the set of all minimal (resp.,
maximal) vectors in S with respect to >.
For any set of vectors S C {0,1}", we have
miny,S C minS (= miny §) and max, S C
max S (= max> S), since v > w implies v = w.
It follows from Lemma 1 that a regular func-
tion f is uniquely determined by minyT'(f).

The regularity was originally introduced
in conjunction with threshold functions (e.g.,
[13]), where a positive function f is a threshold
function if there exist n nonnegative real num-
bers wy,ws, ..., w, and a non-negative real
number £ such that:

f(z) = 1 if and only if Z’wﬂi >t (2)

3 The operators p and o

Let f be a positive function of n variables.
Throughout this paper, we assume that f is
nontrivial in the sense that f #0,1and n > 1.
Given a vector v € minT'(f), the operation p,
applied to f removes v from T'(f) and then
adds ¥ to T(f) [5]. More precisely, while

adding 7, all the vectors larger than ¥ are also
added to T'(f). Therefore,

T(po(f)) = (TH\{pHUT2(0), ()

where T5(7) = {w € {0,1}" | w > 7}. An
equivalent definition is

Pv(f) = f\v + i+ tvt%’ (4)
where f\, denotes the function defined by all
the prime implicants of f except t,, and tg-
denotes the dual of #. The expression (4) is
not necessarily in MDNF, even if f\, is rep-
resented by its MDNF, because some of the
prime implicants in tg-{-tvt% may cover or may
be covered by some prime implicants of fi,.

Given a vector v € minT'(f) and a variable
set I with Vy C I C V, we define the operation

O(v;1) DY
T(v;I) (f) = f\v + tm -+ tU[I]t,,jl_[I']a (5)

where v[I] denotes the projection of v on I. By
definition, o(,,;) = py holds. This operation
O(v;1) is implicitly used in [8].

Now, for a specified class C{n) of positive
functions of n variables, we say that p (resp.,
o) preserves C(n) if py(f) € C(n) holds for all
f €C(n) and v € minT(f) (resp., oy (f) €
C(n) holds for all f € C(n), v € minT(f) and
ICVy).

Theorem 1 The operations p and o defined
above preserve the classes Csp(n), Cpuma(n)
and Cpprr(n).

Let us further note that, if f is self-dual,
then py(f), v € minT(f), is specified simply

by ,
T(po(f)) = (TH\{wHu{z}, (6
i.e., by interchanging v with 7 in T'(f) [5]. To
see the effect of o(,;1) on T(f), where Vy C T C
V, define v[I]x = {u € {0,1}" | u[l] = v[I]}.

It is easy to see that
T(own(f) = (T()\vl]x)u a{l]x. (7)
Now consider a sequence of transformations

from a positive self-dual function f to another
positive self-dual function g,

fo=f) — fi —
go(E=f) — g —

o= fmy (: g),
L= gm, (= 9)s



where fiv1 = pyw(fi), o9 € minT(f),
Git1 = 0. 1,)(94) w® € minT(g;), and I; D
Vg~ We can see that mi,ms > [minT(f) \
minT(g)| and m; > |T(f) \ T(g)]. The lat-
ter implies that m; might be exponential in
n and minT'(f), while my might be small. In
the next section, we cousider p and ¢ opera-
tions on regular self-dual functions, and give a
transformation algorithm between two regular
self-dual functions f and g, which satisfies

my < |[minT(f)] + |minT(g)| — 2.

4 Transformation of regular
self-dual functions

The goal of this section is to present an
efficient algorithm, TRANS-REG-SD, which
transforms a given regular self-dual function
f to the one-variable regular self-dual function
g = z1. It applies a sequence of o operations
to f, generating a sequence of regular self-dual
functions in the process. As we will show, this
algorithm can be used to transform a given
regular self-dual function of n variables to any
other regular self-dual function of n variables,
some of which may be irrelevant. We need to
prove a number of lemmas to achieve this goal.

We start with the following lemma, which
shows that p, preserves regularity if v satisfies
a certain condition. Recall that p,(f) is spec-
ified by (6), and therefore, we concentrate on
the vectors v and T.

