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The parametric MaxMin problem, which finds the parameter values maximizing the weight of
a solution of a combinatorial minimization problem, is a fundamental problem in sensitivity anal-
ysis. The parametric search paradigm gives an efficient sequential algorithm if we have only one
parameter and the original non-parametric problem has an efficient parallel algorithm. We con-
sider the parametric MaxMin problem with d parameters for a constant d, and solve it by using
d-dimensional version of the parametric search paradigm. Typical results obtained as applications
are: (1) O(nlogd n) time algorithm to compute a MaxMin spanning tree of a graph with n edges, and
(2) efficient solutions of geometric matching problems and minimum diameter bridging problems,
and (3) O(n?log**** n) time algorithm to-compute a MaxMin cut of a graph with n vertices.

1 Introduction

Consider an optimization problem @Q that finds a vector @ = (21, za,...,2,) minimizing an objective

function

z= ) i

under given constraints on .

Suppose that we have a set of d real parameters {A1,As,...,Aq} for a constant d. If we replace
the coefficients ¢; of the objective function with a concave function ¢;(\) on the parameter vector
A = (A1, X2,...,Aq) for each i = 1,2,...,n, we obtain a d-dimensional parametric version Q(A) of
the optimization problem Q.

For each fixed parameter vector A, let z(A) = ming Y 1, ¢;(A)z;, where the minimum is taken over
all vectors satisfying the constraints. Then, z(A) becomes a concave function in the parameters, and its
locus L(A) : z = z()\) becomes a concave hypersurface in the (), z)-space, which has d + 1 dimensions.

Let R be a (possibly unbounded) convex polygonal region in the d-dimensional space such that A should



be contained. We call R the feasible region of the parameters (note that it is different from the feasible
region of &). We assume that R is a convex polytope with M facets. Number of lower dimensional faces
of R is irrelevant to our analysis.

The problem of finding the value A € R maximizing z(}) is called a MazMin parametric optimiza-
tion problem. The MaxMin parametric optimization problem is a fundamental problem in sensitivity
analysis [9]. For example, suppose we have a weighted undirected graph G, and the original problem
Q is the problem of finding the minimum cut of the graph. If the weight of edges may depend on a
set of parameters, the minimum cut depends on the parameters, and it is a natural problem to find a
parameter vector to maximize the minimum cut value. We can also deal with the MinMax problem for
a problem with convex weights if we replace ¢;(A) with —¢; () for each 1.

The MaxMin parametric optimization problem with one parameter is well-studied in the literature.
Suppose that we have an algorithm D to solve the original problem @ in Tp time. Hence, we can compute
z()\) together with the associated solution vector @ for a fixed A in T’p time. Since z(A) is a concave
function, we can apply the binary search paradigm to solve the MaxMin parametric optimization problem.
The time complexity of the above binary search method depends on the precision of the problem, in
other words, it takes O(Tp log(nI')) time if the description of the constraints and the coefficients of ¢;())
are given by using quotient numbers of O(logI')-bit integers.

It is desired to design an efficient algorithm whose running time is independent of T' {on a model
counting comparisons and arithmetic operations). If we have a set (with a size independent of T') of
candidate values of the parameter such that the set contains the optimal value Aqp¢, we can perform the
binary search on it. Although the set of all break points of the piecewise linear function z(A) is such
a set, it Is expensive to compute it. Therefore, it is desired to solve the parametric MaxMin problem
by performing the binary search without computing a large size of candidate set. Megiddo’s parametric
search [16, 19] is a well-known paradigm to realize this idea.

For d > 2, the MaxMin problem of the minimum element finding problem, which finds the minimum
of n real numbers, is simply a linear programming (LP) problem (if the weight functions are linear),
and it can be solved in linear time for any fixed d [17]. The fixed dimensional LP has been generalized
and studied from several aspects (see [6]). However, it seems that efficient solutions of other MaxMin
parametric optimizations with more than one parameters are not well-studied in the literature.

The aim of this paper is to apply the parametric search paradigm to the d-dimensional MaxMin
parametric optimization problems. The binary search method can be applied, and the running time
is O(Tp(lognT)?). We would like to remove the influence of T from the time complexity. In a multi-
dimensional case, the locus L(\) becomes a convex polytope in (d + 1)-dimensional space, and its con-
struction will become expensive and complicated.

