7O I YU X A -5
(2000. 11. 10)

@mﬁ%ﬂ%@x%vﬁ$®ﬁw7»ﬁUXA

EAR AK
AR EBR T2
tamaki@cs.meiji.ac.jp

3

NANR=T 5T OBNEIESIET D, ATV HBOBRNTATY XA ¥E2B, Bx oo g i—2
T7HDFAZB n =5 |1X| THY. m EOBMEN AR L x| IDTNITY ZAiTH DT~
TORBEWTE (n +m)C0s™) BT, O(nlogn) 7— KO AEY ZRAWTHIHT 3,

Space-efficient enumeration of minimal transversals of a hypergraph

Hisao Tamaki
School of Sience and Technology, Meiji University

Abstract

We give a space-efficient algorithm for enumerating the minimal transversals of a hypergraph. Given a
hypergraph # of size n = 3 xen |X| which has m minimal transversals, our algorithm enumerates all
the minimal transversals of # in (n + m)°(°6™) total time using O(nlogn) words of storage.

1 Introduction

Given a finite set V called the set of vertices, a hypergraph H on V is a set of subsets of V. Each
element of H is called a hyperedge or simply an edge of H. For the purpose of this paper, the size
size(H) of a hypergraph ¥ is defined by size(H) = 3 3¢y 1X|. Anedge E of a hypergraph # is said
to be minimal in H, if no proper subset of E is an edge of #. We denote by mMinH the hypergraph
consisting of all the minimal edges of hypergraph H. A hypergraph is called simple if all of its edges
are minimal. A transversal of a hypergraph on V is a subset X of V that intersects every edge of H:
VY € H: XNY #0. A transversal is also often called a vertes cover, and sometimes a hitting set in the
literature. A transversal X of # is said to be minimal if no proper subset of X is a transversal of H. We
denote by TRH the set of all the minimal transversals of . Clearly, TR is a simple hypergraph.

The problem of enumerating all the minimal transversals of a given hypergraph is known as monotone
dualization or simply dualization, since it is equivalent to computing a dual of a monotone boolean function
with both input and output represented in DNF (disjunctive normal form) [1, 6, 7. The dualization
problem arises in diverse areas of computer science (see (1, 6, 7, 3] for references) and its complexity
has been studied by several researchers[l, 2, 6, 7, 8, 10]. Since the number of minimal transversals
can be exponential in the size of the given hypergraph, the time complexity is usually measured in
terms of the total size N of the input and the output. In this measure, the best known algorithm for
dualization is by Fredman and Khachiyan [7] that runs in NOUog N/loglog N) ime 14 i open whether
this problem can be solved in polynomial time. This open problem is of particular interest since there
are many problems that are known to be polynomially equivalent to the dualization problem[1, 6, 3.
Several special classes of hypergraphs are known for which dualization can be done in polynomial time.
These classes include graphs[14, 9], hypergraphs with their edge size bounded by a constant[6, 2], and
hypergraphs corresponding to regular Boolean functions(5, 10, 11].

A problem closely related to dualization is that of duality testing: given two hypergraphs # and G,
decide whether G = TrRH. It is straightforward to verify that this condition is equivalent to the symmetric
condition # = TrRG, when both H and G are simple. The above cited algorithm of Fredman and Khachiyan
is in fact formulated as an algorithm for duality testing. This algorithm certifies its negative answer (that
G # TRH) by pointing out an edge of G that is not a minimal transversal of H or by generating a minimal

transversal of 7 not present in G. Dualization is achieved through repeated applications of this testing
procedure: start with an empty set as a candidate for TR, apply the duality testing procedure to H and
the candidate hypergraph; if the test succeeds then stop, otherwise augment the candidate hypergraph
by the missing minimal transversal reported by the testing procedure and repeat. More generally, it is
known that dualization can be done through a polynomial number of calls to a duality oracle, even if the
oracle does not certify its negative answer{1].

