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Abstract

We show an simpler analysis of a decision tree learning algorithm proposed by Mansour and
McAlleter. They extend a binary decision tree learning algorithm to a multi-way branching one
and showed that the error of the multi-way branching tree produced by the extended algorithm
is bounded with an upperbound of the error of the binary tree of the same size produced by
non-extended one. We show that their result holds under a simpler and weaker condition.



1 Introduction

Decision tree learning is one of the most suc-
cessful areas in machine learning literature.
It is simple and experimentally effective[5](2].
But theoretical guarantee hadn’t been given
for many years. First theoretical guarantee
was given by Kearns and Mansour[4]. The
key is “boosting.” Boosting is an technique
to construct a “strong” hypothesis based on
“weak” hypotheses. AdaBoost[3] is a repre-
sentative boosting algorithm. For binary clas-
sification problem,Kearns and Mansour as-
sumed weak hypotheses and showed that deci-
sion tree learning algorithm performed boost-
ing. There are some extensions of their re-
sults. Takimoto and Maruoka generalized
Kearns and Mansour’s result to multi-class
function learning.[6]. Here we analyze Man-
sour and McAllester ’s work:They extended
Kearns and Mansour’s algorithm that pro-
duces a binary branching decision tree to that
produces a multi-way branching decision tree.

Most decision tree learning algorithm use
a top-down growth process. Given a current
tree, the algorithm chooses a leaf and extend
it to an internal node labeled with “branching
function”and adding a leaf to each possible
output value of the branching function.

Decision tree can over-fit the data. It is
easy to construct the tree that divides all the
data,whose training error is zero. But such
tree might have unnecessary rules dependent
with the data then, the generalization error
might be large. Occam Ragzor Principle[1] says
that small training error and small size of the
tree imply small generalization error. Thus
major decision tree learning -algorithms have
pruning phase:After constructing the tree,the
algorithm prunes away some of its nodes.
Here we take an another approach. We fix
the target size s in advance and consider the
problem of constructing a tree T with |T'| = s
and the training error small as possible, where
|T| is the number of leaves. If we choose suffi-
ciently small target size, then the generaliza-
tion error is small.

We consider the situation that the al-
gorithm is given multi-way branching func-

tions,for example four-way branching func-
tion, as well as binary ones. We would like the
algorithm using multi-way branching func-
tions performs better than the algorithm us-
ing only binary branching functions. Mansour
and McAllester extend a binary decision tree
learning algorithm to a multi-way branching
one. They showed that the extended algo-
rithm remain effective. We show a simpler
proof for their result.

2 Preliminaries

We introduce our learning model briefly. Our
model is based on PAC learning model pro-
posed by Valiant[7]. Let X denote an instance
space. We assume the unknown target func-
tion f : X — {0, 1}. Learner is given a sample
S = ((z1, f(z1)), - .., {z1, f(zm))) ,where each
z; is drawn independently randomly with re-
spect to an unknown distribution P over X.
The goal of the learner is to output an hy-
pothesis hs : X — {0,1} such that its gener-
alization error

e(hy) = Prlf(a) # hy(2)]

is smaller than any given constant £ (0 < € <
1). In order to accomplish the goal, it is suf-
ficient to design learning algorithms based on
“Occam Razor.” [1] Namely,

1. training error

R def
é(hy) = Prlf(z) # hy(z)]

is small,where D is the uniform distribu-
tion over S.

2. size(hf) = o(m),where size(-) is the
length of the bit string for A under some
fixed encoding scheme.

When a hypothesis Ay is represented as a de-
cision tree, the second condition can be inter-
preted that the number of leaves of the tree is
sufficiently small with respect to the number
of data.

We introduce the notion of boosting. In the
classical definition,boosting is to construct a



hypothesis hy such that Prp[f(z) # h¢(z)] <
¢ for any given ¢ combining hypotheses h sat-
istying Prp[f(z) # hy(2)] < 1/2 ~ 7.

But ,in this paper,we measure the goodness
of hypotheses from an information-theoretic
view point. Here we use an extended entropy
proposed by Takimoto and Maruoka|6].