The multi-dimensional parametric search paradigm was given by Cohen and Meggido [5] to solve
the parametric cycle detection problem. Matousek and Schwarzkopf [15] gave a geometric interpreta-
tion, applied it to give an efficient LP-query for constant-dimensiomal LP problems, and predicted that
the paradigm would be useful for solving problems in compuational geometry. We apply the multi-
dimensional parametric search paradigm to the MaxMin parametric optimization problem and obtain

the following general framework:

Theorem 1.1 Consider an optimization problem @ that can be solved in Tp sequential time, and also
has a generic parallel algorithm with O(r) parallel time on O(N) pocessors by using linear decision

operations with respect to the parameters. Here, a linear decision is to decide whether the value of a



linear form on parameters is positive or not. Then, the corresponding parametric MazMin problem with
d parameters can be solved in O((N + M +Tp log(N + M))r¢(log(N + M))*~1!) sequential time, where
M is the number of facets in R.

Typically, we consider the case where each ¢;(A) is a concave linear function with a constant number
of facets (linear pieces); however, we can also apply the method for the case ¢;()) are concave piecewise
differentiable functions, whereas the decisions in the guide algoirthm of the parametric serach are linear
in the parameter.

Our general framework has several applications including polymatroid optimization, geometric opti-

mization (in reply to Matousek and Schwarzkoph’s prediction), and graph algorithms.

2 Multidimensional parametric search paradigm for MaxMin
optimization
2.1 Basic paradigm

Multidimensional parametric search uses an algorithm G called the guide algorithm, which can solve
Q(A) for any given fixed value of A in O(Tg) time. The guide algorithm G is generic, i.e., it has a decision
circuit (directed acyclic graph) whose graph structure is independent of the value of c; (i=1,2,...n).
Each node requiring a decision has two outgoing branches. Arithmetic computations are additions and
subtractions of linear forms in ¢; (¢ = 1,2,...,n) and multiplications by constants. Hence, in the
parametric situation, they are operations in the additive module of linear. forms in \.' The decision of
branches at each node v of the circuit is done by comparing the value f,()) of a linear function fu with 0.
(In precise, the function f, may depend on the results of preceding decisions and arithmetic operations).

We simulate the behavior of G as if it had been computing Z(Aopt), where Aopt is the parameter vector
at the solution of the parametric MaxMin problem. For doing it, we use the parametric linear test,
which answers that which side of a given hyperplane H in the parameter space the optimal value A,p; is
located. i i

We start guide algorithm G; however, since the value Aoyt is not input, the algorithm halts. When the
algorithm G halts at each node v of the decision circuit requiring a decision depending on the parameter
vector A, we want to know whether f,(Aop:) > 0 or fy (Aopt) < 0. Since we know the function f, itself,
we have the hyperplane H, defined by the equation f,(\) = 0. The parametric linear test gives the
correct decision, and hence we can proceed to the next step. If the parametric linear test needs o(Tr)
time, the above method computes Aop; and z(Aope) in O(TrTy) time.

2.2 How to implement the parametric linear test

For simplicity, we assume that M = O(N) and ignore M in the analysis. Let Aopt be the parafﬂeter
vector at which z(A) takes the maximum. A parametric linear test can be implemented as follows:
We restrict the feasible region R on the hyparplane H,. The restricted problem is a (d-1)-dimensional
parametric problem, and its MaxMin solution can be obtained by using the algorithm (denoted by
D(d — 1)) for the (d-1)-dimensional parametric problem. The maximum of z()) on the hyperplane H,
is attained at the point p-associated with the solution. If the weight functions are piecewise linear, we



have the point p and d solution vectors @(ey), z{ez), ..., z(e’) corresponding to linear pieces meeting at
p in the slice L(A\) U H,. These solution vectors give d facets of L(A) adjacent to each other. The ridge
between these two facets is on a line [ in the space. By definition, [ contains the point p attaining the
maximum of z()\) on the hyperplane H,. Let H; be a halfplane defined by f,(X) > 0. We take any
point ¢ of U Hf, and suppose that the z-value of ¢ is not larger than that of p. In this case, we decide
that f, () < 0 for the optimal value ;. If the equality f,(Aspr) = 0 holds, we have already found the
solution, and hence we give the decision that f,(Aop:) < 0 for continuing the process. If the z-value of
q is larger than that of p, we decide that f, (Aop:) > 0. If some pieces of weight functions are nonlinear
(but differentiable), it may happen that the solution vector at p is determined less than d facets. In that
case, we consider a tangent plane at p to the non-linear solution vector, regard it as a degenerate case
of some facets, and take any line [ on its intersection with linear facets.