Dealing with duality testing rather than dualization has a certain advantage because of the symmetric
roles of the two input hypergraphs. Indeed, Fredman and Khachiyan [7] exploit this symmetry in the
design of their algorithms. As far as the polynomiality question is concerned, two problems are equivalent
owing to the reduction mentioned above. However, the reduction requires that all the generated minimal
transversals be stored in memory and be used as input to the duality testing procedure at the next step.
In some applications, the number of minimal transversals is so large that this storage requirement is
prohibitive. For example, an experiment in logic minimization research reported in [4] (see also [12])
involves the exhaustive enumeration of more than 10® minimal transversals of a hypergraph with around
100 edges and 50 vertices; experiments of larger scale are not conducted due to the limitation on the
main storage[13].

In such applications, it is desirable to have an enumeration procedure whose storage requirement does
not depend on the number of transversals to be enumerated. In this paper, we achieve this goal without
seriously sacrificing the time complexity: we give an algorithm that runs in (n 4+ m)PUeen) time and
uses O(nlogn) space, where n = size() is the size of the input hypergraph # and m is the number of
minima) transversals of H. Here, we adopt the word model for space complexity: we count the number
of memory words used, each of which may contain an integer of O(log n) bits.

In the next section, we observe that the recursive approach of Fredman and Khachiyan to duality testing
can be translated into a direct algorithm for dualization that does not resort to the above reduction. This
algorithm runs in (n + m)PU°e™) time but requires space that depends on m. In section 3 we show that
this algorithm can be reformulated so that the space requirement is O(n log n).

2 Recursive problem decomposition

In the following description of our algorithms, we assume that the vertices of the hypergraphs we deal
with are integers and are therefore totally ordered. '

We call a hypergraph trivial if no vertex appear in its edges, i.e., if it is either empty or contains the
empty set as the only edge. For each hypergraph # and a vertex v that does not appear in #H, we denote
by v+7H the hypergraph {{v}UX | X € H}, obtained by adding v to every edge of H. For each nontrivial
hypergraph #, let vy denote the smallest vertex that appears in H. Then, H is uniquely decomposed as

H=(oy+HYUH®
where H! = {X \ {va} | vw € X € H} and H® = {X € H | vy & X}. We define #* = H' UHC.
This decomposition of the input hypergraph leads to decompositions of the dualization problem into

subproblems. The following two lemmas reformulate, in our dualization setting, the problem decomposi-
tion rules of Fredman and Khachiyan [7] for duality testing.

Lemma 2.1 Let H be a nontrivial hypergraph. Then,
TRH = TRH* U (vy + (TRH® \ TRH™))

Proof: Omitted. ' B
Let H be a nontrivial hypergraph. For each Y € TRH?, define Hly by Hly = {X e H' | X NY =0}.

Lemma 2.2 Let H be a nontrivial hypergraph. Then,
TRH = Mn{X UY | Y € TRH®, X € TR(vy + H|v)} Y

Proof: Omitted.) [}

The‘above lemmas provide two ways of decomposing a given problem instance into subproblems.
The decomposition based on Lemma 2.1 has an advantage when H° is small. On the other hand, the

decomposition based on Lemma 2.2 is advantageous when #! is small. Thus, we may expect to get
some efficiency by choosing between the two decomposition rules based on the size of %! relative to
the size of . This is in essence the strategy taken by Fredman and Khachiyan in their duality testing
algorithm (the second algorithm in their paper [7)). Employing carefully designed criteria for selection
that exploit the symmetry between the roles of two input hypergraphs, they achieve a time upper bound
of NOUog N/loglog N) 1 oy case, where the symmetry is unavailable, we employ a simpler criterion and
settle with a time bound of (n + m)(C°8n) "where 7 is the size of the input and m is the number of
minimal transversals to be enumerated!. '

Algorithm A

Input: Hypergraph #

Output: TRH

Case 0: If # is trivial then return the trivial answer TRH. Otherwise:

Case 1: If size(H') > size()/2 then use Lemma 2.1 to reduce the problem to two subproblems:
1. Compute recursively TRH® and TRH*.
2. Return TRH* U (vy + (TRH1 \ TRH*)).

