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Abstract

In recent years, one of the important problems on complexity theory is quantum-classical computational
gap and many quantum-classical gaps have been found. However, how these results relate each other
remains still to be unknown.

In this paper, we investigate the quantum-classical OBDD size complexity gap through a function which
is already known to have quantum-classical communication complexity gap.

Consequently, by targeting a function from multi-party communication theory, we obtain: there exists a
2-width bound quantum OBDD with zero error such that classical OBDDs with zero error need at least
log k — 1 width where k is the number of parties.

This result suggests that there is also some relation between OBDD size and communication complexity

in quantum case.

1 Introduction putational model and their classical counterpart.
For instance, there are well known and important

) . .
With rapid increase in research of Quantum results such as Shor’s factoring, discrete log[12] and

, .
Computing, many examples of computational Grover’s quantum searching[4]. The above exam-

power gap has been found between quantum com- ples are all on time complexity, there are also other
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results including Raz’s 2-party quantum commu-
nication protocol[10] on communication complex-
ity and Kondacs and Watrous’ 2-way quantum fi-
nite state automaton which accepts non-regular
language[6]. For more detail of quantum compu-
tations, we suggest seeing Gruska[5].

In this paper, we will focus on branching pro-
grams or more restricted model, Ordered Binary
Decision Diagrams, which are another classical
model obtained from extension of decision tree.
There are some good reasons why branching pro-

grams are promising models of computation :

1. Some standard complexity classes like the class
L(the class which a deterministic Turing Ma-
chine can recognize on log-space restriction)
can even be directly characterized in terms of
branching programs.

. Their combinatorial structure and computa-

tion process are very simple.

It
branching program variants to classify specific

is easy to define reasonably-restricted

problems.

If there is a Branching Program which com-
putes some function, then there is a polynomial
time bounded algorithm that makes a circuit

which computes the same function.

It was shown by Nakanishi, Hamaguchi and
Kashiwabara in [8] that there is computational
power gap between bounded-width ordered quan-
tum Branching Program and its counterpart in
terms of bounded error.

However, it has been unknown how those com-
putational power gap on time, communication, au-
tomata or branching program width complexity re-
late to each other.

On the other hand, there is a fact that the
size of a Ordered Binary Decision Diagram which
computes some function relates the communication
complexity of that function closely (Babai,Nisan
and Szegedy [1] seem to be the first who have ex-
plicitly used this relation to show lower bounds
for branching programs). And also Buhrman, van

Dam, Hgyer and Tapp[2] proved that quantum

multi-party communication protocol can achieve
asymptotically smaller communication complexity
in terms of zero error than that of classical case.
On the basis of those results, in this paper, we
show another example of computational power gap
between bounded-width quantum OBDD and its
counterpart with zero-error. Specifically, we prove

1. For any k,n n > logk, there is 2-width bound
quantum OBDD that computes f : {0,1}"* —
{0,1}, f(z1, 2, ... ,z)) =the n-th least signif-

icant bit of the sum of the z;’s with zero error.

. There is no classical OBDD that computes
same f with zero error, width smaller than k.

We prove 1 by simply constructing a 2-width bound
quantum OBDD. In order to prove 2, we apply a
technique from transformation of OBDD to multi-
party communication protocol. Because the trans-
formation relates directly the size (width) of the
OBDD to the amount of information bits, the lower
bound on the size of the OBDD is proved.

2 Branching Programs and OBDDs

Branching Program is another non-uniform com-
putational model,which generalize the concept of

decision trees to decision graphs.

2.1
2.1.1

Branching Program and its variations

Deterministic Branching Program

Definition 1 A branching program (bp) on the
variable set {z1,zs,...2,} is directed acyclic
graph with one source and sinks labeled by the
constants 0 or 1 respectively. Each non-sink
node is labeled by a variable z; and has ex-
actly two outgoing edges labeled by 0 or 1,re-

spectively.

