O dIU X A B5-7
(2000. 11. 10)

FERE &~ L 27 SBT3 7 05 OELT LT X LM S
BE-F TR AK
Clep S R = RN P
{kazu35, tamaki}@cs.meiji.ac.jp

=

?EM@%-»xvyﬁ%uﬂ#é7U—5@%%%@&ﬁﬁ?»juXA®%$%&£§&ﬁot®ﬁ
ﬁ%?%°%$wu‘ﬁ%%@&uﬁn%%ﬁﬁ%%%W%ﬁﬁwuxF«E&Tétbtw<0#®&
CRLOHESNAREACDIILIZINBONG, ZOEESE VT TSPLIB & 5 HBMEBIEIZIZT
RTIEF L TCERET- 72

An efficient implementation of the Arora’s approximation algorithm for
the traveling salesman problem in the plane

Kazutoshi Takahashi Hisao Tamaki
School of Science and Technology, Meiji University
Abstract

We give an efficient implementation of the Arora’s dynamic programming algorithm for approximating
the Euclidean traveling salesman problem in the plane. The efficiency results from certain precomputed
tables that are used to map a particular subproblem occurring in the dynamic program to the list of its
decompositions into further subproblems. This implementation, combined with some heuristics for the
plane decomposition and portal selection, is experimented on most geometric instances of TSPLIB.

1 Introduction

Given a finite set S of points called cities in the plane, the Euclidean traveling salesman problem
(BEuclidean TSP) asks for a tour of the minimum Euclidean length that visits all the points of S. The
Euclidean TSP, as well as the general TSP, in which the distance between each pair of cities are specified in
the problem instance, has been studied by many researchers. See Lawler et. al. [6]for early developments
on general and Euclidean TSP and Johnson and McGeoch [5] for more recent work, especially in the
framework of local search heuristics.

The Euclidean TSP is NP-hard(see [4] for references) and the question of whether it admits a polynomial
time approximation scheme had received a considerable amount of attention, until Arora[l] answered
the question-in the affirmative. That is, for each positive constant ¢, he constructs a polynomial time
algorithm that for every input computes a solution of length within (1 + €) times the optimal length. He
later improved the result in to a nearly linear time randomized algorithm (2, 3].

Although his result was a theoretical breakthrough, its impact on the practice of solving real instances
of Euclidean TSP remains unclear, since there has been no report of serious implementations of his
algorithm, to the best of the authors’ knowledge. There seem to be good reasons for skepticism: even
though the theoretical complexity is described as nearly linear time, the actual upper bound is nlog® n,
where c, is a constant that depends on € and its value that can be extracted from the Arora’s analysis
is quite large even for a modest value of €. Some researchers (including ourselves, in the early stage of
our work) seem to be discouraged by the performance of a casual implementation that spends hours on
a small instance (say with several hundred cities) and produces a solution of miserable quality (say more
than 20 percent longer than the optimal). . .

In this report, we describe an efficient implementation of Arora’s algorithm that is at least worth
experimenting on. It easily handles the geometric instances in TSPLIB with up to 30,000 cities. We
describe the results of preliminary experiments. .

2 Arora’s dynamic programming scheme

Arora’s polynomia] time approximation scheme uses dynamic programming that is based on a recursive
decomposition of the bounding rectangle of the entire city set into smaller rectangles. Given a set S of
cities on the plane, a decomposition tree for S is a rooted binary tree D that has the following structure.
To each node v of D, a rectangle Rp(v) is associated. For the root r of D, Rp(r) is the bounding
rectangle of S. If v is a non-leaf node of D and v; and v, are two child nodes of v, then Rp(v1) and
Rp(vy) are the two rectangles formed from Rp(v) by cutting it by a line segment parallel to one of its
sides. This line segment is called the divider of Rp(v) in D ‘and denoted by 8p(v). We assume that no
city in S is on any divider. The granularity of D is the maximum number of cities contained in a leaf
rectangle of D: max, |[Rp(v) N S|, where the maximum is taken over all the leaf nodes of D.

Let D be a decomposition tree. A portaling P on D assigns each non-leaf node v of D a finite set Pv)
of points on 8p(v). Each point in P(v) is called a portal. We denote by P the set of all portals U, Pv),
where the union is over all the non-leaf nodes of D. We define the degree of P to be the maximum number
of portals on a divider: max, |P(v)|, where the maximum is taken over all the non-leaf nodes of D.

