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Number of possible of Voronoi Partitions on the Feature
Manifolds

Mary Inaba*and Hiroshi Imai*

Abstract

In this paper, we analyze possible number of
the k Voronoi partitions-of n points on the fea-
ture manifold. i

In information geometry (1, 2, 8], differen-
tial geometric properties of probabilistic dis-
tribution have been studied. In the fields
such as language recognition or learning theory,
clustering of probability distributions, called
“distributional clustering” minimizing sum of
Kullback-Leibler divergence plays an impor-
tant role. We take geometric approach for this
distributional clustering problem and extend
our result in the Euclidean space. We con-
sider k-clustering problem of n distributions
by divergence in general form on the mani-
fold with dually flat property, and the general-
ized primary shatter functions for this Voronoi
diagram is evaluated, which directly leads to
a polynomial-time exact algorithm when the
number of clusters and the dimension are re-
garded as constants.

1 Introduction

In information geometry (1, 2, 8], differential
geometric properties of probabilistic distribu-
tion have been studied and a lot of fruitful
results are reported. A set of parametrized
probability distributions form a Riemannian
manifold by their parameters, and, exponen-
tial family of probabilistic distribution, which
contains Poisson, finite discrete, normal, and
exponential distribution, has a nice geometric
property “dually flat”. Divergence in general
form is defined on it, which is a distance-like
function between two probability distributions
and contains both Kullback-Leibler divergence
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and squared Euclidean distance as its spécial
cases [1, 2]. Divergence can be linearized using
its potential functions and their tangent hyper-
planes. Using these nice properties, Cnishi and
Imai studied Voronoi diagram in the dually flat
space [9, 10, 11].

Clustering problem is to group similar ob-
Jjects under some criteria, and, in general it is
NP-hard. Geometric k-clustering problem is
to find a good partition, called a k-clustering,
of the given set S of n points p; = (x;)
(i =1,...,n) in the d-dimensional space into &
disjoint nonempty subsets Sy, ..., Sy, and, this
problem can be considered as a space subdivi-
sion problem, and solved efficiently using its
geometric properties.

In the fields such as language recognition or
learning theory, clustering of probability dis-
tributions, called “distributional clustering”,
minimizing Kullback-Leibler divergence, plays
an important role.

In this paper, we consider k-clustering prob-
lem of n distributions by divergence in general
form on the manifold with dually flat property,
which we call “feature manifold”, whose spe-
cial case is the distributional clustering prob-
lem above. We take geometric approach for
this problem by extending our results in the
Euclidean space[6, 7].

First, we briefly explain exponential family,
feature manifold, divergence in general form,
and its geometrical structure with relationship
of statistical inference. '

Then we introduce weighted Voronoi dia-
gram by divergence on the feature manifold
and analyze its complexity. This generalized
Voronoi diagram share nice properties with
the Euclidean diagrams. Then, the general-
ized primary shatter functions for Voronoi di-
agrams is evaluated, which directly leads to a
polynomial-time exact algorithm for the distri-
butional clustering problem when the number




of clusters and the dimension are regarded as
constants.

2 Properties of exponential
family

For the statistical inference, first we assume a
type of distribution such as normal distribu-
tion or Poisson distribution, then, given a set
of observed data, we estimate parameters of
distribution of that type, such as mean or de-
viation in the normal distribution case. In this
sense, once a type of distribution is specified,
statistical inference can be regarded as the es-
timation of parameters of the distribution. We
regard a statistical distribution characterized
by d parameters as a point in the d-dimensional
parametric space, and investigate its geometric
properties.

A set of parametrized probability distribu-
tions form a Riemannian manifold M by their
parameters. For example, a class of one-
dimensional normal distribution with mean u
and standard deviation o form a manifold
M = {[u,0] | ¢ > 0}, the upper half plane.
This section describes fundamental properties
of the manifold for exponential family. Since
we will use two dual coordinates, #-coordinate
and 7-coordinate, which generalizes the polar-
ity with respect to a paraboloid, we will use
the tensor notation.

