W U X h 76-3
(2001. 1. 19)

HORERSEE b—7 ViaEFRICBIT S
HERFHE D [EEEC DV T

REE 1F
AR SRR
o T (X S B P T 8-2-1
078-794-6161, kiniwa@kobeuc.ac.jp

Abstract

A THE—BROFy NV —7 L CEIEETI—2 Vv E2EETH X
IRBERES T ba BT, SEFHELRT D FEICOVWTRE
T35, BEEMERFEL UTEE b—7 v & RERREZEM % b OkEE
THEEFERTHZLIZLY, BEROITIZEA TR TOMBRELZ
ZENTED, VIal—Ya rCRBEICEESNLTWAIESEL b —
7 UBREFRE OEBEITV., Ry FU—7 bRo P L EECIER O
1R, BEEROEER EIZONTHRENT, , .

BERETw haL, BIEEL M7 VRE, SERHE, K& RRiBZeR, o
Talb—igy ’ : : ’

| Avoiding Faulty Privileges
in Self-stabilizing Depth-first Token Passing

Jun Kiniwa
Dept. Management Science, Kobe Univ. of Commerce
8-2-1, Gakuennishi-machi, Nishi-ku, Kobe-shi, Japan
078-794-6161, kiniwa@Qkobeuc.ac.jp

Abstract

This paper presents a new algorithm and its experimental results
for self-stabilizing depth-first token circulation in arbitrary networks.
Our algorithm has an additional property of avoiding faulty privileges.
_Using an auxiliary token and a state with a large state space, almost
all faulty privileges can be prevented. Simulation experiments show its
performance compared with the previously proposed algorithm. De-
tailed results on the relation between network topologies and stabiliza-
tion time, the effects of number of faults are revealed.

self-stabilizing protocol, depth-first token passing, faulty privilege, large
state space, simulation

1 Introduction

If some erroneous values occur in tables or bits
and programs remain safe, it is called a tran-
sient fault. After such a fault, self-stabilizing al-
gorithms try to communicate with neighboring
processes and the system eventually convergés
to some legitimate states. The algorithms just
guarantee convergence to a legitimate state and
preserving correctness after that. A lot of ef-
forts have been made to get self-stabilizing al-
gorithms with a small number of states. This
is because fast convergence can be achieved by
small state space. However, it also includes a
risk, that is, vulnerability under convergence.

We have already pointed out the problem
of “hidden” faulty privileges with small state
space [9]. That is, if the state space is too
small, the process cannot distinguish it has a
true privilege or a faulty privilege. To cope with
this problem, we have presented the method of
a large state space, which increases the state
space and uses some predefined values in legit-
imate execution. Then we can obtain a local
reset algorithm for self-stabilizing mutual ex-
clusion rings.

Our next interest is how our basic strat-
egy of avoiding faulty privileges can be applied
to general token passing systems. In arbitrary
networks, Huang and Chen have developed a
depth-first token circulation algorithm [6], and
have later modified it to a uniform one [7].
Our application to general networks is based on
their algorithm. Though our method has a wide
application to any self-stabilizing problem, its
practical implementation in general networks
is not straightforward. First, a pointer corrup-
tion forces the system to a confusion because
a process is connected with several processes
unlike rings. Next, the token/signal passing in
a depth-first manner has a difficulty in distin-
guishing whether the token/signal is going for-
ward or backtracking. This is caused by that a
token goes out or backtracks through the same
process.

Though a lot of self-stabilizing algorithms
have been developed, their performance are not
known well. In analytical studies, we can evalu-
ate only stabilization time, fault-containment,
or some impossibility properties. It is diffi-

cult to analyze other behavior due to its dis-
tributed control. So it is worth while to examine
their behavior by simulation experiments. We
are interested in the relation between network
top‘ologies and stabilization time, the effect of
number of faults, and so forth.

This paper has two major contributions.
First, based on the Huang and Chen’s method
[6], we have developed a depth-first algorithm
with avoiding faulty privileges under conver-
gence. Second, we have implemented their and
our algorithms into simulation programs using
random graphs. Then we investigate their per-
formance with several parameters.