Definition 2.1. A function G : [0,1)? —
[0,1] is pseudo-entropy function iffor any
9,1 €[0,1]:g0+q =1,

1. min(qo, q1) < G{qo, q1) ,
2. G(go,q1)=0 < g=1lorq =1,
3. G is concave.

For example, Shannon entropy function
H(g0,91) = qologgo + q1logqy is a pseudo
entropy function. We define the entropy of
function f using a pseudo entropy function

G.

Definition 2.2. G-entropy of f with respect
to D,denoted HE(f), is defined as

Hg(f) ‘:l—_?.f G(QQ, QI)’
where g; = Prp[f(z) =] (i =0,1).

We can interpret G-entropy as “impurity”
of value of f under the distribution D. For
example, if f takes only one value, G-entropy
becomes the minimum. If the value of f is
random, G-entropy becomes the maximum.

Then we define the conditional G-entropy
given a hypothesis A : X — Z, where Z is a
finite set but possibly different from {0, 1}.

Definition 2.3. Conditional G-entropy of f
given h with respect to D, denoted as
HS(f|h), is defined as

HE(f1h) = Y Prlh(z) = 2IG(aojs, a1,
zeZ

where gy, = Prp[f(s) = 1h(z) = 2] (i =
0,1).

Now we show the relationship between the
error and G-entropy. Since the range of h may
be different from that of f, we have to give a

way to interpret h’s values.More precisely, We
define a mapping M : Z — {0,1}:

def
M(z) = arg;c{o,1} Maxgj|,
Then, the following fact holds.

Proposition 2.4.

Prlf(e) # M(h())] < HE(fIM)

Proof.

%r[f(x) # M(h(x))]

=3 wePrlf(z) # M(h(z))|h(z) = 2]
z€Z

= Z 'U.)z{l - max(q0|z> qllz)}
2€Z

= w,min(qo|s, q1))
2€Z

< Z sz(quz’ QI|z) = HIG)(fIh)
267
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Now we state our assumption. We assume a
set of “weak hypotheses” of the target func-
tion f.

Definition 2.5. H is a y-weak-hypothesis-set
for f if for any sample S of f and any distribu-
tion D over S, there exists a hypothesis h € H

- satisfying

HB(f) — HE(f1h) = vHE(f)-
We call this constant v advantage.

Later, we sometimes refer to Hg( f) -
HS(f|h) as gain.

3 Algorithm(binary case)

We show an simple decision tree learning al-
gorithm proposed by Kearns and Mansour[4].

We assume some pseudo-entropy function
G and a set of binary branching functions Hs.
The algorithm is given as input a sample S
and target size s (s > 2),then outputs a de-
cision tree. Let T be any decision tree for
output. Internal nodes of T" are labeled with



functions in Hy. Let L(T) denote the set of
leaves of 7. Then T can be interpreted as
a mapping any instance z € X to a leaf in
L(T). Let D be the uniform distribution over
S. For each £ € L(T), wy « Prp|T(z) = {]
and gy & Prp|f(z) = i|T(z) = £ (i = 0, 1).
Now we show the way to put label on the
leaves of the decision tree. When given a sam-
ple S, let Sy be the subset of S where each
labeled example (z, f(z)) reaches the leaf £.
Then, for each leaf ¢, we choose the most ma-
jor label in Sp. Formally, the way to label is

defined as the following function that maps
L(T) to {0, 1}:

def
M(¢) = argmax(qow,qlw)

Then,we define the training error of 7' é(T") is
defined as

A def

{T) Y Pr(f (@) # M(T(2))).

We denote the conditional G-entropy of f
given T as

def

HE(fIT) = Z weG(qoje, 91je)-

LeL(T)

Then,by from proposition 2.4, the following
holds.

§TY<HE(FIT) = D wiGlaye - anye)-
eeL(T)

Thus, if the conditional G entropy of f
given T is sufficiently small,so is the training
error of 7.

Now we are ready to describe the algorithm
BIN-TOPDOWNg 1, Given a sample S
and target size s, the algorithm repeat the
following sequence of procedures.