Therefore, the parametric search without utilizing a parallel structure works for the d-dimensional
case, in which each decision (parametric linear test) is done by calling the (d—1)-dimensional parametric
algorithm D(d — 1). This method takes O(TgTpa-1)) = O((Tg)? 'Tp(1)) time to compute the optimal

value Agpe.

2.3 Utilizing a parallel structure

In order to improve the time complexity, it is advantageous to use a guide algoirthm G that has a
parallel structure such that it runs in O(r) parallel time by using N processors (in PRAM or the Variant’s
comparison model). The algorithm G has O(r) layers and visits at most N nodes at each layer (i.e. it
runs in O(r) parallel time using N processors). At each layer, instead of calling the parametric linear
test at each visited node, we consider the arrangement 4 of hyperplanes constructed from the set # of
all threshold hyperplans in the layer, and seek for the cell containing A.p¢. Precisely speaking, we add
the hyperplanes defining the facet of R to # and form the arrangment A.

Suppose that we can find the cell C that contains Ao of A. If Ayp: is on the boundary of the cell,
we have reduced the problem to a (d — 1)-dimensional problem, and we can solve it by using D(d — 1).
Otherwise, for each v, if C is in the halfspace defined by f, > 0, we can decide that f, > 0 holds for
Aopt. Hence, we know all correct decisions at the nodes in the layer, and can proceed to the next layer.

We introduce the multidimensional prune-and-search method to search for the sell developed by Ma-
tousek and Schwarzkopf [15]. We have a set H of N hyperplanes in the parameter space R4, and an
unknown point Agp; in the space. We want to construct a planar subdivision Z into a constant number
of simplices such that the number of hyperplanes in H intersecting the simplex A(Aop:) of Z containing
p is less than n/2 (with high probability by using a randomized algorithm).

This can be attained by using an e-cutting, which is frequently used in computational geometry, espe-
cially for designing algorithms based on geometric divide-and-conquer. An e-cutting of an arrangement A
is a subdivision of the d-dimensional space R? into d-dimensional simplices such that O(eN) hyperplanes
intersect (the interior of ) each simplex. We apply a popular randomized method to construct a cutting
(see Mulmuley [18]): We first randomly sample r hyperplanes among N hyperplanes, and construct the
arrangement of them. Then, triangulate each cell into simplexes by using the canonical triangulation.
The obtained triangulation = has O(r¢) simplices, and is an O(r/logr)-cutting with a high probability.
Theoretically better cuttings are known [2, 18], although the above method is sufficient for our use, since

if we fix any unknown point p in the space, the simplex A(p) containing p in the cutting = intersects at



most ¢N/r hyperplanes for a suitable constant c. with a high probability if N is larger than a suitable
constant, since it suffices to consider the expected number of the intersecting hyperplanes with each edge
of A(p). The time for the construction is O(Nr¢~1). Note that we do not need parametric linear tests
for the construction of the cutting.

We choose r to be a constant satisfying that » > 2¢. Once we have the cutting, we can find a
simplex A(Agp:) by using an O(r%) number of linear tests. We have N’ hyperplanes intersecting A(Aopt)-
Since r > 2¢, N’ < ¢N/r < N/2 with a high probability. Now, except those corresponding to the N’
hyperplanes, we know all the N — N’ decisions of the layer of the guide algorithm.

In order to determine the remaining decisions, instead of the original arrangement, we next consider
the arrangement of N' hyperplanes intersecting A together with the d+ 1 bounding hyperplanes (some
of them may be newly created hyperplanes) of A, and find its cell containing Aop¢ by applying the same
method. Thus, we can determine all the decisions in a layer of the guide algorithm with an O(log N)
number of parametric linear tests. The computation time for constructing the cuttings is O(N) in total
for each layer.

Therefore, the time complexity of this version of parametric search follows the formula:
Tp(d) = O(T(T—D(d_l) logN + N))

Hence, Tp(q) = O((rlog N)?Tp + r%(log N)4~1N), where Tp is the time to solve the non-parametric
problem. If M >> N, we should replace N with N + M in the formula.