Related Work

Recent papers have tackled the problem of vul-
nerability under convergence; that is, called
fault containment[2, 5], time-adaptive stabiliza-
tion[10], superstabiliztion[4], or coding sys-
tems(5, 12]. The concept of fault containment
or time-adaptiveness is to prevent the diffusion
of faulty states. This can be achieved by ex-
amining neighboring guards, priority schedul-
ing[3], or replica with local voting[10]. Herman
and Pemmaraju[5] generalized the use of er-
ror detection codes to detect faults. Their idea
of increasing the state space is similar to ours.
Depth-first token passing in the context of self-
stabilization was presented in [6-8]. The meth-
ods of Huang and Chen[6] and Johnen,et.al. [8]
use a similar idea. There are not so many ex-
perimental results in this area to the best of
our knowledge. Chang,et.al[l] analyzed an av-
eraged behavior of the Dijkstra’s mutual ex-
clusion ring with some simulation results. Ma-
suda,et.al[11] modeled a self-stabilizing leader
election algorithm as a Markov chain and evalu-
ated its stabilization time by the Gauss-Jordan
method.

2 Model and Basis

First we describe the self-stabilizing model used
in our discussion. A network consists of n pro-
cesses P = {pg,p1,...,Pn-1} of finite state ma-
chines connected arbitrarily. The state model
is assumed, that is, the process p; can directly

read the adjacent states and similarly for auxil-
iary -states. Each process has a program of the
internal computation, if G- then -A, where

G is called a guard and A an action. If G- is-

true in a process, the process is said to be en-
abled. An.atomic step consists of reading the
neighbor’s state, an internal computation, and
writing its own state.. The global state of all
processes is described by its configuration, n-
dimensional vector of states. For any configura-
tion there must be some process to be enabled
{deadlock-free). o

In the mutual exclusion problem; at most one
privileged process must be required at any time.
In self-stabilizing algorithms, such configura-
tions, called legitimate, are contained in every
execution (convergence). Additionally, once le-
gitimacy is restored, algorithms must keep the
property (closure). A transient fault may gen-
erate erroneous states, where the number of en-
abled processes may be more than one. If there
are several enabled processes, only one process
is activated at a time by C-daemon. The dae-
mon is assumed to be fair, that is, every process
is activated infinitely often.

Huang and Chen’s Method

In Huang and Chen’s algorithm [6], called
Huang&Chen hereafter, each process p; has an
integer variables C.i € {0,1} called color,
D.i € P called descendant of p;, and L.i €
{0,...,|P] = 1} called level. There are two
kinds of programs, for the root and for oth-
ers. The mutual exclusion condition is guaran-
teed by the unique path, called segment, of the
descendant pointers originated from the root.
The front end process of the segment has a to-
ken, meaning the privilege is given. The token is
circulated in a depth-first manner, where color
is used to avoid visiting some process twice in
the same round. That is, the new adjacent pro-
cess with a different color is searched by the

front process. The variable level is used for

eliminating cycles or illegal segments. Since the
relation L.D.i = L.i+1 does not hold in cycles,
the process p; can find the inconsistency. Then
p; sets the descendant pointer at Null, making
D.i an illegal root. The illegal root propagates
the color' Error downward, and then sets Null

upward. The isolated Error process changes its
color to 0. I

3 Algorithm
3.1 Overview .of ’.Our, Method

We present an algorithm named AFPG (Avoid-
ing Faulty Privileges in General networks),
where each process has a color and a
descendant, and also has an auxiliary real vari-
able Safe.i € {0,1]. Our AFPG also guaran-
tees exactly one token by the segment origi-
nated from the root, where the token,is circu-
lated in a depth-first manner. The basic idea
of a large state space is applied as follows. Ac-
cording to Huang®Chen[6), the key variable by
which faults can be detected.is not color but
descendant. So we increase the domain space
of descendant to K : deg(p,) + 1 states for the
root pr and K -{deg(p;) —1) + 1 states for other
process. p;, where deg(p;) denotes the degree
of a process p;. Let K be a sufficiently: large
constant and let j - K, called a base for an in-
teger 7 € B; = {1,2,...,deg(p;) — 1} (B =
{1,2,...,deg(pr)}), indicate a child (more dis-
tant from the root than p;) process of p;. If
j = 0 (corresponding to one addition), it is
called Null. Since each process other than the
root has a parent if it has a token, one is sub-
tracted from its degree. The correspondence be-
tween the value and the process can be defined
arbitrarily, e.g., in a clockwise order. Then if
descendant takes on non-base value, the pro-
cess can detect the fault by itself. Note that
any non-base value can be considered as a cor-
rupted one, and any base value as a legitimate
one in almost every case.