Case 2: If size(H') < size()/2 then use Lemma 2.2 to reduce the problem to subproblems:
1. Compute recursively TRHO.
2. For each Y € TRH?, let H|y = {X € H' | X NY =} and compute recursively TRH|y.
3.Let G={XUY |Y € 7RH% X € {{v}} UTRH|y} and return mingG. (Here we use the fact that
TR(vy + Hy) = {{v}} UTrRH]y.) . :

Before analyzing the running time of the above algorithm, we note the following easy facts.

Proposition 2.3 Let # be hypergraph and let m = |TRH|. Then, [TRHO| < m, |TRH*| < m, and moreover
[TRH|y| < m for every Y € TRHO.

Theorem 2.4 Let H be an arbitrary hypergraph with n = size(H) and m = [TRH|. Then, the running
time of the above algorithm is (n 4 m)OUogn)

Proof: Omitted. o B

" The space requirement of this algorithm clearly depends on m, since the result of each recursive call
must be stored and the size of such an intermediate result may be almost as large as the the output
size of the original problem. In the next section we show that this dependency can be removed without
sacrificing the asymptotic time bound.

3 Process formulation: an O(nlogn) space algorithm

In this section, we reformulate the recursive algorithm of the previous section as that of recursive
processes. Each process spawns subprocesses to solve its subproblems. Each process reports transversals
one by one, rather than returning the set of transversals as a whole.)

In Algorithm A, several set operations, such as union and difference, are used which operate on the
results of recursive calls. If we implement these operations naively in our process version, then each
process needs to accumulate the transversals reported by its subprocesses, defeating our goal of saving
space. Fortunately, as we show below, some set operations used in the algorithm can be easily removed,
and others can be replaced by certain tests, which operate on an individual transversal and decide locally
if the transversal must be included in the answer. :

We first note that it is easy to test if a given set of vertices is a transversal (or minimal transversal) of
a given hypergraph.

Proposition 3.1 Given a hypergraph H and a set of vertices X, we can test if X is a transversal
(minimal transversal, resp.) of H in O(|X|size(H)) (O(|X [2size(H)), resp.) time.

1t may appear fair to say that these two bounds are incomparable, since the exponent of our bound involves the inpuit
size only. It 1s straightforward, however, to modify their algorithm to achieve our bound. .

Although there are many ways to improve these naive bounds depending on the representations of H and
X, the above bounds are sufficient for our present purposes.

We now describe how the set operations in Algorithm A are handled in our process version of the
algorithm. The union operation in Case 1 of Algorithm A is the most trivial to handle:

TRH* U (vy + (TRH1 \ TRHY)).

Since the two sets to be unioned are disjoint, we simply report all transversals in TRH® and then, after
that, report all transversals in v + (TRH® \ TRH*). To handle the set difference operation in the latter
task, we rewrite TRH? \ TRH* = {X € TRH® | X is not a transversal of #*}. Thus, we may handle each
transversal in TRH? separately: if a transversal passes the test that it is not a transversal of H* then we
report the transversal augmenting it by the vertex vy.

Case 2 of the algorithm requires slightly more effort to handle, where we compute:

Mn{XUY |Y € TRH®, X € {{vn}} UTRH|y}

In general, the miN operator requires the reference to the entire hypergraph it operates on. Fortunately
in this case, the MiN operator is selecting those transversals of 1 that are minimal. Thus, it can be replaced
by a local test that works individually on a transversal Z and checks if it is a minimal transversal of H.

Finally, we need to handle the possibility that different pairs of Xand Y, Y € 7RH®, X € TRH|y, may
yield the same minimal transversal X UY of #H. If a process reports the same transversal more than
once, then the previous estimate on the number of recursive processes no longer holds. Therefore, we
must make sure each minimal transversal is reported only once. We need some definitions.