Let S be a set of cities, D a decomposition tree for S and P a portaling on D. An (S, D, P)-tour is a
cycle on SU @, where Q C P, in which each edge, drawn as a straight line segment, crosses no divider
of D. Thus, an (S, D, P)-tour is a salesman tour “detoured” by going through portals when crossing
dividers of D. Let ~

OPT(S, D, P) — OPT(S)

e(S,D,P) = OPT(S)

where OPT(S) is the length of the optimal (shortest) salesman tour on oS and OPT(S,D,P) is the
length of the optimal (S, D, P)-tour. This quantity represents the relative error within which the pair
(D, P) of decomposition/portaling captures the optimal salesman tour.

Let |S| = n and let € be an arbitrary positive constant that does not depend on 7. Arora[l] showed
the existence of a decomposition tree D for S of granularity 1 and a portaling P of degree O(logn) such
that (S, D, P) < e. He constructed a dynamic programming algorithm that finds such D and P together
with the optimal (S, D, P)-tour in polynomial time. He later extended the result by giving an efficient
randomized scheme to provide a pair (D, P) with the same property as above with probability at least
half!(2, 3].

Tn most of this paper, we assume that a decomposition D and a portaling P with small (S, D, P) are
given and focus on how to compute the optimal (S, D, P)-tour. We later describe some heuristics for
obtaining a plausible decomposition and portaling. In the rest of this section, we describe and analyze
the dynamic programming scheme of Arora. We fix a city set 5, a decomposition tree D for S and a
portaling P on D.

For each node v of D, let S(v) = SN Rp(v) denote the set of cities inside the rectangle Rp(v) and let
P(v) denote the set of all portals on the perimeter of Rp(v). Note that each side of Rp(v) is a part (or
the whole) of the divider of an ancestor node of v.” A portal-pairing on v is a graph of maximum degree
1 on the vertex set P(v). A portal pairing of v is said to be non-crossing if it can be drawn without
crossing edges when each vertex in P(v) is drawn on its position on the perimeter of Rp(v) as a portal
and each edge is drawn as a curve inside Rp(v) connecting the endvertices. B

Let v be a non-root node of D. A path cover on v is an acyclic graph on S(v)UP(v) in which the degree
of each city is exactly two and the degree of each portal is either 0 or 1. In other words, a path cover
consists of paths endpointed by portals and collectively going through all the cities inside the rectangle,
possibly with isolated portals. The length of a path cover is defined to be the sum of the lengths of the
edges in the path cover. We say that a path cover C on v conforms to a portal pairing m on v if there
is a one-to-one correspondence f from the edges (pairs) of 7 to the paths of C such that for each pair
{p,q} of portals in 7 the endpoints of the path f({p,q}) are p and g.

For each non-toot node v of D and each non-crossing portal pairing 7 on v, let best(v,) denote
the length of the shortest path cover on v conforming to m. Arora’s dynamic programming consists in
constructing a table that stores best(v,) for each v and 7. Suppose this task has been done. Then, the
OPT(S, D, P) is computed as follows. Let v; and vy be the two child nodes of the root of D.

1His theorem, that leads to the nearly linear time randomized approximation scheme, is stronger than stated above, but
we do not need the full strength here.

OPT(S,D, P) = min best(vy,m) + best(vq, m3)
1,2

where the minimum is taken over all pairs (ry, ;) where ; is a portal pairing on v; (¢ = 1,2) such
that the union of the edges in m; and 7, form a single connected cycle.

We now describe how the dynamic programming table (DP table) is constructed. The table of best(v, 7)
for each leaf node v is computed in any brute force manner. Assuming that the granularity of D is a
constant ¢, the cost of computing best(v,) is O(|n|°) where || denotes the number of edges in 7. Let
us turn to a non-leaf, non-root node v and assume the table entries for its two child nodes v; and v, have
already been computed. Let 7, 7y, and 7, be portal pairings on v, v, and v, respectively. We say that
71 and mp composes 7 if the graph consisting of the edges of m; and 7, is acyclic and consists of a set of
paths such that the set of endpoint pairs of these paths equals the set of pairs (edges) of x. Then, for
each portal pairing 7 on v, best(v, r) is computed by

best(v, 7) = min best(vy,) + best(vg, mp)
T2

where the minimum is taken over all pairs (m, ;) that composes 7.