When an activated process finds its descen-
dant has some non-base state, it copies the non-
base value. Since such an operation is propa-
gated upward (to the root), the segment is bro-
ken at the time. Then isolated states are reset
to Null one after another. This amount of stabi-
lization time is reduced from [6] because their
algorithm first propagates Error color down-
ward. If there is a process other than the root
which- has no parent but has a descendant,
called a illegal root, it is colored by Stop. The

color Stop is propagated over the (illegal) seg-
ment, rooted by the illegal root, unless non-
base copying is reached, meaning that the seg-
ment is “dead” and will be removed. After the
copying operation arrives at the root, it circu-
lates safe signal (auxiliary token) in a depth-
first manner. The safe, usually has some ran-
domized value, also uses two predefined bases,
0 and 1. When the neighboring process py has
Safe.k = 0, the activated process p; sets at
Safe.i = 0 meaning that the safe is going for-
ward. On the other hand, py has Safe.k = 1,
then the safe is backtracking.

Before the formal description of our meéthod,
we should state our notation. Let D.i be the
descendant of p;, C.i the color of p;. Let
D.D.i be the descendant of descendant of p;,
and so forth. Additionally, let P.i be the parent
of p;, NB.i the set of p;’s neighbors, NP.i the
number of p;’s parents. If D.i points to some
base, we denote D.i = base. If the base corre-
sponds to pg, we express base. If D.i points
to non-base, we say D.i = nonbase. Let Stop
and Wait be some specified non-base values.
We sometimes denote the root (index) as r.

3.2 Formal Description of AFPG

We describe the formal description of our
AFPG in the appendix.

4 Correctness

In this section, we briefly describe proof
sketches based on the following assumption.

Assumption 1 The faulty state of D.i (resp.
Safe.i) takes on any integer (resp. real) value
over the interval [0, K - (deg(v;) — 1)] or [0, K -
deg(vy)] (resp. [0,1]) with egual probability.
Any two faulty state occurs independently. O

Lemma 1. Our algorithm AFPG is deadlock-
free.

Proof. Suppose that a deadlock occurs, that is,
there is no enabled process. More precisely, (1)
There is no illegal root/segment, otherwise the
IllegalRoot.i would be true for such p;. Even
if NP.i = 0 is true, the illegal root/segment
is colored Stop. (2) There is no non-base

descendant, otherwise the ResetNull.i would
be true for such p;. (3) Every process has the
same color or there is no (legal) segment, oth-
erwise Token.i may be true. In the former case,
BToken.i holds and search(7) begins. In the lat-
ter case, Token.r is true if Safe.r # 0. So we
suppose that Safe.r = 0. Then SCandidate.:
(z = r) is true and a legal segment generates; a
contradiction. O

To prove the convergence property, we use
the pseudo legitimate states through which the
system stabilizes.

PLS1 = (|TllegalRoots| = 0) A (|Cycles| = 0)
PLS2 = PLS1 A (|IsolatedNodes| = 0)
PLS3=PLS2A(Vi,j: C.i=C.j # Stop),

where Cycles is a set of cycles formed by de-
scendant paths, and the other sets described
above are defined as

IllegalRoots = {i | i #r,NP.i # 1,
D.i = base,C.i # Stop}
IsolatedNodes = {i | D.1 = nonbase, NP.i = 0}.

Lemma 2. PLS! eventually holds.

Proof. (1) Suppose that there exists some
D.j = nonbase, where the process j is reached
from the root by the descendant path. Af-
ter the SpreadUp.i rule is repeatedly applied,
the ResetNull.r inevitably holds and the cir-
culation of safe signal begins. For other il-
legal segments, there are two cases whether
the ends of the segments have base or non-
base descendant pointers. If it had a non-base
descendant pointer, the Spread Up.i rule would
be repeatedly applied and would reach the il-
legal root. Otherwise, the illegal root would
be colored by Stop and all the processes on
the segment would be colored by Stop by the
TllegalRoot.i and the SpreadDown.i rules. It
means that their activities are “stopped” until
the safe signal comes. In any case, the num-
ber of |IllegalRoots| decreases. Thus every ille-
gal root is eventually eliminated. Other rules
do not affect the number of |IllegalRoots|.

(2) Suppose that the corrupted D.j reach-
able from the root takes on some other base.