Lemma 2 Let f be a regular self-dual func-
tion, and let v € minT(f). py(f) is regular if
and only if v € minyT(f) and T £ v.

The following lemma shows how to choose
v to be used in p,(f) to guarantee that p,(f)
is regular.

Lemma 3 Let f be a regular self-dual func-
tion of n(> 2) variables. If v € minyT(f)
and v, = 1, then p,(f) is regular.

Interestingly, the existence of v satisfying
the condition in Lemma 3 is equivalent the
relevance of z, to f,

Lemma 4 For a regular function f, z, is rel-
evant to f if and only if there emists a vector
v € miny-T(f) such that v, = 1.

Lemma 3 deals with the case where z,, is
relevant to f. To deal with the case where z,,
is irrelevant to f, note that for any 1,5 € V
such that ¢ < j, if z; is relevant to a regular
function f then sois z;. This implies that z; is
relevant to f if and only if Vy D {1,2,...,4},
in particular, z, is relevant to f if and only
if Vi ={1,2,...,n} = V. Corollary 1 below
generalizes Lemma 3 to the case where z,, may
be irrelevant to f.

Corollary 1 Let f be a regular self-dual func-
tion such that {Vi| =1 (> 2). Ifv € min>T(f)
and v; = 1, then oy,v,)(f) is regular.

We now have the theoretical foundation for
TRANS-REG-SD. By Lemma 3 and Corollary
1, if z, is relevant to a given f, we can use
transformation p,(f), with some v, to gener-
ate a new regular self-dual function, and re-
peat this procedure as long as x,, is relevant.
Once z, becomes irrelevant to the newly gen-
erated function, f’, we use o transformations
with respect to Vy/, and so forth.

We further have the following lemma, which
guarantees the validity of algorithm TRANS-
REG-SD.

Lemma 5 Let f be a regular self-dual func-
tion of n(> 2) wvariables, and let v €
min,T(f) with v, = 1. Then

min T'(py(f))] < [minT'(f)] - 1,
min T (py(f))n U {v, 5+ €™} = min T(f)n,

where S, denotes the set {v € S | vy = 1}.

Algorithm TRANS-REG-SD

Input: minT(f), where f is a regular self-dual
function.

Output: Regular self-dual functions fo (= f), f1,
fg,... 5 fm (= .’rl)A

Step 0: Let i = 0 and f = fo.

Step 1: Output f;. If f; = 1, then halt.

Step 2: fiy1 = Oy, ) (fi), where vl e
minyT(f;) and ”Sri;x v,, = 1. 1:=1+1. Return to
Step 1. W



By Lemma 5, the number m in the out-
put from TRANS-REG-SD satisfies m <
|min T(f)|—1. Since every self-dual function f
satisfies pp(py(f)) = f (see (6)), we can trans-
form z; into any regular self-dual function g
by repeatedly applying o operations to z; at
most |minT(g)| — 1 times. Thus we have the
following theorem.

Theorem 2 Let f and g be any two regu-
lar self-dual functions. Then f can be trans-
formed into g by repeatedly applying o opera-
tions to f at most | minT(f)| + | minT(g)| —2
times.

In the subsequent sections, we study some
applications of algorithm TRANS-REG-SD.

5 Optimum self-dual function
for regular functional &

Let ¢ be a pseudo Boolean function, i.e., ¢
is a mapping from {0,1}" to the set of real
numbers R. ¢ is said to be g-regular if it is
profile-monotone, i.e., p(v) > @(w) holds for
all pairs of vectors v and w with v > w. De-
fine a functional ®() of Boolean functions f as
follows:

o(f) = Y ), (8)

veT(f)

where @ is a pseudo Boolean function. @ is
also said to be g-regularif o is g-regular. As an
example of a g-regular pseudo Boolean func-
tional of interest, we cite the availability A(f)
of a Boolean function f. Assume that each
element i € V' has the operational probability
pi. We also assume that the probabilities for
different elements are independent. Then the
availability of a Boolean function f is defined
by

A= > (Il » II

veT(f)i€ON(v) i€ OFF(v

(I-p)). (9
)

If we interpret T(f) as the set of states in
which the n-element system defined by the
Boolean function f is working, then A(f) rep-
resents the probability that the system repre-
sented by f is working. As commented in the
Introduction, we can assume without loss of

generality that py > pa > ... > p, > 1/2.
Now, let ¢(v) = [licoww) Pillicorrw) (1 —
pi). Then we have ®(f) = A(f). It follows
from the assumption on the order of probabil-
ities that A(f) is g-regular.