For a set of vertices X, define min X to be the smallest vertex in X. We order sets of vertices in the
lexicographic order: X < Y if and only if

(1) X=0andY #0,0r
(2) X #0,Y #0, and min X <minY, or
(3) X#0,Y #0, minX =minY, and X \ {min X} <Y \ {minY}.
Based on this ordering, we define a function fy : TRH — TRHO as follows. For each Z € TRH
and each subset G of H, let TRzG denote the set of minimal transversals of G that are subsets of Z:
TRzG = {X € 7RG | X C Z}. Clearly, TRzG is nonempty for every Z € TRH and G C H. Then, for each

Z € TRH, we define f2(Z) to be the lexicographically last element of TR 2H0, ie., X € TRzHO such that
X' < X for every X' € TRzM® distinct from X.

Proposition 3.2 For each Z € TRH such that vy € Z, Z \ fu(Z) € TRH| s, (2)-

Proof: Omitted. =
Using function fi, we extend Lemma 2.2 to give a disjoint decomposition of TRH.

Lemma 3.3 Let 3 be o hypergraph and let G = vy + (TRH? \ TRH) and Gy = {XUY | X € RH]|y, (XU

Y) e TRH, fu(XUY) =Y} for eachY € TRH®. Then, each minimal transversal of H belongs to ezactly

one of the hypergraphs G, Gy, , ...Gy,, where H® = {Y1,..., Yi}.

Proof: Omitted. B

Using this decomposition in Case 2 of Algorithm A and handling set operations in a manner described
above, we get our second algorithm. Before describing the algorithm, we show that function fy can be
efficiently evaluated.

Proposition 3.4 Given Z € TRH, fx(Z) can be computed in O(|Z|?size(H)) time.
Proof: Omited. =

Algorithm B:

Input: hypergraph H

Output: minimal transversals of H, printed one by one
Main steps:

(1) Initiate a process enumerate(?).

(2) Wait for a response from this process: if a transversal is reported then print it and wait further; if
termination is reported then stop. :
Process enumerate(H)

Decide which of the following three cases applies and execute the associated steps. Upon termination, it
is reported to the initiator of this process.

Case 0: H is trivial:
(0.1) if H = 0 then report the empty transversal and then report termination immediately; other-
wise, Le., if H = {{}, terminate immediately.

Case 1: # is nontrivial and size(H!) > size(H)/2:
(1.1) Initiate a subprocess enumerate(7°).
(1.2) Wait for a response from this subprocess: if termination is reported then proceed to the next
step; if a transversal X is reported then report {v3} U X unless X is a transversal of H*, and then
repeat this step.
(1.3) Initiate a subprocess enumerate(#*).
(1.4) Wait for a response from this subprocess: if termination is reported then terminate; if a
transversal X is reported then report X and repeat this step.

Case 2 # is nontrivial and size(H!) < size(#)/2:
(2.1) Initiate a subprocess enumerate(#°).
(2.2) Wait for a response from this subprocess: if termination is reported then terminate; if a
transversal Y is reported then do the following.

(2.2.1) If H|y = 0 report Y and repeat step (2.2); otherwise, report {vy}UY and do the
following:

(2.2.1.1) Initiate a subprocess enumerate(#|y). _

(2.2.1.2) Wait for a response from this subprocess: if termination is reported
then repeat step (2.2); if a transversal X is reported then let Z = X UY, report
Z if Z is a minimal transversal of H and Y = f3(Z), and then repeat this step.

1t is clear that the number of processes generated by the above algorithm is equal to the number of
recursive calls in Algorithm A. Therefore, the upper bound of (n + m)°U°€") on running time applies to
this algorithm as well.