1. Choose the leaf ¢ that maximizes

weG(qoje, Qaje)-

2. Calculates the sample S.ll and the uni-
form distribution D, over Sy.

3. Choose the binary hypothesis h € Hj
that maximizes the gain (ng( -

HE (fIh)).

BIN-TOPDOWNGg 11, (5, s)
begin
T « the single-leaf tree;
While |T] < s do
¢« argmaxge 7y we - G(quje, Q2pe> - - -
Se — {{z, f(z)) € S|T'(z) = £};
Dy « the uniform distribution over Sy;
h — argmaxnen, (HS, (f) — HE, (fIh);
T — Typ;
end-while
Output T ;
end.

» AN1e);

Figure 1: Algorithm BIN-TOPDOWNGg g,

4. Expand the leaf ¢ with h : replace £ with
an internal node labeled with A and cre-
ate two new child leaves. (We denote the
expanded tree as Ty p.)

Finally the algorithm outputs the tree T with
|T'| = 5. We give the detail in Figure 1.

We note that if Hy is a y-weak-hypothesis-
set, BIN-TOPDOWNg g, reduce the con-
ditional G entropy at each expansion. By defi-
nition, there exists a hypothesis A € H whose
advantage is greater than some constant +y.
Because h maximizes the gain,

HE,(f) — HE,(fIh) = vHE,(f)-
Let C; be the set of new leaves created at

the expansion of £. Then, following relation
holds:

HE(fIT) = HE(f|Ten)
=wy(HE,(f) = HB,(fIh))
>wpyHE,(f)-

This implies each expansion reduce the condi-
tional G-entropy.

Kearns and Mansour proved the following
theorem.

Theorem 3.1 (Kearns and Mansour[4]). |}
Assume that Hg is a y-weak-hypothesis-set
for f.Then BIN-TOPDOWNGg 1, (S5, s)
outputs T with &(T) < HE(f|T) < s77.

‘We ommit the proof here. Later, we show a
generalized theorem and a proof for the theo-
rem.



MULTI-TOPDOWNGg (S, s)
begin
T « the single-leaf tree;
‘While (|7] < s) do
¢ — argmaxye (1) weG(qu)e, 9210);
Sp = {{z, f(z)) € S|T(x) = ¢};
Dy + the uniform distribution over Sj ;
HE ()-HS (fIh)

D,
h « argmaxpe i, acceptable BN 1T o R

T —Tpp;
end-while
Output T ;
end.

Figure 2: Algorithm MULTI-TOPDONGg

4 Algorithm(multi-way case)

We now show Mansour and McAllester’s de-
cision tree learning algorithm that uses multi-
way branching functions as well as binary
ones. _

Let H be a set of branching functions
where each h € H is a function from X
to {1,...,Kx} (Kp > 2) .We allow different
functions in H have different ranges. We as-
sume H contains a set of binary branching
functions Hs.

We say that a branching function & is ac-
ceptable for tree T' and target size s if either
|Kn| =2 or [T| < s/|T|.

We show the detail of the algorithm is in
Figure 2.

We remark that if Hy C H is a y-weak-
hypothesis-set and K-way branching function
h is selected for ¢, then,.

HE,(f) — HE,(f1h) > v[log K1HE, (f).

5 Analysis

We give an analysis for the algorithm
MULTI-TOPDOWNg . For any leaf /,
we define weight of £ W, as
def
We = weG(qope: qu1pe)-
Then following facts holds.

Fact 5.1. 1 &T) < Y pepir) We.

2. When H; C H is a weak hypothesis set,
for parent leaf ¢ and its children leaves
..., K,

Wi+..., ~v[log K1) W,.

We review the algorithm focusing on
weights. In each iteration, algorithm chooses
the leaf that maximize the weight,and expand
it.Then it holds that sum of weights of chil-
dren leaves is bounded by (1 — «) times the
weight of their parent leaf. Now we consider
the worst case. Then our problem can be for-
malized as follows.