The following algorithm computes self-dual
function that maximize g-regular functional ®
among all self-dual functions.

Algorithm OPT-REG-SD

Input: A membership oracle of g-regular function
@.

Output: A regular self-dual function f that maxi-
mizes ®(f) among all self-dual functions.

Step 0: Let i:=1 and f := z;.

Step 1: While 3v € min,T(f) such that v; =
0, v[Vi] ¥ T[Vi] and o(v') < @) for v =
v+ E?__:H_l e, do f = o(yvy(f), where V; =
{1,2,...,1}.

Step 2: If ¢ = n, output f and halt. Otherwise,
let ¢ := i+ 1 and return to Step 1. O

Although we omit the proof due to the space
limitation, we have the following result.

Theorem 3 Algorithm OPT-REG-SD cor-
rectly outputs a regular self-dual function f
that maximizes ® among all self-dual func-
tions in O(n| minT(f)|) time.

6 Generation of all regular
ND coteries

Let Cp.sp(n) denote the class of all regular
self-dual functions of n variables. We present
in this section an algorithm to generate all
functions in Cr.sp(n) by applying the oper-
ator . The algorithm is incrementally poly-
nomial in the sense that the i-th function ¢; €
Cr.sp(n) is output in polynomial time in n and

;._—j) ! minT(d’j)l? fori=1,2,... ) |CR-SD|'

To visualize the algorithm, we first define an
undirected graph G, = (Cgr.sp(n), E), where
(9, f) € E, if there exists a vector v €
minyT'(g) such that o(,.n(g) = f for some
12V, '

Theorem 2 implies that G, is connected.
Moreover, the condition, (g, f) € E holds if
and only if (f,g) € E, i.e., G, is undirected.
Let fo = z; be the designated function in



Crsp(n), and consider the problem of trans-
forming an arbitrary function g € Cp_sp(n) to
fo by repeatedly applying operation ¢ in Algo-
rithm TRANS-REG-SD. Note that the trans-
formation path from a given g to fy is not
unique. Thus, to make the path unique, we
choose for each o operation the lexicographi-
cally smallest vector 0 € minyT(g) such that
UmaxV, = 1. Let u be such an operation, i.e.,

a(:v,)(9)- (10)

In this way, we define a directed spanning tree
of Gy, RT = (Cr.sp(n), Arr), such that (g, f)
is a directed arc in Agr if and only if u(g) = f.
Clearly, this RT is an in-tree rooted at fy =
ZTy.

Our algorithm will traverse RT from fp in
a depth-first manner, outputting each regular
function f when it first visits f. This type
of enumeration is called reverse search in [2].
When RT is traversed from fy, for each arc
(g9, f) € Agrr, the end node f is visited first,
i.e., before g. Unfortunately, at f we cannot
distinguish between the arcs in Agr and the
edges in E of G,,. In other words, knowing
f, we cannot find g such that (g, f) € Agrr.
Note that (10) computes f given g, not the
other way around. We can find the “inverse”
of (10) in the sense that we find the conditions
on the choice of w € minyT'(f) such that g =

1(g)

O (w;v,) (F)-
Let
Mam = 9 |minT(f)],
feCp.spln)
M, = max minT .
w = x| minT(f)

Although the details are omitted due to the
space limitation, we have the following results

[12].

Theorem 4 All functions in Cgr.sp(n) can be
generated in incrementally polynomial time. It
requires O(n3|Cr.sp (n)| + nMyym) time and
O(nMmax) space.

Corollary 2 All functions in Cg.sp(n) can be
scanned in O(n®|Crsp(n)|) time.
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