—920—

For other illegal segments, they will be elim-
inated or “stopped” as above. The segment
with the (true) root continues token passing:
If the segment reaches an illegal segment and
SpreadUp.¢ rule is being applied, it reaches the
root and the circulation of safe signal begins. If
the segment reaches an “stopped” segment, the

color Stop is corrected by the action of Token.i.’

Thus such segments will be eliminated.

Even if there were cycles by the descendant
pointers, N P.i would become two when the le-
gal segment reaches some process on a cycle.
Then the cycle is broken by the ResetNull.i
rule. Thus every cycle or illegal root is even-
tually eliminated. o

Lemma 3. PLS2 eventually holds.

Proof. For the processes in IsolatedNodes, the
ResetNull.i rule is applied. After all the ille-
gal segments are eliminated, the ResetNull.i
rule ‘monotonically decreases the number of
|IsolatedNodes|. Other rules do not affect the
number of |IsolatedNodes|. s o

Lemma 4. After czrculatmg the safe szgnal
PLS3 holds.

Proof. The safe signal is at first set to 0 by the
root (ResetNull.r) and is circulated. If there are
some neighboring non-base state, setting the
descendant pointer is delayed (D.i := Wait)
until the non-base value is reset. Hence all the
states are reset after the safe returning. If
there are neither non-base states (~NonBase.7)
nor unvisited processes (-SCandidate.i) with
base states, safe is reset to 1. Then the predi-
cate BSafePass.i plays a backtracking role. Af-
ter it returns to the root, Safe.r changes from
0 to 1. Through the safe signal circulation,
the color is unified (SafePass.i). Thus the PLS3
holds. . 0

* After PLS3 holds, there is no segment. Since
Safe.r = 1 and D.r = Null, Token.r is true.
Therefore a legitimate configuration is restored.

Lemma 5. Letn be the number of processes, §
the minimum degree; and p the fault probability.
Then the probability that some faulty prwzleges

emst is at most (—KTT)TT

Proof. For each process p; (7 # r), it must have
exactly one parent and D.i = Null to get a
faulty privilege. Since the neighboring two pro-
cesses cannot do at the same time, at most
%1 < kL processes are faulty. In addition,
each process has D.i = Null with probability
p- K(6—11)+1 <p- K(Jl_l) greater than the one
for p,. Multiplying them derives the probabil-
ity. O

From lemmas above, the next theorem fol-
lows.

Theorem 1. Our algorithm AFPG eventually
stabilizes with avoiding almost all faulty privi-
leges. O

5 Experimental Results

5.1 Simulation Model

To evaluate AFPG, we execute simula-
tion experiments and compare it with the
Huang&Chen. The simulation programs are
implemented by C language. Our simulation
model has an underlying arbitrary network,
where each process corresponds to a process.
The network is generated by our random graph
routine, which selects the largest connected
component from randomly connected processes
with probability p. Each process is activated at
random by the C-daemon. Then the only en-
abled process can change its state. The mean
interval time between activations, ROUND, is
exponentially distributed with mean 0.2. If the
activated process has a token, it gets into the
critical region. The time staying in the criti-
cal region, CRITICAL, is normally distributed
with mean 1 and variance CSIGMA =

On average, fnum faults occur with variance
FSIGMA = 3. The mean interval time of fault
occurrences, FROUND, is also exponentially
distributed with mean 20. As shown in the fol-
lowing results, the averaged stabilization time
may beyond 20. Thus faults sometimes occur
when the system has not been restored from
the previous damage yet.

We execute three experiments va,rymg pa-
rameters, the number of entire processes, nsize,
the probability of connecting a pair of pro-
cesses, prob, and the mean number of faults at a

Constant |Value Meaning |
K 1000 Large constant for a base j - K
CRITICAL| 1 Mean staying time in the critical region
CSIGMA | 0.3 |Variance of staying time in the critical region
ROUND | 0.2 Mean interval time between activations
FSIGMA 3 Variance of number of faults
‘FROUND | 20 Mean interval time between faults

Table 1. Constants

[Parameter] Range [Standard]

Meaning J

nsize 8§ — 26 20 Number of processes
prob (0.3 —0.75] 0.3 |Probability of connecting a pair of processes
fnum 1—19 2 Mean number of faults

Table 2. Parameters

time, fnum. Experiment 1 examines the effects
of network size, nsize, varying from 8 to 26. Ex-
periment 2 examines the effects of the density
of graph, prob, varying from 0.3 to 0.75. Exper-
iment 3 examines the effects of damages, fnum,
varying from 1 to 19. When varying a parame-
ter, we keep other parameters standard values
shown in Table 2. The number of convergences
is 100 for a generated network, and 100 kinds
of networks are generated. The constants and
parameters are summarized in Tables 1 and 2.