It should be clear that all the table entries can be computed in a bottom-up manner using the above
recurrence. Once OPT(S, D, P) is computed, it is not difficult to recursively identify the portal pairing
at each node that is used for this optimal solution and construct an optimal tour.

The number of non-crossing portal pairing at node v is exponential in |P(v)|, the number of portals
around the rectangle Rp(v). This is acceptable if our purpose is only to show a polynomial time bound
since |P(v)| can be bounded by O(logn). We need a closer look, however, if we are interested in actually
running this algorithm.

Let M = |P(v)| be the number of portals around the boundary of rectangle Rp(v). Then the number
of non-crossing portal pairings at v is K(M) = Yo<k<nsz (o5) Cr, where Cy, = (%F)/(k + 1) is the kth
Catalan number (see {3] but note the different formulations). To list a few actual values, K (10) = 2188,
K(11) = 5798, K(12) = 15511, K(13) = 41835, K (14) = 113635, and K'(15) = 310572. Since the task of
computing the optimal value for each subproblem specified by a single portal pairing is computationally
nontrivial, it is probably not feasible in practical sense to have more than 13 or 14 portals around a
rectangle. Two questions arise:

1. Can the dynamic programming be run in a reasonable amount of time, given a portaling that places
up to 14 portals around a rectangle?

2. Is the limit of 14 portals around a rectangle sufficient for obtaining reasonably close approximate
solutions?

The first question depends on how fast we can process one entry in the DP table. The table size of
113634 may not be formidable itself. In the next section we describe implementation techniques that
enable an affirmative answer to this question. '

The second question depends on the decomposition and portaling we use. Experiments show that a
decomposition and portaling that are insensitive to the given set of cities tend to produce rather miserable
approximations, while simple heuristics for better decomposition and portaling considerably improve the
performance. The results of the experiments we made are described in Sectiond.

3 Implementation of the dynamic programming

The key to an efficient implementation of the dynamic programming procedure described in the previous
section is'a compact encoding of the portal pairings.

Fix a decomposition tree D and portaling P and let 7 be a portal pairing on some node v of D. Let
P denote the set of portals that are paired by =, or, more formally, the set of vertices of degree 1 in
the graph w. We call P, the support of . Clearly, the support of any portal pairing must consist of
even number of portals. A crucial observation, that appears already in Arora’s analysis[1, 3], is that
given a support @ of cardinality 2n, each non-crossing pairing with support @ can be identified with a

well-formed sequence of 2n parentheses. Here, “well-formed” means that there are equal numbers of left
and right parentheses and, moreover, in any prefix of the sequence the number of right parentheses does
not exceed the number of left parentheses. Given a well-formed sequence w of 2n parentheses, the pairing
7, with support Q that corresponds to w is naturally determined as follows. Let the portals in @ be
listed in the clockwise order as {p1, D2, .-.,P2n. Then, for any pair i < j, p; and p; are paired in =, if
and only if the éth and the jth symbols in w are left and right parentheses that “match” each other in
the usual sense.

Thus, our representation of a portal pairing at node v consists of two bit vectors: the selection vector
u of length |P(v)| that specifies the support and the connection vector w of length weight(u), that is a
well-formed sequence of parentheses, with left and right parentheses represented by 0 and 1 respectively.
Here, weight(u) denotes the number of 1’s in the bit vector u.

The compactness of this representation allows us an extensive use of precomputed tables in mapping a
subproblem in the dynamic programming computation into a list of decomposing subproblems. Both the
selection vector and the connection vector are used as indices of such tables. We use the following tables.

The list of all connection vectors of length 2n are listed in table CVy: for 1 <k < Cy, CV, [k] is the kth
connection vector of length n. Recall here that C,, is the nth Catalan number. Though the order can be
arbitrary, we adopt the natural order as integers. We also use the inverse map InvCV,: for 0 < w < 22n
InvCVw] is k such that CV;,[k] = w if such w is a valid connection vector and —1 otherwise. For each
integer M > 0, all possible pairings for a set of M portals are listed in table PGjr: PG p[s].selection and
PG [s).connection are the selection and connection vectors of the sth pairing, for 1 < s < K(M), where
K (M) is defined in the previous section. We refer to the index s of table PGy as the serial number
of the portal pairing represented by PG(s]. Given a selection vector u of length M and a connection
vector w of length weight(u), the serial number of the portal pairing is determined as a function of u
and w. Table SNy, represents this function: SNy[u][k] is the serial number of the portal pairing with
selection vector u and connection vector C'Vieighe(w)[%)- .