2.1 Exponential Family

A probability distribution parametrized by § =
[6] belongs to the exponential family if its
probability density function f(z;6) with prob-
ability variable (vector) z is expressed as

f(2;6) = exp[C(z) + D 6°Fi(a) — $(6)):
Since [ f(z;6)dz =1, 9 is given by
P(0) = log/exp[C(z) + Z 0" Fy(z)]dz

For this 8 = [#%], we define n = [m]

/ Fi(z
6 and 7 are two coordinate systems on the man-
ifold M of parameters of the distributions in
the exponential family. 7 is also given by
o op(6) .
M= ppr

In the case of the exponential family, the dual
potential function ¢(n) is defined in the 7-
coordinate system by

oln) = / £(236)(log f(z30) — C(z))de

where 6 in the right-hand side is that corre-
sponding to 7 in the left-hand side. Note that
when C(z) = 0, this potential function ¢ be-
comes the minus of entropy of distribution,
o(0) = [ $(ai6) 108 £ (a3 0)dz = ~H ().
@ is then given by
,ote
73
In fact, § = 6(p) and n = n(p) give two co-
ordinate systems on the manifold M of points
p-

2.2 Properties of the divergence

In the sequel, we adopt the Einstein’s notation.
Sy = z 0,
S

The manifold M for the exponential family
has good property “dually flat”; roughly speak-
ing, locally, tangent vector and inner products
are defined, and any tangent vector can be rep-
resented as the linear combination of basis tan-
gent vectors, and, globally, two flat connections
is induced where parallel is well defined, and,
inner products of tangent vectors are invari-
ant by either connection. Each connection cor-
responds to an affine coordinate system, and
these can be transformed to each other by
the Legendre transformation, which has dual
structure (e.g., hyperplane corresponds to a
point). We call this manifold with dually flat
property, “feature manifold’. One interesting
point of this exponential family is one coor-
dinate system directly corresponds to the def-
inition of probabilistic distribution such as
above, called Canonical Parameters or Natu-
ral Parameters, and the other coordinate sys-
tem directly corresponds to the expectation
value, which is 7 and called Expectation Pa-
rameters. We treate the 6-coordinate and the
n-coordinate of the manifold M for the ex-
ponential family; 6(p) and 7(p) denote the 6-
and #-coordinate values for a point p on M,
that is, 8(p) = [6*(p),---,6%(p)], and n(p) =
m(p),---»ma(p)):



2.3 Divergence

We can define a distance-like function diver-
gence between two points p and ¢ on M.

Definition 1 (Divergence) Consider  the
two potential functions ¥, : M — R for the
ezponential family. For two points p,q € M,
define the divergence D(p|lq) by

D(pllg) = ¥(p) + ¢(q) — 6" (p)n:(q)

The pair of potential functions are connected
via the Legendre transformation, that is,
0 = _a_‘ﬁ, m = o9
on; 80t
1, ¢ are strictly convex, and
plg) = maX{f” p)ni(q) = ¥(p)}

¥(p) = glgg({f”(p)m(q) - v(9)}

Hence, D(pllg) > 0, and D(pllg) = 0 iff p =
g. .

D(pllp) = %(p) + ¢(p) ~ 6*(p)n:(p) = 0
But, unlike the distance, D(p|lq) # D(ql|p), in-
general.:

Next, we consider the relation of D(p||q)
with the potential function ¢ and a tangent
hyperplane. Add a new coordinate z, corre-
sponding to the height, to the n-coordinate sys-
tem, and consider the graph z = ¢ in the [, -
space.

For p € M, lift it up to- the graph
(m(p), m2(p), .- - ,7a(p), ¥(p)), and consider the
tangent hyperplane

z=¢(p) = ZE(P)(mi — m (p)) = 6'(p)(n; — m:(p))
(ie,) z2=0'(p)n: — %(p)
Then, for a point g € M, the height difference .
of a point lifted to the graph z = (1)

(m(a),m2(9), - -.,na(q), ¢(q))

to a point lifted to the above tangent hyper-
plane

(771 (q)7 72 (Q)a

is given by
¢(9) — 6'(p)mi(q) + 6 (p)m:(p) — (p)
= 9(p) + p(q) — 6°(p)n:(q) = D(pllq)

And, by the symmetric duality of the defini-
tion of divergence, this linearlization technique
can be also applied in the 8-coordinate system;
namely, the divergence D(pllq) is also the dif-

. ference of the height at the point p between
the potential function ¢ and tangent hyper-

seey Tld(‘]); 01’ (p) (Vh‘(Q) _Th(l’))‘*“/’(m)

plane on 4 on the point ¢ in the -coordinate
system.