To analyze the storage requirement of the algorithm, we need to specify how the processes are scheduled.
At any moment during the algorithm execution, We call a process live if it has been initiated and has not
been terminated. We call a live process waiting if it is waiting for a response of one of its subprocesses;
otherwise it is ready. The ready process that is being executed is called current. The scheduling algorithm
maintains a tree T of live processes, which we call the process tree, and a stack S of ready processes.

(1) Initially, T consists of a single process that executes the main steps of the algorithm.
(2) When process p initiates a subprocess g, we put g into T' as a child node of p. If p already has a child
node (at most one is possible), g is added to the right of it. We then make g current. Algorithm B is
such that p always becomes waiting in this event.
(3) When process g reports termination to its parent process p, we remove ¢ from 7' and make p current.
(4) When process ¢ reports a transversal to its parent process p, we make p current. If ¢ does not become
waiting in this event, then we push g into the stack S. This happens, when a process in Case 0 reports
the empty transversal and is ready to report termination and when a process in Case 2 at step (2.2.1)
reports Y and is ready to execute the subsequent steps. . ’
(5) When process p becomes waiting, without reporting a transversal to its parent (this also applies to
the main process when it prints a reported transversal and becomes waiting), we pop a process from S
and make it current.

This scheduling algorithm maintains the following invariants.
(I1) All the ready processes except for the current are in the stack S. The entries in S are ordered
according to the right-to-left ordering in the process tree T (where we regard by convention that a
process p is to the right of its child g). :
(12) If a process in the process tree T is waiting, it is waiting for its rightmost child to respond.
(13) The current process is always on the path in T from the root to the rightmost leaf.

Invariants I2 and I3 together imply that when a process g passes control to its parent p, p has actually
been waiting for g to respond. Invariant I1 guarantees that I3 is maintained when a process is popped
from S and becomes current.

We are ready to analyze the storage requirement of our algorithm. We need two types of storage. The
process storage stores the data associated with each process and must be retained as long as the process is
in the process tree. The temporary storage is used for executing the current process. Once the control is
passed to another process, the same temporary storage can be reused to execute the new current process.
In particular, temporary storage is used to test if a given vertex set is a (minimal) transversal of a given
hypergraph and to evaluate function fy. For all of these, O(n) words of storage is sufficient, even if
the hypergraphs are implicitly represented, where n is the size of the hypergraph that is the top level
input to the algorithm. (Most naive way to do this is to first convert the hypergraph into an explicit
representation in the temporary storage).

The process storage for each process must store
(1) the pointer to the parent process
(2) control point that specifies from which step to resume the process when it becomes current
(3) input hypergraph #, and
(4) when Case 2 applies to the process, the transversal Y of O that is most recently reported from its
subprocess. ‘

Our goal is to upperbound the size of the process storage, summed over the entire process tree, by
O(nlogn). To achieve this, we need to be careful in choosing representation of the input hypergraph and
the transversal to be reported. ‘

We first describe our scheme of representing hypergraphs. Let o be a finite string of 0 and *. For each
hypergraph H, define ° inductively as follow.

1. H¢ = H, where € is the empty string.
9. If 47 is defined and is a nontrivial hypergraph then H® = (H°)? and H"* = (H7)*; otherwise HO
and H’* are undefined. '

We use two ways of representing hypergraphs. In the ezplicit representation, we represent the hyper-
graph H by an ordinary data structure, such as a list of lists, using O(size(H)) storage.

In the implicit representation, we represent the hypergraph #? by a pair (#,0), where H is explicitly
represented. C

We use these two types of representations as follows. The hypergraph that is the top level input to
the algorithm is explicitly represented. Among the hypergraphs that are created during the algorithm
execution and are passed as an input to a process, only the hypergraphs created as Hly, Y € TRH?, are
explicitly represented. All other hypergraphs, i.e., those created as H° and H* are implicitly represented.
Let us say that a representation of a hypergraph is in the process tree, if the process that has this
representation as its input is in the process tree.