3 Applications
3.1 Parametric Matroid and Polymatroid Optimization

Let us consider a polymatroid, which is a pair (E,r) of a set E = {1,2,..,n} called the underlying set
and the rank function r, which assigns a nonnegative real number r(X) to each X € 2F and satisfies the
monotonicit and submodular conditions. For'each i € E, we define a weight w;, and consider the base v
- which minimizes Z?ﬂ w;v; under the condition that ), ex Vi < r(X) and Eie g Y = r(E). This base
is called the minimum weight base. See [1, 8] for the optimization theory of matroids and polymatroids.

If we replace each w; with a linear function w;(\) on d parameters, we obtain a parametric polyma-
troid [7, 13]. We also permit piecewise linear weight functions. The MaxMin parametric optimization is
to find the parameter vector in a given feasible region R maximizing the weight of the minimum weight
base.

A basic fact on a polymatroid is that the minimum weight base at A only depends on the sorting
order of the weights w;()). Therefore, we can use a parallel sorting algorithm as the guide algorithm G
instead of an algorithm actually compute the minimum weight base This idea was proposed in Megiddo’s
paper [16] for solving a parametric problem on the minimum spanning tree.

Since O(n) processors and O(log n) parallel time algorithm is known for sorting n elements, the result
in the previous section imiplies that the parameter value maximizing the minimum weight of a base of
a parametric polymatroid with d linear parameters can be solved in O(T log?? n) time, where T is the
time to compute a minimum weight base for the non-parametric version of the polymatroid. We can
further improve it by using Cole [4]’s approach:

- —37-



Theorem 3.1 If each weight function is a piecewise linear concave function in d parameters with a
constant number of linear pieces, the parameter values mazimizing the minimum weight of a base of a
parametric polymatroid can be computed in O(T log® n) time, where T is the time to compute a minimum

weight base for the non-parametric version of the polymatroid.

A typical example of a polymatroid (indeed, a matroid) is the graphic matroid on a connected graph,

in which a minimum weight base is a minimum spanning tree of the graph.

Corollary 3.2 The parameter vector A € R C R? marimizing the weight of the parametric minimum
spanning tree of a connected graph G with n edges can be computed in O(nlogd n) time if each edge

weight is a concave linear function with a constant number of linear pieces on the d parameters.

3.2 Geometric Applications
3.2.1 Minimum diameter bridging problem

Given two convex regions P and @ in the d-dimensional Euclidean space. Suppose that P and @
have n vertices and M facets in total. We assume that both the vertex set and facet set are given. The
minimum diameter bridging problem is to construct a bridge (p,q) between p € P and ¢ € @, such
that the diameter d(p, ¢) + max,ev(p) d(v, p) + maxy,ev (@) d(g, w) of the union of P, @, and the bridge
is minimized, where d(z,y) is the Euclidean distance, and V(P) and V(Q) are vertex sets of P and
Q, respectively. The problem has been considered for d = 2 and d = 3 in the literature, and a linear
time algorithm is given for d = 2 [14] and a quadratic time algorithm is given for d = 3 [20]. Some
approximation algorithms for the higher dimensional cases are considered by Chong [3]. The minimum
diameter bridging problem is a MinMax optimization problem if we consider the coordinates of p and ¢ as
parameters. The feasible region of the parameter is the direct product of P and @ in the 2d-dimensional
space. The number of facets in this direct product is 2/ although it has many lower dimensional faces.

The Euclidean distance is a convex function, and hence our objective function is a convex function.
If the parameter values are given, we can compute the diameter by computing max,ev(p) d(v, p) and
maxyev(q) d(g, w) first, and then compute the summation of three distances.

We need nonlinear operations to compute the summation of three distances. However, fortunately, all
decisions are linear with respect to the parameters; indeed, implicitly max,ev (py d(v, p) is determined
by the cell of the furthest Voronoi diagram of V(P) containing p. Since computing the furthest Voronoi
diagram is expensive, we do not prepare it, and naively compute {d(v,p) : v € V(P)} and compute its
maximum. The probelm is basically a maximum finding problem.

Although a parallel algorithm with with an O(loglogn) time complexity by using O(n) processors is
known for the maximum finding, we use a slower O(logn) time O(n) processor algorithm in order to

apply Cole’s method. Therefore, we can apply our framework.
Theorem 3.3 The minimum diameter bridging problem can be solved in O((n+M)log®*(n+M)) time.