The divergence has such a nice and natural
meaning, which was used to analyze the V*-
Voronoi diagram as stated and cited in Theo-
rem 1.

2.4 Maximum likelihood method

For a parametrized probability distribution
f(z;8), suppose we are given a set S, of n ob-
servation {z(!),... ("}, For these data, the
likelihood function is defined as

0) =] f®:0)
=1

and the maximum likelihood method finds 6
that maximizes L(6).

For the exponential family, we can consider
log likelihood. Let I(z();6) = log f(z¥;0),
then, L(f) is maximized when

Zl = 6)
=1
= Z Clz®)y+> 6'F

By partlal dlfferentlatxon by ¢

fj Fi(z®) —n:(6)

L(8) max-
imized when 7;(8) = 1 Z, 1 Fi(z®). Recall
the definition 7; = f F flz; G)dz the max-
imum likelihood }estlm‘a_tor is nothing but the
centroid of the set S in the n-coordinate sys-
tem. Consequently, given a set Sp of n proba-
bility dlstrlbutlon {pW,. p(")}, the centroid
of the set S, in the n—coordmate system also
becomes a ma.ximum likelihood estimator of
whole distribution.

Suppose, given a set S, of n proba-
bility distribution in the exponential fam-
ily, {p™,...,pM}, the centroid of the set
Sp in the - coordinate system is 7;(p) =

+ 31 m(PY)). Divergence D(p”p(”) is
D(plip") = $(8(p)) +o(»V) Zoz (p®).

The lemma below genera.hzes a well-known
formula for the case of sum of squared Eu-
clidean distances, or variance. A case for the
Kullback-Leibler divergence was known. For
the general divergence, this lemma is shown in

(=) - ().




[10].
Lemma 1
Sr, D(p|lp®) = nD(plp) + 3=, D(@lIp")
Proof:
S D(plip®) "
=3 (¥() ) + p(p®) — 8 (p)mi (p1V))
—Ez 1[( W(p) + ¢(B) — ' (p)m:(P))
+ (—p(® + (M)
=nD(6)18) + Xr, (¥(@) — 0@ )m(?) + ¢(p"))
(since %(p) + ¢ (p) — 0(p)'ni(P) = (pllp)—o)

=nD(pllp) + Y=y (¥(®) -
= nD(plp) + Y1, DlIp" )

m]
The following also holds.
Lemma 2
Y1 D(@lp") = 37, w() - np(p)
Proof:
iy D(@Ip"Y)
=ny P)+Zz 1901’() —21 6(p)* "h(p(l))
=mp(p) + g p(PY) — n0(p). 7:(P)
=Yy W) + n(y (@) - 0(p)'n: (D))
=Y 0(@Y) ~ np(p) .

Since the divergence of two identical points
is 0 and the divergence of two distinct points
is positive, it is seen that minimizing sum of
divergences gives the n-coordinate, namely, the
maximum likelihood estimator.

3 Weighted Voronoi dia-

grams by divergence

The Voronoi diagram by the divergence is in-
vestigated in [9, 10]. In extending the all-
pair sum of squared Euclidean distances to
the divergence case, multiplicatively and ad-
ditively weighted Voronoi diagrams are useful.
Hence, this section investigates such weighted
diagrams. As will be seen, the weighted di-
agram has similar structures as the weighted
Euclidean diagram [3], and this result may be
viewed as an extension of [3].