5.2 Results

In Fig.s 1-3, the left hand side one shows
the mean stabilization time, and the right
hand side one shows the rate of faulty priv-
ileges. The results of Experiment 1 are de-
picted in Fig. 1. It is obvious that our AFPG
outperforms Huang€Chen. The mean stabi-
lization time of AFPG is less than a half of
Huang&Chen.

The results of Experiment 2 are depicted in
Fig. 2. It seems that the mean stabilization
time reaches a peak for dense networks. (for
large prob values). Since the number of edges
is saturated for prob > 0.5, the mean stabi-
lization time grows in proportion to the num-
ber of edges. It is coceivable that there can be
more choices for corrupted descendant values
in Huang&Chen. In contrast, there is no such
choices in our AFPG. The slight increase in
AFPG is caused by the length of the segment

and frequent Wait operation because of many
corrupted adjacent processes. ‘

The results of Experiment 3 are depicted
in Fig. 3. When the mean number of faults
is fnum = 1, the mean stabilization time be-
tween the two methods is not so different. How-
ever, as the number of faults increases, the per-
formance of HuangéChen sharply gets worse.
Then it reaches a peak when fnum = 5, twice
our AFPG. It can be seen that it is bounded by
the length of the segment. That is, the perfor-
mance of HuangéChen is affected if processes
on the segment is corrupted. Even if the pro-
cesses out of the segment are hit by a fault,
no restoring operations are necessary. Since our
standard network size is nsize = 20, the proba-
bility that the segment is broken is determined
by the number of faults. Thus there is no effect
on the performance even if too many faults oc-
cur.

Concerning the rate of faulty privileges, our
AFPG always keeps less than 0.3 %. In Fig.3,
the rate of faulty privileges in Huang®Chen
sharply increases as the mean number of faults
grows. This is reasonable because descendant
pointers arbitrarily direct other processes or
Null in HuangéfChen. Hence the rate of faulty
privileges is in proportion to the number of
faults.

6 Concluding Remarks

In almost every case, the mean stabilization
time of our AFPG is shorter than that of

Huangb4Chen. This is because there is no need
for Error coloring phase in our AFPG. There
are two reasons for the unnecessary. First, each
process can detect its descendant faulty in al-
most every case. Thus copying the corrupted
value is equivalent to breaking the segment
rapidly. Second, the livelock risk, pointed out
in [6], can be removed by our Stop coloring.

References

1.

10.

11.

12.

E.J.H.Chang, G.H.Gonnet, and D.Rotem, “On the
costs of self-stabilization,” Information Processing
Letters, 24:311-316, 1987. s

. S.Ghosh and A.Gupta, “An exercise in fault-

containment: Self-stabilizing leader election,” Infor-
mation Processing Letters, 59:281-288, 1996.

. S.Ghosh and X:He, “Fault-containing self-

stabilization using priority scheduling,” Infor-
mation Processing Letters, 73, 145-151, 2000.

. T.Herman, “Superstabilizing mutual exclusion,”

Distributed Computing,13,1:1-17, 2000.

. T.Herman and S.Pemmaraju, “Error-detecting

codes and fault-containing self-stabilization,” Infor-
mation Processing Letters, 73, 41-46, 2000.

. S.T.Huang and N.S.Chen, “Self-stabilizing depth-

first token circulation on networks,” Distributed
Computing, 7: 61-66, 1993.

. S.T.Huang and L.C.Wuu, “Self-stabilizing token

circulation in uniform networks,” Distributed Com-
puting, 10: 181-187, 1997.

. C.Johnen, G.Alari, J.Beauquier and A.K.Datta,

“Self-stabilizing depth-first token passing on rooted
networks,” In Proceedings WDAG97 Distributed Al-
gorithms 11th International Workshop, Springer-
Verlag LNCS1320: 260-274, 1997.

. J.Kiniwa, “Avoiding almost all faulty privileges in

almost linear convergence time,” In' Proceedings of
5th. Japan-Korea Joint Workshop on Algorithms
and Computation, 33-40, 2000.

S.Kutten and B.Patt-Shamir, “Time-adaptive self-
stabilization,” In Proceedings of the 16th Annual
ACM Symposium on Principles of Distributed Com-
puting, 149-158, 1997.