The minimum diameter bridging problem can be extended to the following parametric geometric
network-base location problem: We have sets Vi, V3, ..., Vi of points and a set of convex regions
P;, P, ..., P for a constant k. Choose p; € P; for each ¢ = 1,2, .., k such that I(MST(p1,p2,...,px)) +
Zle max,ev, d(px,v) is minimized. Here, [(MST(py,pa, ..., k) is the sum of lenghts of edges in the

minimum spanning tree of py,pa. ..., Pk-



The parametric minimum spanning tree computation is the MinMin problem, and hence cannot be
handled in our framework. Hence, instead of MST, we fix a tree topology T and consider the problem of
minimizing [(T'(p1,p2, .- -, Px)) + Zfﬂ maxyev, d(pk,v). By applying our framework, we can solve the
problem in O((n + M) log® n) time, where 7 is the sum of numbers of vertices in V; (i = 1,2,..., k) and
M is sum of the numbers of facets in P; (i = 1,2,...,k). If we try the above algorithm for all possible

k*=2 tree topologies, we can solve the parametric geometric network-base location problem.

Theorem 3.4 The parametric geometric network-base location problem can be solved in O((n+M)log®* (n+
M)) time.

3.2.2 MinMax optimized point set matching

Given k point sets Vi, Va, ..., Vi in a d-dimensional space, we translate V; with a translation vector ¢;
to have a point set V; +¢; = {v+1; : v € Vi}. and consider the union V((t)) = U;—; o (Vi +1%), where
t is a dk-dimensional vector obtained as the direct product of ¢; (i = 1,2,..., k). We define a estimation

function F' on a point set and would like to find the parameter value t minimizing F(V (t)). If F(V(t))
is a convex function, there is a possibility that we can apply multidimensional parametric searching. We
can observe that we can fix ¢; = 0 if F' is translation invariant, which holds for all applications dealed
in this subsection. v -

A trivial case is that F' is the diameter of V/(t), where it suffices to translate the center of minimum
enclosing ball of each V; to the origin. A more interesting example is the following geometric fitting
problem: For each pair V;-and Vj, a one-to-one matching m;; : Vi — V; between them is given. Let
dist(V;, Vj; t) = maxyev; d(v + &5, mi j(v) + ¢;), and let F(V(t)) = 3=, ; dist(Vi, V;; t). This problem was
proposed by Imai et al.[10] for the case where & = 2 and m; ; is the inverse of m;; (they further consider
the rotation of point set). If k = 2, the problem is a LP problem, and solved in linear time[10].

For k >3, F(V(t)) = 3, ; dist(Vi, Vj; t) is a convex function, and we can design a O(logn) time O(n)
processor guide algorithm that uses linear decisions ; Thus, the problem can be solved in O(nlog® n)
time. We remark that if we consider F(V(t)) = max; ; dist(V;, V}; t), we need nonlinear decisions in the
guide algorithm, and it fails to apply our method.

We can further modify the problem as follows: instead of one-to-one matching =;;, we have a
one-to-many matching m;; : V; — 2Vi so that 7 is a set (possibly an empty set) of points in
Vj. We consider Let dist'(V;,Vj;t) = max,ev,{maxyen, ;) d(v + i, w + t;)}, and let F(V(t)) =
2i; dist’'(Vi, Vj;t). The solution is almost similar. Naively, the multidimensional parametric search
method needs O((3>5.; 3, p, |71, (v)]) log® n) time.

If we use a convex linear distance instead of the Euclidean distance, some more objective functions are
suitable fo the parametric searching paradigm. The sum of length of edges of the maximum spanning
tree of V(t) and the sum of m-largest distances of V(t) are such examples. Indeed, these are parametric
matroid problems, and the time complexity to solve each of these problems depends on the efficiency of
the decision algorithm.

3.3 Other applications

Basically, the multi-dimensional parametric search works for the parametric MaxMin problem of any

optimization problem with an efficient parallel algorithm. The minimum cut problem of a weighted



graph is a typical example:

Proposition 3.5 Given a graph G on n vertices where each edge has a piecewise linear concave para-
metric weight with a constant number of linear pieces on d parameters. Then, the parameter vector (in
4d+1

a give feasible region R) mazimizing the weight of a minimum cut is computed in O(n?log n) time.

Proof The minimum cut problem can be solved in O(log® n) randomized parallel time using O(n?/log?n)
processors [11], and the algorithm is generic. Hence, we have T(D(d)) = O(log® n(log nT(D(d — 1)) +
n?/log® n)), which leads to T(D(d)) = O(n?log**** n). m]
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