3.1 V*-Voronoi diagrams by di-
_vergence

First, we consider the locus of points ¢ equidis-
tant, in the sense of the divergence, from two

0()'n: (V) + o (p"))

points p and p’ on the manifold M. Expanding
D(pllg) = D(p'llg), we have

P(p)+e(a) -0 (p)mile) = ¥(»)
This is a hyperplane (6*(p) — 6*(p))mi(q) =
¥ (p) — ¥(p') in the n-coordinate.

Definition 2 (V*-Voronoi diagram) For k
generator points r\) (j = 1,...,k), the V*-
Voronoi diagram consists of Voronoi regions
V(rY)) defined as follows in [10].

v(r®) = ({p| DEY|p) < DEY|lp)}
J'#3
For the V*-Voronoi diagram, the following
holds.

Theorem 1 (Onishi, Imai [10])

The V*-Voronoi diagram can be obtained as
the projection to the manifold M of the up-
per envelope of hyperplanes which are tangent
hyperplanes in the [n, z]-coordinate of the graph

z = ¢(p) at [n(p), p(P)]-

By this theorem, the combinatorial complex-
ity of the V*-Voronoi diagram can be bounded
by the upper bound theorem for convex poly-
topes.

3.2 Weighted Voronoi
by the divergence

diagram

Definition 3 (V*-circle) A V*-circle with
center ¢ € M and radius of divergencep € Ry,
which is defined by

{q|D(cllg) = p} = {a| ¥(c)+e(g)—0'(c)mi(q) =

Now, we consider the locus of points equidis-
tant from two weighted points. First, we con-
sider a case with multiplicative weight. Sup- -
pose the relative weight ratio is w > 1 for p to
p', and D(p|lg) = wD(p'||g). This is expanded

to
P(p) —wip(p')) ¢ w91p
ol ) =WV 6 e
1-w 1-
Here, it should be noted that E@I%Ql may
not be on M. In case it is a point ¢ on M, due
to the strict convexity of 1,

W) =) _
w

c)—ps p> 0
and we have the following.

Lemma 3 The locus- of weighted equidistant
points from p and p' whose relative weight ratio

+o(q)—0"(p")mi(q)-

p}



i . i, .
w > 1 is a V*-circle when ﬂ%(ﬁl is on

M.

This generalizes the Apollonius’ circle in the
Euclidean case.

When additive weights are further consid-
ered, the locus may become empty (this is also
the case in the Euclidean space), but, when it
exists, it satisfies nice properties like above.

Now, move to the weighted Voronoi diagram
by the divergence. Suppose that, for each k
points 79), a multiplicative weight w(?) and an
additive weight @) are given. The Voronoi
region of point 7U) is given by

V(rt)) = m {p| w9 DED|p) + 1)

J'#3
< w(j')D(r(f')llp) + ,u-,(j’)}
= (4| H < (=0 + w@)ep(p)}
J'#J
where

H= Z(w(j)gi(r(j)) - w(jl)ai(r("')))m(p)

+(wWeyp(rbdy - w(j')zj;(r(j'))) + (@@ — @)

Considering the (d + 1)-th coordinate axis z to
form the (d + 1)-dimensional space [y, 2], we
define a polytope P defined by
P= :

1
{ln,2]] 2>

—w() + (i)

N{n,2) | 2 < —=———H, @ + ) < 0}

“w ) 4w
Nn,2] 10> H, —wl) + (") =0}

and further consider the projection of

P{[n, 2]z = o(n(p)}

to the original d-dimensional [5*] space is the
Voronoi region V(r(#)). Since ¢(f) is a con-
vex function, the intersection with P does not
increase the combinatorial complexity in mag-
nitude. The combinatorial complexity of P is
bounded by O(nt%ﬂ) using the upper bound
theorem for convex polytopes, and this is the
complexity bound for each Voronoi region, so
that we obtain the following.

Theorem 2 The combinatorial complezity of
the weighted divergence Voronoi diagram is
O(nl*$)).

4 Clustering by divergence

For a given set S of n points p) (1=1,...,n)
on the manifold M, a k-clustering is a par-

H, —w¥ + 4 > 0}

tition of S into nonempty k disjoint subsets
S1,-..,S5% whose union is S.