Let 7 be a portal pairing at node v with children nodes v; and vs. We need an efficient way of listing
all pairs (my,), where m; is a portal pairing at v;, ¢ = 1,2, such that m and my composes w. For this
purpose, we prepare one more precomputed table. Fix a pair (m1,m2) that composes 7 and let @; and
Q- be the supports of m; and m; respectively. Let |Q1] = n1, |@2| = n2, and |Q1 N Q2] =m. We assume
that the portals in @ are listed in the counterclockwise order as q1,42;- - -, @ny> the portals in @2 in the
clockwise order as 71,79, ..., n,, wWith ¢; = 7; for 1 <4 < m. Let p1,p2,...,Pn, n =n3 + 12 — 21, be the
clockwise listing of the portals in the support @ = (@1 U Q2) \ (@1 N Q2) of w. Under this convention,
the connection vector w, of 7 is determined as a function of the connection vectors wn, and wax, of m
and 73, respectively, and the number of shared portals 7: wr = f(Wy,, Wpi,). Let Mumae be the maximum
number of portals allowed on a single divider in the decomposition tree. For eachk,1<k<Cpandr,
1 < | < Mmaa, the table entry CM P, [k][l] of our last table CM P, stores the list of all pairs (k1, ko) such
that f(wy,ws,!) equals the kth connection vector CVy[k], where w; = CV,,[k:] is the k;th connection
vector of length n;, 1 = 1,2.

Using these tables, one iterative step of the dynamic programming computation at node v with children
vy and vy proceed as follows. The DP table at v is simply an array best, of length K (M), where M is
the number of portals around the rectangle Rp(v). The entry best,[s] of this table is supposed to be
the length of the optimal path cover that conforms to the portal pairing of serial number s. When v is
about to be processed, this goal has already been achieved for its children nodes: the tables best,, and
best,, have been properly established. The following procedure computes best,[s] for one value of 5. We
assume a convention in the numbering of portals around a rectangle that is similar to the convention we
adopted above for the support sets: the portals around v; are numbered counterclockwise, the portals
around vy are numbered clockwise, with each portal on the divider between v, and vy given the same
number running from 1 to m, where m is the number of such shared portals. The numbering of portals
around v is also clockwise and a map map;, i = 1,2, is provided that maps the number of a portal given
at node v to its number given at v;.

1. Initialize best,[s] to infinity. :
2. Let u = PG y[s].selection be the selection vector of the portal pairing of serial number s at node v.
Based on ¢ and using maps map, and maps, create a partial selection vectors u; for vy and us for ve:
' the map;[j]th bit of u; is on if and only if the jth bit of u is on, for ¢ = 1,2. The bits corresponding
to the m shared portals are tentatively off in u; and us.

3. For each bit vector ¢ of length m, such that weight(u1) + weight(t) is even, repeat the following.
(a) Let n = weight(u), ny = weight(u;) + weight(t), ny = weight(us) +weight(t), and | = weight(t).
(b) For each pair (k1,%2) in the list CM P,[k][l], repeat the following:

i. Let 81 = San [ul][kl] and s; = SNn2 [’LLQ][]CQ]
ii. If best,[s] > best., [s1] + best., [s2] then update best,[s] to best., [s1] + best,, [sa].

Owing to the precomputed tables, the innermost loop in the above algorithm is quite compact, involving
only several table references per step. Experiments show (see Section 4) that this implementation can
handle TSP instances with more than 10,000 cities given a portaling that has up to 14 portals around
some (though not all) rectangles.

4 Experiments

We experimented on our implementation in combination with the following decomposition/portaling
schemes. ‘

Non-adaptive, randomized decomposition This scheme has two parameters, g, the granularity and
m, the number of portals on a single divider. When the number of cities in a rectangle R is greater than
9, R is divided into two subrectangles. The divider segment is chosen at random so that it is parallel
to the shorter side of R and the ratio between the sizes of two subrectangels is between 1/2 and 2. The
number of portals m' on the divider is m when each subrectangle contains more than g cities and thus
is subject to further decomposition, and |m/2) if at least one subrectangle is a leaf. On the divider, m’
portals are placed so that they partition the divider into m’ + 1 intervals of equal length.