This graph represents a Boolean function f :
{0,1}™ — {0,1} in the following way. To com-
pute f(a) for some input a € {0,1}", start at
the source node. For a non-sink node labeled
by z; check the value of this variable and follow
the edge which is labeled by this value (this is
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called “test of variable z; ”). Iterate this until
a sink node is reached. The value of f on in-
put a is uniquely determined and is called the

computational path for a.

The size of a branching program G is the num-
ber of its nodes and is denoted by |G|.

The depth of a branching Program is the max-
imum length (number of edges) of a path from

the source to one of the sinks.

The width of a branching program is defined as
follows : for a node v of a branching program
G, define I(v) as the number of edges on the
longest path from the source to v. If for each
node v of G all paths from the source to v are of
the same length, then we call G is synchronous.

For ¢ > 0, let the i-th level of G be the set
of all nodes v with I(v) = i. The width of a
branching program is the maximum taken over

the size of its levels.

2.1.2 Randomized Branching Program

A randomized branching program is probabilistic
computational model defined as analogue to prob-

abilistic circuit.

Definition 2 Let a deterministic branching pro-
gram G with the following special properties

be given:

1. G is defined on two disjoint sets of
variables X = {zi,...,z,} and Z =

{z1,---, 20}

2. on each path from the source to a sink,
each variable from Z is tested at most

once.

By an obvious extension of the usual semantics
for deterministic branching programs, G repre-
sents a function g : {0,1}" x {0,1}" — {0,1}.

We call G a randomized branching program if
for all assignments a = (as,...,a,) € {0,1}"
to the variable in X it either holds that:

Pr{g(a,b) = 1} > 1/20r Pr{g(a,b) = 0} > 1/2

where b = (b1,... ,b,) is an assignment to the
variables in Z chosen randomly according to
the uniform distribution from {0,1}". We say
that G as a randomized branching program
represents the function f : {0,1}* — {0,1}
defined by

1, if Pr{g(a,b) =1} >1/2
0, if Pr{g(a,b) =0} >1/2

f(a) =

2.1.3 Probabilistic Branching Program

There is also known another probabilistic compu-
tational model based on branching program,called
simply probabilistic branching program.

The randomized branching program has surely
very simple structure and so has many good prop-
erties. It is difficult, however, to define a quan-
tum computational model as its extension. There-
fore, we need a new classical branching program
with probabilistic computation process, equivalent
for quantum branching model.

Nakanishi, Hamaguchi and Kashiwabara first in-
troduced this model in [8] for comparability to

quantum branching program.

Definition 3(Nakanishi et al.) A probabilistic
branching program is acyclic directed graph
with one source in-degree 0 node and two sink
nodes labeled by 0 or 1 respectively. The inter-
nal node (non-sink node) is labeled by a vari-
able z; and has two types of outgoing edges,
called 0-edges or 1l-edges respectively. Each
edge e has a weight on it w(e) (0 < w(e) < 1).
let Eo(v) and E;(v) be the set of 0-edges and
the set of 1-edges of outgoing from node v. The
weight on edges from each node satisfies follow-
ing local probability condition:

Z w(e) = 1; Z w(e) = 1.

ecEy ecFE1

The computation of probabilistic branching
program is as follows: Starting at the source,
the value of labeled variable is tested at
reached node. If this is 0(1) then an edge in
Ey(v) (E1(v)) is chosen according to the prob-
ability distribution given as the weight of the

030


伊藤 
 

伊藤 
－3－


Definition 4 (Nakanishi et al.) A

edges. The node pointed by the edge is acti-
vated as next node.

2.1.4 Quantum Branching Program

Finally, we introduce the focus of this work.

quantum
branching program is an extension of proba-
bilistic branching program, and its structure
is same as a probabilistic branching pro-
gram except for edge weights. The weight
of each edge has a complex number w(e)
(0 < ||w(e)||> < 1). The weight on edges from

each node satisfies following local probability

condition:
S lw(E)l? =1 [lw(e)]* = 1.
ecEy ecEq

And also satisfies the global probability condi-
tion (see below).