Problem 1 (Divergence-sum clustering)

k
; D(r@ [jp®
o SR 2 D0 DEIpY)

=1 p“)ESj

Here, r9) is a representative point for .S;, and,
since the sum of divergence is minimized at the
centroid, r(%) is simply set to the centroid of S;
in the n-coordinate.

This clustering criterion corresponds to max-
imizing the Classification Maximum Likelihood
(CLM) for the exponential family [4].

Problem 2 (All-pair divergence-sum clustering)

k
min) - 3 D(p?p®)

=10 50 es,

Generally, the divergence does not satisfy the
symmetricity, but in this all-pair version the
symmetric property inside each cluster holds
since the divergences in both directions are in-
cluded.

Theorem 3 An optimal clustering for the
divergence-sum clustering problem is identical
with o partition by the V*-Voronoi diagram
generated by the centroids of clusters.

Proof: Suppose contrarily that there is an
optimal clustering {5, ..., S;} which is not a
partition by the V*-Voronoi diagram generated
by the centroids of clusters. _From Lemma 1,
the centroid of each cluster r(1), ..., (k) is the
representative of each cluster. Construct the
V*-Voronoi diagram generated by these cen-
troids r(1),... 7%}, Since it is not a V*-
Voronoi partition, there exist at least one point
p which belongs cluster 355; but belong to the

V*-Voronoi cell Vor(r(*)) for k # j. Then,
moving p from cluster S; to Sy, the total sum
of divergences with respect to the current cen-
troids strictly decreases. Furthermore, for the
updated clusters S; and Si, recomputing their
centroids further reduces the total sum of di-
vergence, due to the convexity of the diver-
gence. This contradicts the original clustering
is optimal, and we obtain the lemma. a




Theorem 4

For the all-pair divergence-sum clustering, an
optimal clustering S1,..., Sk 1 identical with
a partition by the weighted V-Voronoi diagram
generated by centroids 79 of cluster S; with
multiplicative weight |S;] and additive weight
2pes, D(r@||p®) for cluster S;.

5 Generalized pri-
mary shatter function of
Voronoi partition by di-
vergence

By Theorem 3, k-clustering problem by diver-
gence can be solved by enumerating all the par-
titions of n points induced by the correspond-
ing Voronoi diagram generated by k points,
and finding a partition with minimum one. We
call a partition of n points induced by such
a Voronoi diagram a Voronoi partition. The
number of all possible Voronoi partitions by
k generators corresponds to evaluation of the
generalized primary shatter function [6] for a
label space induced by the Voronoi diagrams.
That is, k generators are numbered from 0 to
k — 1, and, each of n points is labeled by the
label of a generator whose Voronoi region con-
tains the point. The generalized primary shat-
ter function of this label space is the number
of all possible partitions.

In this section, utilizing the dual structure
between the 7- and 6-coordinate system, we
evaluate the generalized primary shatter func-
tion mg(m) for the label space S = (X, L) de-
fined for the V*-Voronoi diagram, where X is a
set of infinite points on the d-dimensional sta-
tistical manifold, and £ is a set of functions
from X to {0,...,k — 1}. The function for the
weighted V*-Voronoi diagram can be evaluated
in a similar way. We evaluate mg(m) by count-
ing the number of cells of an arrangement of
hyperplanes in the (d + 1)k-dimensional repre-
sentative space.

In the d-dimensional statistical manifold
with a dually flat structure, and given k rep-
resentative points for k-clustering, each of k
points can be considered to move indepen-
dently. Denote by R a set of k generator points
{r®, 7@ . p®)}, and, denote by X a set
of n observed points which are partitioned.
We will consider two spaces, one is the dk-

dimensional space of

(0 (rM), 82 (r M), .., 6%(rWM), ...,

01 (r(0), 82 (r(*)), ..., 0%(r(R))),
which we call representative space, and the
other is the k(d + 1)-dimensional space,

(O (rD),...,09(r®), 641 (r (1)) = 4(rD),
0 (r(8), .., 64(r ), 04 (r0)) = ()
Definition 4 (Equivalent Relation-

ship concerning to partitioning) Given a
set X of n points, and sets R and R' of k gen-
erator points. If the partitioning {X1,..., Xk}
ond {X},...,X}} induced by R and R', respec-
tively are identical, R and R’ are in equivalence
relationship concerning to partitioning.