Heuristic decomposition/portaling This scheme has three parameters g, M and Mi..s: g is the
granularity as before, M is the maximum number of portals around a single rectangle, and M., £ is the
maximum number of portals around a single leaf rectangle. The selection of the divider segment and the
placement of portals are based on the following heuristics.

We use a heuristic criterion for an edge between cities to be eligible. An eligible edge is a plausible
candidate for a TSP edge, as considered by the heuristic. The criterion currently adopted is as follows.
An edge {p, q} is horizontaly eligible if the fan of formed by the circle centered at p and passing through
g, the segment pq, and the horizontal half line from p towards the direction of g is empty of other cities
and vice versa. Vertical eligibility is defined similarly. We do not deny the possiblity that other similar
definitions may work better.

Let R be a rectangle, d a potential divider of R. Assume d is vertical, and let C be the set of points
on d at which horizontaly eligible edges cross d. For a set @ of points on d, we define the penalty of @,
penalty(Q) to be min, max,{dist(p,a(p)) | p € C} where a: C — Q ranges over all the assignments of
the points of C to the points in Q. The intention of penalty(Q) is to measure the loss incurred when
the TSP tour using eligible edges is detoured by going through portals place at points in Q. For positive
integer k, we define penalty(d, k) to be ming{penalty(Q) | Q a set of k points on d}. Thus, penalty(d, k)
is a rather pessimistic evaluation of the badness of the divider d, when k& portals are allowed to be placed.
Note that penalty(d, k) can be efficiently computed via dynamic programming. Our divider selection
heuristics are primarily based on the value of penalty(d, k), and use other secondary measures such as
sparseness of cities around the divider. Note that the number of portals allowed, as enforced by the
parameters M and Mj..s, depends on the location of the divider, so this factor must also be considered.

Once a divider is selected and the number k of portals on the divider is determined, the set of portals

Q is selected so that it minimizes penalty(Q).
Heuristic decomposition, random portaling This scheme has the same parameters as the previous
one. The decomposition is also chosen in the same manner. The selection of the portals, however, are
randomized. The idea is that, with the rather tight restriction on the number of portals, the quality of
the portal set that is guaranteed by the the optimality of penalty(Q) is rather poor, so we may need to
rely on some luck. The hope is that we may hit some good portaling if we try some number of portalings
through random choices.

We conducted experiments on most of the geometric instances in TSPLIB: 1in318, pch442, disj1000,
pr1002, pr2392, pcb3038, 13795, fnld461, pla7397, usal3509, pla338101, and pla85900. The number in
the instance name represents the number of cities in the instance. In the tables listed, instances are
referred to by these numbers only. The computer used is SUN Ultra60 with UltraSparcll, 360MHz, and

1GB memory.

Tables 5 and 2 summarize the results for the non-adaptive decomposition/portaling, with two sets of
parameters. Note that, in the second table where m =5, the number of portals around some rectangle
reaches 14. The quality of the solution is measured by the excess of the solution, i.e., its length minus
the optimal, in terms of percents. The row “DP excess” lists the excess of the raw dynamic programming
solution and the row “Short Cut” lists the excess of the solution obtained from short-cutting portals. On
these short-cut tours, a simple postprocessing optimization, which we call Frame-Opt, is performed and
the results of this are listed as well. Since the non-adaptive decomposition is randomized, we made 10
trials for each instance and listed average, minimum and maximum values for each table entry.

Tables 3 and 4 summarize the results for the heuristic decomposition. The number of portals allowed
around a single rectangle is 10 and 12 respectively. In most instances, significant improvements are
observed over the non-adaptive method, in all terms of the table size, running time, and quality of the
solution. ' .

Table 5 is for the heuristic decomposition with random portaling. This strategy sometimes outperforms
the deterministic portaling, but its average performance is not as good as the deterministic strategy, as
expected.

The last table, Table 6 lists result for the larger instances of the TSPLIB.

In three cases, our implementation reported infeasibility of the problem (fal3795 in Table 3 and pla85900
in Table 6). Although this is quite likely be a programming error, there is some possibility that those
(S, D, P) problem instances are indeed infeasible. Despite our extensive effort, no bug has been identified.
Note that the certificate of infeasibility can be almost as large as the total DP table and it is not an easy
task to distinguish between a sophisticated bug and real infeasibility.