Proposition 3.5 If an implicit representation (H,0) is in the process tree, then all the representations
it builds upon, i.e., the explicit representation of H and the implicit representations (H,01), ..., (H,0n),
where o1, ..., o are all the nonempty prefives of o, are in the process tree.

It follows that we may implement implicit representations in the process tree so that the storage cost
is O(1) per one instance. The cost of an explicit representation of # is naturally O(size(H)).

We represent transversals to be reported by linked lists. For each cell in the linked list, we define the
creator process of the cell as follows. The transversal that a trivial process reports is an empty set. This
is represented by a null pointer and thus does not consume any list cell. Each nontrivial process may
create a transversal to report based on a transversal reported by its subprocess. In Case 1, the transversal
reported is either directly passed to the parent or discarded, so no list cell is consumed here either. In
‘Case 2, the transversal Y reported from the subprocess for HO and the transversal X reported from the
subprocess for #|y are unioned, where we know that X and Y are disjoint. In this case, we use |X|
new list cells to store the elements of X and put these cells in front of the list for Y to form a list for
X UY. For these new cells used, the creator process is defined to be the current process. We also report
a transversal {vy} UY in Case 2. The list representing this transversal is similarly constructed, using
one new list cell for vy, of which the current process becomes the creator. ‘

In the following analysis of the amount of process storage, we charge the cost of storing a transversal
Y to the creator processes ‘of the list cells representing Y. This is justified by the following proposition,
which can be proved based on the invariants maintained by our scheduling scheme.

Proposition 3.6 Let p be a process in the process tree and suppose it holds in its process storage a
transversal Y that is reported from its subprocess. Then, for each list cell of the list representing Y, the
creator process of the cell remains in the process tree (i.e., not terminated yet).

We now analyze the amount of process storage. For each time step ¢ and a process p in the process tree
at time ¢, let S;(p) denote the number of process storage words that p is responsible for: more precisely,
this includes
(1) the O(1) storage for the parent process pointer and the resumption point.

(2) the storage for representing hypergraphs that p has created and has passed as input to a subprocess
that is still in the process tree, and :

(3) the list cells for which p is the creafor and which are still referred to by some process in the process
tree.

Let # be the input hypergraph for this process p.

If Case 0 applies to p then there is no storage in category (2) and (3). If Case 1 applies, the amount
of storage in category (2) is O(1), since only implicitly represented hypergraphs are created in this case,
and there is no storage in category (3). If Case 2 applies, the amount of storage in category (2) is
O(size(H')) since size(H|y) < size(H!) for every Y € TrRHC, and the amount of storage in category
(8) is also O(size(#H')), because |X| < size(H|y) for every Y € TRH® and X ¢ TRH|y. To summarize,
St(p) < O(1) for both Case 0 and Case 1 and S;(p) < O(size(#1)) for Case 2. ,

Let B;(p) denote the sum of S,(g) over all the processes ¢ in the process tree rooted at p. Let B{n)
denote the worst possible value of By (p), over all possible input to the process p with size(H) < n and
over all possible time steps .

Depending on which case in the algorithm applies to the root process in the worst case process tree,
one of the following inequalities hold: B(n) < O(1) in Case 0; B(n) < O(1) + B(n ~ 1) in Case 1; and
B(n) < O(k) + B(k) + B(n — k — 1) for some 1 < k < n/2 in Case 2. Let ¢ be a large enough constant
such that B(1) < ¢ and ,

B(n) <c+ B(n-1) \ (2)
or ' ‘ ‘
B(n) < ck+B(k)+B(n—k-1)B(n—1) forsomel<k<n/2 3)

for n > 2. :

We show by induction that B(n) < c(nlogn + 1) for every n > 1. The base case n =1 is trivial. Let
n > 1 and suppose B(k) < c(klogk + 1) holds for every k < n. If inequality (2) holds then we have
B(n) < c+c((n — 1)(log(n — 1) + 1)) < ¢(nlogn + 1). If inequality (3) holds, then we have

B(n) ck+c(klogk + 1) + c((n — k — 1) log(n — k) + 1)
ck +c(k(logn —1) +1) +¢((n — k — 1) logn + 1)
c(n—1)logn +2c

c(nlogn + 1)

INIANIN DA

Thus, we have proved the following theorem.