The edge weight represents the amplitude with
which, currently in the node v, the edge will be
followed in the next step.

Nodes of quantum branching program G are
divided into the three sets of accepting set
(Qaccor, Q1), the rejecting set (Qre;jor, Qo)
and the non-halting set (Qnon). The config-
urations of P are identified with the nodes in
Q = (Qace Y Qrej U Qnon). A superposition of
a G is any element of [5(Q). For each g € Q,
|g) denotes the unit vector that takes value 1

at q and 0 elsewhere.

Let define a transition function § : (@ x{0,1}x
Q) — C as follows:

d(v,a,v") = w(e)

where w(e) is the weight of the a-edge (a =
Oorl) from node v to v'. If the a-edge does not
exist, then d(v,a,v') = 0.

Definition of time evolution operator is as fol-

lows:

Uglo) = 3 (v, x(xv),0")|v")

v'EQ

040

where x denotes the input of G and x(v) de-
notes the assigned value in x to the labeled
variable of the node v. If the time evolution
operator is unitary, then we say that quan-
tum branching program is well formed, i.e,
the branching program is valid in terms of the
quantum theory.

An observable O to be Eysc ® Erej @

E,on,where

Eacc = Span{|v>|v € Qacc},

Erej = span{|1}>|v € Qrej},

Epon = span{|v)|v € Qnon}-

The computation of quantum branching pro-
gram is as follows: The initial state is the
source node |vg). At each step, the time evolu-
tion operator is applied to the state |y;),that
is,|Yit1) = Uglti) -
with respect to Egce ® Epej ® Epon- Note
that this observation causes the quantum state

Next,|t; 1) is observed

|ti+1) to be projected onto the subspace com-
patible with the observation. Let the out-
comes of an observation be “accept”,’reject”
and “non-halting” corresponding to Fucc , Ere;
and E,,, respectively. Until “accept” or “re-
ject” is observed, applying the time evolution
operator and observation is repeated.

2.2 OBDD

Definition 5 An OBDD is a special branching

program that satisfies following condition:

Let k € N. A read k-times branching program
is a branching program with the restriction
that on each path from the source to a sink
each variable is allowed to appear at most k
times as the label of a node.

Let m be a permutation of the set {1,2,...n}.
A m-ordered branching program on the vari-
able set {z1, s, ...z, } is a branching program
with the following additional ordering restric-

tion: For each edge leading from a node labeled
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by some variable z;, to a node labeled z;,it
must hold that 7(i) < m(j). The permutation
m is called wvariable-ordering of the branching
program. We frequently will describe a vari-
able ordering simply by an ordered list of the

variables (e.g., “z1,2,...x,” for # = id).

A 7w-Ordered Binary Decision Diagram
(OBDD) is a read-once branching program

with variable ordering 7 restriction.

3 Communication Complexity Ap-
proach

The main subject of communication complexity
theory is the analysis of the simple communication
game, 2-party k-round communication. In this sec-
tion, we focus on its natural modification, k-party

communication case.

3.1 Multi-party Communication Complex-

ity
Definition 6 Let f be a k-variable Boolean func-
tion whose inputs are n-bit binary strings(that
is, f: {0,1}"* — {0,1}). There are k parties,
denoted by Pi,...P;, where party P; holds
input data «;(: — 1,...,k), and each party
has unlimited computational power. Initially,
party P; only knows x;, so, to evaluate f,
the parties have to communicate among each
other. The communication is done by broad-
casting classical bits, where, each time, a party
broadcasts one bit to everybody, on the total

cost of one bit of communication.

We are interested the minimum number of bits
required to be broadcasted in the worst-case
for every party to know the value of f. This
number called the communication complezity
of f and is denoted C(f, k,n).