5 Concluding remarks

Our implementation has made it possible to experiment the Arora’s algorithm on quite large instances.
Its performance is still poor compared to the best-known heuristics such as Lin-Kernighan(7](see also
[5] for a recent demonstration of its remarkable performance). We are currently experimenting on more
refined heuristics for decomposition/portaling in hope of getting better results. We are also considering
the possibility of performing local search in the space of portalings. If the decomposition tree is fixed and
once the dynamic programming tables are completed for one portaling, relatively little computation is
required to update the table when a small change is made to the portaling. If the infeasibility observed
in the experiment turns out real, a serious attension must be paid to this issue.

SE

[1] S. Arora, “Polynomial time approximation schemes for Euclidean TSP and other geometric prob-
lems,” Proc. 37th Annual IEEE Symposium on Foundation of Computer Sciences, 2-11, 1996.

[2] S. Arora, “Nearly liner time approximation schemes for Euclidean TSP and other geometric prob-
lems,” Proc. 38th Annual IEEE Symposium on Foundation of Computer Sciences, 554-563, 1997.

[3] S. Arora, “Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other
Geometric Problems,” Journal of the ACM 45(5), 753-782, 1998.

[4] M. R. Garey, D. S. Johnson, Computers and Intractability, Freeman, New York, 1997.

[5] D. S. Johnson, L. A. Mcgeoch, “The Traveling Salesman Problem: A Case Study in Local Optimiza-
tion,” in Local Search in Combinatorial Optimization, E.H.L. Aarts and J.K. Lenstra (eds.), John
Wiley and Sons, NY, 1997.

[6] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, eds., “The traveling salesman
problem,” J. Wiley & Sons, 1985. ‘

[7] S.Lin, B.W Kernighan, “An effecive heuristic algorithm for the traveling-salesman problem,” Oper-
ations Research 21, 498-516, 1973.