‘Weight Distribution Problem

Wg < (1-

e The player is given a single-leaf tree
where weight of the leafis W, (0 < W <
1),and target size s (s > 2).

e While |T'| < s, the player repeat the fol-
lowing procedures:

1. Choose the leaf £ with the maximum
weight

2. Choose any integer K (> 2) with
K=2or K <s/|T|.

3. Expand the leaf £: replace the leaf
with an internal node with K chil-
dren leaves. For weight of par-
ent leaf £ W, and weights of chil-
dren leaves W7y, ..., Wk, the follow-
ing equation holds:

Wi+ +Wg=(1-+[log K]|)W,.

e The player distribute weights of children
leaves freely.

Player’s goal: To maximize the sum of
weights of the tree.

Problem: What is the best strategy for the
player?

Lemma 5.2. If the player always chooses the
number of children leaves K = 2 and dis-
tribute weights of children leaves uniformly,
the sum of weight of the tree is mazimized.

From lemma 5.2, we can show our main result.

Theorem 5.3. Assume that Hy C H is a -
weak-hypothesis-set for f. Then,
MULTI-TOPDOWNGg u(S,s) outputs T
with é(T) < HE(f|T) < s77.



5.1 Analysis of the weight distribu-
tion problem

We say that a K-dimensional vector dg =
(a1,...,ax) € [0,1)¥ is a distribution of
size K if 3,05 = 1. Let Dk de
note the set of all possible distributions of
size K. Especially, let d}, be the uniform
oneji.e.,dy = (1/K,...,1/K). We also define
D = Ug>2Dg.

Then we consider the sequence of distribu-
tions correspond to the sequence of branching
functions that are acceptable for s. For nota-
tional convention,we say that such sequences
are acceptable. Formally, a sequence of distri-
butions dg,, ..., dk, (¢ > 1) is acceptable for
sifs=(Ky—-1)+- -+ (K;—1)+1and K; <
s/{{(Ki—1)++(Ki—1)+1} (1 £i < s). For
any W € [0,1], any integer ¢ > 1, and any
sequence of distribution dgi, .. .,dgﬁ-)t € D,
We denote sumyy[iog 4] (W, dgi, e df,?t) as the
sum of weghts of leaves such that

1. The initial weight is W.

2. The ¢ th way to distriute is specified with
d9 (<<

We can represent lemma 5.2 as follows.

Lemma 5.4. For any weight W,any inte-
ger s > 2, any sequence of distributions
dg,, - -, dxk, that is acceptable for s, and the
sequence of distributions with length s — 1

sy ds,
SUIMy [1og k] (W, dky, - - L dr,)
SSUMyf1og k] W,ds, ..., d3)

s—1

<s 7.

To prove our lemma 5.4, we need two more
lemmas.

Lemma 5.5. For any weight W € [0,1],any
integer s > 2, any sequence of distributions
dg,, - --,dx, that is acceptable for s, and the
sequence of distributions with length s — 1

5o, da,
SUMly[log k] (W7 dx, d; RN 3)
Nccroeamemns e
i
<suimyfog k) (W, d, . . ., d3).
s—1

Proof. We consider the situation that the
player does not choose the leaf whose weight is
the maximum,but select the leaf in the oldest
generation that has the the maximum weight
among the generation. We denote the sum
under such a situation as sumﬁmog L Then,

SUullly[log k] (Wa dx, ;7 vy 3)
N oo’
t
/
SSUM 104 4] (W, dx,ds, ..., d3).

i

We show that the following inequality.

SUM~[log k] (VV: d}{a d§7 ERT) d;)

t
<SUMy[jog k) (W, d;’ SR d;)

s—1

Let s =2+ ¢ (20 < 5 <21 s’ > 0). Then,

SUITly jog k| (W d§> c d;)
s—1
. o~
=(1-)'W - s’vgl—QyﬁW
:(1 *’Y)'L (1 - 7) w
def
§¢7(8)W

On the other hand, let s = K2 + &
(K2¥ < s < K2'*', 8" > 0).

SUIlTiog k| (Wa d;{v d;a B d;)

=(1 —~[log K1) —7)' W |
B 51,7(1 - vfloif;])(l '
~(1 = [log KT)(1 ~ 7)Y (1 _ ) w

K2V
=(1 ~ ~[log K1)¢y(s/ )W




¢4(2s) = (1 — v)¢,(s) and ¢, is monotone
non-increasing function.Thus,

by(s) S ¢’y(5)
(1- ;)LlogKJ S ¢ (E) = (1 = )TlogKT"

Now the following inequality holds.