H,Masuda, Y.Tsujino and N.Tokura, “A self-
stabilizing leader election algorithm on the multi-
access channel,” Transactions of IEICE, J80-D-I, 1,
1-10, 1997.

IL.Yen, “A highly safe self-stabilizing mutual ex-
clusion algorithm,” Information Processing Letters,
57:301-305, 1996.

StabMzaton W Time.

Snbiizaken \ Tine.

Siabllzaten \\ Tims.

Huang & Chan - 3 Muang & Chan -
AFPG 8~ AFPG —
“ A " .
L) r CX]
5
i
]
0. i o8
x
»
P i
2 i T st
X i
B &
[P ——
—
-
02
B . . K b :
$710 12 14 16 18 20 2 24 28 § 10 12 14 16 18 20 22 20 26
Numbar of Pracassns Numbar of Procastes

Fig. 1. Varying Number of Nodes \

s T T ' L
Huang & Shes-vor” Huang & Chan -
x“_,.....v“‘ ARG o "4\
e .
wfF
® o8
28
s
| o8
2
z
" §
HE
s 2
i s T
T
02
s
° —_ o PN
0.250.30.350.40.450.50.550.60.650.70.75 0250.30.35040.45050550.80.650.70.75
Probability of Connaciing Nodes Probabiliry of Connecting Nodes

Fig. 2. Varying Connecting Probability

a T + T
Huang & Chan -x-- Husng & Chan ».%
AFPG - AFPG_so
e X
b TR E
¥ N x
wl /
#
H - s
H H ¥
® H { o8 g
H T ¥
» H
H
s ;
N ;
] 3 M
P U S i
10 1 i
ez}
{
s
) x 0
G 2 ¢ 6 8 10121416 820 B2 4 & 8 1012 14 98 1820
Mean Number of Fauhs Moo Numbsr of Faus

Fig. 3. Varying Number of Faults

The token passing rules and their predicates are described as follows.

Token.r
Token.r
Token.i

il

1

1l

Token.i —

BToken.i
BToken.i

1l

(D.r = Null) A (Safe.r #0)

C.r:=(Cr+1) mod 2; Safe.r :=randomize(); search(r)
(f#r)AN(NPi=1)A((D.i = Null) v (C.i = Stop))

A(C.Pi # Ci) A (Safe.Pi # 0,1) '

C.i:=C.Pi; Safei :=randomize(); search(i)
(D.i=base) A (D.D.t = Null) A (C.i = C.D.i) A (Safe.i # 0)
search(i)

The error handling rules and their predicates are as follows.

H

lllegalRoot.i.

lllegalRoot.i —
SpreadDown.i =
SpreadDown.i —
SpreadUp.i =
SpreadUp.i —
ResetNull.r =
ResetNullr —
ResetNulli =
ResetNulli —
SafePass.i =
SafePass.t —
BSafePass.i =
BSafePass.i —

procedure search(z)

Candidate.i
Candidate.i
~Candidate.t

-
_ﬁ

(i #r)AN(NPi=0)A(D.i=base) A(C.i # Stop)

C.i := Stop

(C.Pi = Stop) A (C.i # Stop)
C.i:= Stop

(D.i = base) A (D.D.i = nonbase)
D.i:=D.Di

(D.r = nonbase) V (Safe.r = 0)

D.r:= Null; Safe.r :=0; SafeCirculate(r)
(t#7r)A(((NPi=0)A(D.i =nonbase)) V(NP.i>1)V(D.i=r))
D.i:= Null

(NP.i=1) A(D.i # nonbase) A (Safe.P.i = 0) A (Safe.i # 0,1)
Safe.i:=0; C.:= C.Pi; SafeCirculate(i)

(D.i =base) A (D.D.t = Null) A (Safe.i = 0) A (Safe.D.i=1)
SafeCirculate(7)

(ke NBi—r:(Ck# Ci)A{((D.k= Null) v (C.k = Stop)))
D.i = basey,
D.i:= Null

procedure SafeCirculate(i)

NonBase.i
NonBase.i
SCandidate.i
SCandidate.i

- NonBase.i
A-S§Candidate.i

il

{

il

(3k € NB.i —r: (D.k = nonbase))
D.i = Wait
(Safe.i =0) A (3k € NB.i —r : (Safe.k # 0,1) A (D.k = base))

— D.i:= basey

- Dz = Null; Safei:=1