instance | 318 [442 [1000 | 1002 | 2392 | 3038 [3795 | 4461 | 7307
table size (k) | 32 o4 | 129 | 156 | 370 | 494 | 427 | 727 | 1080
min | 25 35 95 100 | 308 | 444 | 356 | 672 | 960
- max | 42 88 | 169 | 218 | 406 | 533 | 502 | 806 | 1144
DP excess (%)avg | 19.0 | 20.8 | 23.7 | 22.8 | 26.0 | 206 | 43.2 | 212 | 931
min |.14.7 | 17.5 | 21.7 | 21.5 | 25.3 | 19.6 | 38.3 | 20.0 | 21.4
. max | 26.4 | 23.1 | 26.3 | 24.1 | 275 | 22.2 | 50.2 | 22.3 | 24.4
Short Cut (%) avg | 9.66 | 11.2 | 14.1 | 13.6 | 15.0 | 12.4 | 185 | 133 | 124
min | 558 | 7.97 | 13.1 | 125 | 13.7 | 11.5 | 151 | 12.3 | 111
max | 16.4 | 14.1 | 164 | 15.1 | 16.3 | 14.1 | 22.5 | 14.0 | 13.2
time DP(s) avg | 2.6 | 5.8 | 12.1 | 15.8 | 374 | 42.6 | 32.0 | 604 | 140.6
min | 1.6 | 348 | 7.7 | 11.7 | 31.9 | 346 | 27.2 | 53.9 | 117.5
max | 4.1 | 98 | 22.5 | 26.8 | 459 | 582 | 40.9 | 71.7 | 198.2
Frame-Opt(%b)avg | 3.10 | 3.81 | 4.20 | 4.00 | 4.75 | 4.62 | 105 | 4.00 | 515
min | 1.53 | 2.47 | 3.41 | 3.36 | 4.25 | 3.90 | 6.66 | 3.61 | 4.55
max | 4.46 | 5.77 | 4.86 | 4.67 | 5.58 | 5.06 | 13.5 | 4.52 | 5.62
time F-Opt(s)avg | 2.3 | 40 | 18.7 | 84 | 17.5 | 20.4 | 60.5 | 43.0 | 1850
min | 15 | 2.2 | 11.3 | 51 | 156 | 27.3 | 47.0 | 38.0 | 94.6
max | 3.9 | 51 | 19.7 | 10.1 | 22.4 | 39.4 | 90.1 | 54.0 | 472.5
1: Non-adaptive decomposition/portaling, g = 6,m = 4
instance | 318 | 442 11000 | 1002 | 2392 | 3038 | 3795 | 4461 | 7307
table size (k) | 243 | 3737|7987 | 1040 | 2657 | 3650 | 3610 | 5306 | 8032
min | 136 | 291 | 767 | 754 | 2439 | 3320 | 3001 | 4787 | 7577
max | 324 | 456 | 1181 | 1278 | 2992 | 4144 | 3986 | 6006 | 8817
DP excess (%)avg | 19.1 [19.6 | 22.7 | 224 | 26.1 | 20.8 | 39.0 | 20.6 | 231
min | 13.7 | 17.0 | 20.9 | 21.0 | 24.9 | 195 | 85.7 | 20.0 | 22.0
max | 24.2 | 22.1 | 248 | 243 | 27.2 | 222 | 41.9 | 21.1 | 24.5
Short Cut(%) avg | 877 | 851 | 11.9 | 11.9 | 135 | 1.1 | 154 | 118 | 107
, min | 5.76 | 5.81 | 10.8 | 10.7 | 12.1 | 10.0 | 125 | 11.4 | 9.59
max | 12.1 | 10.1 | 13.3 | 13.7 | 14.7 12.6 18.8 12.1 12.0
time DP(s) avg | 10.9 | 141 | 54.2 | 54.5 | 135.1 | 182.0 | 164.5 [270.2 | 4260
min | 4.6 | 10.2 | 40.8 | 31.9 | 117.6 | 162.1 | 138.5 | 224.8 | 366.8
max | 16.1 | 23.8 | 66.0 | 92.1 | 151.8 | 211.2 | 182.3 | 301.5 | 507.1
Frame-Opt(%)avg | 2.55 | 3.08 | 3.9 | 3.30 | 4.57 | 4.92 7.91 3.76 4.53
min | 1.56 | 1.80 | 3.19 | 2.890 | 3.67 | 3.64 | 6.31 | 3.58 | 4.02
max | 3.39 | 5.02 | 469 | 437 | 533 | 498 | 10.3 | 3.96 | 5.22
time F-Opt(s)avg | 2.3 | 3.2 | 10.7 | 7.9 | 17.1 | 287 | 646 | 37.4 | 9934
min | 1.0 | 21 | 6.6 55 | 159 | 251 | 41.2 | 358 | 83.9
max | 34 | 41 | 144 | 95 | 188 | 359 | 87.1 | 39.6 | 432.5
2: Non-adaptive decomposition/portaling, g = 4,m = 5
instance | 318 T 442 1 1000 | 1002 [2392 | 3038 | 3795 | 4461 | 7397
time Decomp (s) | 0.2 0.3 14 1.3 2.5 3.8 3.0 5.6 8.0
table size (k) | 194- | 229 430 443 916 | 1172 | 1445 | 1482 | 2043
DP excess(%) | 9.80 | 11.93 | 12.53 | 11.33 | 12.95 | 11.96 00 13.89 | 11.78
Short Cut(%) | 3.54 [3.05 | 5.95 | 4.71 | 6.07 | 6.06) 8.40 | 5.22
time DP(s) | 5.1 5.3 10.1 | 11317222 | 274 | 31.0 | 400 | 584
Frame-Opt(%) | 219 | 1.36 | 3.02 | 2.37 | 2.39 | 2.40 3.44 | 2.84
time F-Opt(s) | 1.7 2.3 5.7. 4.6 9.8 16.7 38.0 50.0