SUMnNog k] W, d;{a ds,.., d;)
1
=(1—7[log K1)¢,(s/ K)W

<(1 —"Y“OgKDZT_jL—;)('[SI?)g—Iﬁ
<¢4(s)

=SUMy(log k] (I/V> d;: sy d;)

s—1

From i + §//2! > In(2! + &') ,finally,

SU, og k] (VV, d;, B d;)

s—1
=1-7) <1 - 52’—;1) w
<exp[—y(i +5'/2%]
<exp [-yIn(2 + &)] =577,

O

Lemma 5.6. For any weight W € [0,1],any
integer s > 2, any sequence of distributions
dxc,s- .-, dK,,d5, ..., d5 that is acceptable for s
with length t, and the sequence of distributions
with length s — 1

dryy A, 4, dsy ..., d3,

SUDLy [1og k] (W, \dKl, e di,,ds, . dg)
t
<summ,iog k] (W',{iKl, condi, g, d5, ..., d5)

v

~

t

Proof. We assume the sequence of length ¢

dr,y- . dK,,d5, ..., d5 is acceptable for s.
Then,the sequence of length ¢t + K, — 1
dr,y. .-, dK, ;,d5,...,d5 is also acceptable
for s.

Let T be the tree corresponds to

UM, [log k] (W, dkyy -+ dEcy_1,d3, ..., d3).

t

Let C be the set of leaves of T after the u — 1
th expansion. We denote W, as the weight of
each leaf ¢/ € C. Then,

Sum,ynogk"l (VVa\de vy dKu—].? d;, ceny d;)
b
= Z SUmy log k] (W€7 d; SR d;)a
teC >

where t; is the number of expansions for leaf
£ and its descendants leaves. Note that £ =
Y scc te- Let £* be the leaf in C that has the
maximum weight. (So £* is the u th leaf to be
expanded.) Let Ty be the subtree of T rooted
from ¢*. We replace Ty~ with fg* that has the
following properties:

1. !Tg*l = |Tg*|
2. Tpe s generated by dg,,d3,...,d5,
N e
tox—Koy+1
whereas Ty« is generated by d3, .. ., d5.
~——
Lo

To replace Ty~ with fp, we guarantee that
K, < |Ty«|- By assumption, the sequence
di,,...,dK,,ds,...,d5 is acceptable for s
,;thus Ky < s/|C|. On the other hand, Ty« is
the biggest subtree among all subtrees rooted

. from leaves in C. Thus s/|C| < |Tp<|. Thus

From lemma, 5.5,

SUIly fog k] (WE> dz, feey ;)
tp
Zsum'y['log k] (Wl?kv dK’u, d;a S ’d;)

te—Ky+1

Thus we conclude that by replacing subtree
Ty with T’g* , the sum of weights becomes
small. We denote the replaced tree as f, and
its sum of weights of leaves as Sum,[iogs] -
Then,

Z SUMy [iog k] (W, d3, ..., d3)
teC o
dicds, . dj).

N

i

Zsﬁi\nﬂlogk] (W, dxk,, - -




Finally,
SUM.y[log k] W, dk,, -, dr,, d3, - -, d3)
M
28Uy fiog k] (W, drcyy - -+, dK,,s d3, - - -, d5).

t

Proof for Lemma 5.2

From lemma 5.5 and lemma 5.6, for any se-
quence of distribution dg,, .. ., dx, that is ac-
ceptable for s,

sum,mogk] (VV, de “eey th)

Ssum'y[logk] (I/V) de R th‘lv dg: B d;)

(-
Ki—1

Ssum’y[logk] (W/’ de sy th-an d;: EERS) d;)
Nmnnion e’
Ki 1+ Ki~1

<...

Ssumfy[]og k] W, d§7 ooy dp)
s—1
=SUMy[jog k] (W, ds,...,d3) <s77
N e

s—1

, where s— 1= (K;— 1)+ (Ky—1)+---+
(Kz—1). O
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