By the definition of the V*-Voronoi Diagram,
this equivalent relationship changes only when
3z, 70), »(, the sign of D(rW)|jz) — D(rV||2)
changes. Hence, consider a hypersurface in the
dk-dimensional representative space:

D(rW|jz) - D(r|a)

=p(r@) ~
This can be regarded as a hyperplane in the
above-mentioned (d + 1)k-dimensional space,
and the total number of the hyperplanes is
n(t) = O(nt?)

Note that in the Euclidean space, ¥(8) =
162, and 8;(z) = n;(z), and the formula above
becomes ¥(r;) — ¢(r) — x(r; —71) = 3(rj —
r)(r; + 71 —2z) = 0. This is a quadratlc
hypersurface in the dk-dimensional representa-
tive space, and the arrangements such hyper-
surfaces can be theoretically handled. How-
ever, in the case of general divergence, the hy-
persurface is not algebraic, etc., and we need
some other technique to evaluate the number
of cells of this hypersurface arrangement.

For this purpose, we consider the above-
mentioned hyperplane arrangement in the (d+
1)k-dimensional space. The target arrange-
ment in the dk-dimensional representative
space is obtained as the intersection of this
arrangement with 041 (r()) = y(r)) (j =
1,...,k). This is the lower envelope of the in-
tersection of the (d + 1)k—d1mensxonal hyper-
plane arrangement and 8%+1(r()) > y(rl?)
(j =1,...,k). Then, due to the convexity of ¢,
the combinatorial complexity of the lower en-
velope is bounded in magnitude with the com-
plexity of the (d+1)k-dimensional arrangement
of n(g) hyperplanes.

P(r®) - (6 (r@) = 6 (r D)) = 0



This induces, either r; = 7;, that is, »; and
T; are same point, or, & = 1/2(r; + rl) that
is, « is the middle point of r; and 7.

And the number of cells can be considered as
the upper bound of the primary shatter func-
tion ms(n) for the label space S = (R, L),
where R is k(d + 1)-dimensional representa-
tive space and £ is a set of functions from
R to {0,...,k — 1} according to Voronoi k-
partitioning.

To count the cell of hyperplane arrangement,
we use the following lemma [5]:

Lemma 4 The number N(n) of cells con-
structed from n hyperplanes in E¢ is

N(n) = é‘(’:)

= O(nd). (1)

And to enumerate the possible Voronoi par-
titions, we use topological sweep of the hyper-
plane arrangement in the representative space.

Lemma 5

Given an arrangement of a set of hyperplanes
in the representative space. Let C4 denote the
number of the cells of the arrangement A. We
can enumerate all possible Voronoi partitions
in O(nC4) time.

Theorem 5 The number of distinct partitions
of n points induced by the V*-Voronoi dia-
gram generated by k points on M is bounded
by O(n(d+l)k).

Proof:

From Theorem 1, we may simply bound the
number of partitions of n points induced by the
projection, to the original d-dimensional space,
of the upper envelope of k hyperplanes in the
(d + 1)-dimensional space. This would give a
little loose bound, but with this method we
do not have to consider special structures of
specific potential functions. With this method,
the O(n(#+1*) bound can be obtained. O

6 Concluding Remarks

We need to consider the problem such that
each point p(¥) belongs to every cluster in some
sense.

Problem 3 (Mixed divergence clustering)
Speczﬁcally, ¢, D(> 0) denotes how much
point p* belongs to cluster S;, where

k
> ¢, =1 for each I.
i=1
Then, the clustering problem is to find an op-
timal k-clustering for

k n n
miny " w (Z <G, z)) > CGDDEDpY)
i=1 =1 =1

In this problem, #/) is the weighted centroid
defined by

(4 (»®
"h("' ) Zl__l C(Jy ZC J) 771 )
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