Theorem 3.7 Given a hypergraph M with size(H) = n and |[TRM| = m, Algorithm B enumerates the
minimal transversals of H in total time of O((n + m)°U°8™) ysing O(nlogn) words of storage.

4 Open questions

There are several interesting (but apparently hard) open questions. Can we enumerate all the m
minimal transversals of a hypergraph of size n in time mn®(°¢™ je., in an amortized time per a
transversal that is quasi-polynomial in n? Can we even enumerate with quasi-polynomial delay, i.e., can
we bound the time spent for obtaining each next transversal by n®U°8™)? If either of this is possible, can
it be done space-efficiently? We can address variants of the above questions in which “quasi-polynomial”
is replaced by “polynomial”. Of course, we should keep in mind that such variants can be easier to
solve than the long standing open question of if duality testing is in P, only if the answer is negative.

It would also be interesting to investigate whether the techniques used in this paper can be applied
to other enumeration problems that are polynomially equivalent to dualization and yield space-efficient
algorithms.

On a more practical side, it appears worthwhile to implement the algorithm of this paper making full
use of efficient data structures and see if it competes with algorithms that are used in practice.

SEXE

[1] J. Bioch and T. Ibaraki: Complexity of identification and dualization of positive boolean functions.
Information and Computation, 123(1): 50-63, 1995.

[2] E. Boros and V. Gurvich and P.L. Hammer, Dual sﬁbimplicants of positive Boolean functions,
Optimization Methods and Software, 10: 147-156, 1998 (RUTCOR Research Report 11-93).

[3] E. Boros and V. Gurvich and L. Khachiyan and K. Makino: Dual-bounded hypergraphs: generating
partial and multiple transversals, DIMACS Technical Report 00-62, 1999.

[4] J. T. Butler: The worst and best sum-of-product expressions for a boolean function, seminar talk,
Department of Computer Science, Meiji University, April, 2000.

[5] Y. Crama: Dualization of regular boolean functions, Discrete Applied Mathematics, 16:79-85, 1987.

[6] T. Eiter and G. Gottlob: Identifying the minimal transversals of a hypergraph and related problems,
SIAM Journal on Computing, 24(6): 1278-1304, 1995.

[7] M.L. Fredman and L. Khachiyan: On the complexity of dualization of monotone disjunctive normal
forms. Journal of Algorithms, 21(3):618-628, 1996.

[8] V. Gurvich and L. Khachiyan: On generating the irredundant conjunctive and disjunctive normal
forms of monotone Boolean functions, Discrete Applied Mathematics, 97: 363-373, 1999.

[9] D.S. Johnson and M. Yannakakis and C.H. Papadimitriou: On generating all maximal independent
sets, Information Processing Letters, 27: 119-123, 1988.

[10] K. Makino and T. Ibaraki: The maximum latency and identification of positive boolean functions,
SIAM Journal on Computing, 26(5): 1363-1383, 1997.

[11] U.N. Peled and B. Simeone: An O(nm)-time algorithm for computing the dual of a regular Boolean
function, Discrete Applied Mathematics, 49: 309-323, 1994.

[12] T. Sasao and J. T. Butler: Comparison of the worst and best sum-op-products expressions for
multiple-valued functions, 27th International Symposium on Multiple-Valued Logic, 55-60, 1997.

[13] T. Sasao: personal communication, May 2000.

[14] S. Tsukiyama and M. Ide and H. Ariyoshi and I. Shirakawa: A new algorithm for generating all the
maximal independent sets, SIAM Journal on Computing, 6(3):505-517, 1977