3: Heuristic decompostion/portaling, g = 6, M = 10, My.e; = 6

Tnstance | 318 | 442 | 1000 | 1002 | 2392 | 3038 | 3795 [4461 | 7397
time Decomp (s) | 0.2 .| 03 [1.4 1.3 2.4 3.6 2.6 5.3 7.3
table size (k) | 599 | 790 | 953 | 941 [1323 [1576 | 2575 | 1993 3075
DP excess(%) | 4.80 | 6.35 | 6.71 | 6.98 | 7.99 | 7.94 | 12.69 9.68 | 7.56
Short Cut(%) | 1.15 | 2.57 | 3.64 | 4.05 | 4.84 4.83 8.00 6.75 3.88
time DP(s) | 30.7 | 46.5 | 55.2 | 59.3 | 94.9 | 116.5 | 110.8 | 150.0 210.6
Frame-Opt(%) | 0.63 | 0.97 | 146 | 1.65 | 2.46 | 2.49 | 4.97 3.19 | 2.35
time F-Opt(s) | 1.2 | 2.5 | 4.9 5.2 | 10.0 | 29.7 | 35.7 | 37.2 | 1578
$ 4: Heuristic decomposition/portaling, g = 6, M = 12, Mie,5 = 8
instance | 318 | 442 | 1000 | 1002] 2392 | 3038 | 3795 [4461 | 7397
time Decomp (s} | 0.2 0.3 1.4 1.3 2.4 3.6 2.6 5.3 7.3
table size (k) avg | 606 | 745 | 955 | 934 | 1318 | 1571 | 2630 | 1951 | 3177
min | 587 | 712 | 908 | 883 | 1295 | 1546 | 2556 | 1934 | 3120
max | 629 | 786 | 992 | 1008 | 1357 | 1605 | 2719 | 2010 | 3227
DP excess (%)avg | 5.87 | 729 | 826 | 7.27 | 748 | 783 | 149 | 9.57 7.98
min | 5.22 | 6.24 | 746 | 6.90 | 7.12 | 7.61 | 12.1 | 946 | 7.72
max | 7.81 | 7.84 938 | 7.82 | 7.86 | 7.99 | 17.0 | 9.73 8.28
Short Cut(%) avg | 1.71 | 3.24 | 498 | 420 | 453 | 463 | 9.20 | 6.57 4.35
min | 0.85 | 2.46 | 4.34 | 3.71 | 4.15 | 448 | 7.29 | 6.37 | 3.98
max | 2.75 | 3.91| 6.21 | 4.65 | 494 | 4.77 | 11.0 | 6.75 | 4.66
time DP(s) avg | 32.56 | 40.3 | 52.6 | 60.8 | 95.1 [110.5 [117.6 | 151.6 | 220.8
min | 30.90 | 37.7 | 46.8 | 54.3 | 92.8 | 106.6 | 108.7 | 144.8 | 215.4
max | 34.46 | 43.6 | 55.5 | 70.6 | 100.6 | 119.3 | 135.3 | 171.3 | 228.6
Frame-Opt(%)avg | 090 | 143 | 2.44 | 202 | 223 | 2.23 | 483 | 3.08 | 2.67
min | 0.26 | 053] 2.05 | 1.55 | 1.88 | 2.00 | 3.90 | 2.93 | 2.26
max | 2.15 | 2.21 | 2.80 | 2.70 | 2.58 | 2.49 | 6.22 | 3.23 | 2.96
time F-Opt(s)avg | 145 | 2.7 | 7.2 5.5 1.1 | 17.3 | 40.9 | 33.5 | 124.0
min | 1.06 | 2.2 | 5.2 4.6 9.3 16.2 | 36.9 | 23.2 | 50.7
max | 2.17 | 3.7 | 94 8.0 15.5 | 18.2 | 44.7 | 41.9 | 189.5

% 5: Heuristic decomposition, random portaling, g = 6, M = 12, Miear = 8

parameter g =06, M =10, Mi.as =6 g=06, M =12, Micas =8
instance | 13500 | 18512 | 33810 | 85900 | 13509 | 18512 [33810 [85900
time Decomp (s) | 17.9 35.2 83.2 | 413.1 16.4 32.0 70.4 339.2
table size (k) | 2460 | 3716 | 6991 | 13876 | 3055 | 4887 | 9555 | 17567
DP excess(%) | 18.43 [15.41 | 20.62 o0 15.30 | 12.63 | 16.69 o0
Short Cut{(%) | 11.57 | 9.53 13.46 o0 10.27 | 8.47 12.19 00
time DP(s) | 80.7 113.8 | 242.7 | 607.7 | 332.9 | 461.7 | 798.6 | 1293.9
Frame-Opt(%) | 4.28 3.60 4.79 4.05 3.59 4.40
time F-Opt(s) | 235.9 | 305.7 | 936.3 269.9 | 351.2 | 875.4

6: Larger instances: heuristic decomposition/portaling