A multi-party communication protocol is an
algorithm specifying which party is the next
to communicate and determining the message
which this party will broadcast given its in-
put and the message received so far. We con-
sider only one round case, that is , each party
broadcast its message at most once (but may
broadcast multiple bits at once).

3.2 Transformation of OBDD to Commu-

nication Protocol

OBDDs and communication protocol are closely
related, especially a OBDD can be seen as a com-
munication protocol. Consequently, the size lower-
bound for the OBDD of f and communication com-
plexity of same f is related.

To put this technique intuitively, the known
proofs of lower bounds on the size of OBDDs are
all based on the fact that a large amount of infor-
mation has to be exchanged across a suitably cho-
sen cut in the graph in order to evaluate the given
function. Results from communication complexity
theory are then used to get lower bounds on the

necessary amount of information.

3.2.1 OBDD as Multi-party Communica-

tion Protocol

Lemma 1 Let G be a randomized OBDD which
represents f with zero-error. Then it holds

that

Nlog(width(G))] > +C(f,k,n).

el

Proof We construct a randomized protocol for f
from G.

First, we partition the randomized OBDD G
into k sets of nodes G; such that:

1. edges run only from G; to G; with 7 < j.

2. G; contains only random node or node
which is labeled by z;; for 1 <7 <k,1 <
I <n.

Then, we identify sets of nodes (cuts) which
separate different G;. For ¢ = 1,...k, define
C; as the set of source nodes of G;. Naturally,

C; is also sink of G;_1.

Now, we are ready to describe the protocol P
for f. Each party P; obtains x; as inputs. All
party use the graph G as an “oracle”. Let
vo € Cp be the source of G. Let i € {1,... ,k}.
The i-th party P; follows a path in If P; en-
counters probabilistic variable, it locally choses
a value (0 or 1) at random and precedes to

the corresponding successor. If P; encounters a
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node labeled by X ;, then P; tests the variable
and activates correct successor. P; broadcasts
the number of the node v; € C; reached in this

way. So, P; must broadcast [C;].
Then, P, begins its computation.

Since G is a OBDD, width(G) >
mazi<i<i{Ci}.

On the other hand, the sum of broadcasts in
protocol P is ), [log C;] > C(f, k,n). To min-
imize the maximum value of the set bounded
by its sum, we must make each element of the

set have same value.

Therefore, [log(width(G))] > +C(f,k,n)

4 Computational Gap between bw-
Quantum-OBDD and its classical
counterpart

In this section, we use the technique from previ-
ous section to show that bw-quantum OBDD with
zero error can compute some function which ran-
domized OBDD with zero error needs log k width.
We define the function f; that first introduced in
It is

known that this function has quantum-classical sep-

Buhrman, van Dam, Hgyer and Tappl[2].

aration by logarithmic factor in terms of the num-

ber of parties.

4.1 Previous result from quantum multi-

party communication theory
Definition 7 (Buhrman et al.) There
parties, where party P; obtains input data
as z; € {0,...,2"71}. We say that an input

x = (z1,= ldots, xy) is valid if it satisfies that

are k

(Z z;) mod 2" 1 = 0.

i=1

Let fr : {0,...,2" 1}* — {0,1} denote the
Boolean function on the valid inputs defined
by

k

fi(x) = 2n1_1 (> z;) mod 27].

=1

The function f; can be viewed as computing
the n-th least significant bit of the sum of the

x;’s.

Theorem 1 (Buhrman et al.)
C(fx,k,n) =klogk — k
for n > logk.

4.2 Bw-Quantum-OBDD that computes f;

Theorem 2 Quantum OBDD with zero error can

compute the function f; with 2-width bound.

Proof We construct a bw-quantum OBDD that
computes f for any n,k. We define the set

of node @ as follows:

Q = {vsource, Usink0, vsinkl}

U{v(i,j),downav(i,j),upll S i S ka 1 S .7 S ’I'L}

U{v(k+1,1),downa v(k+1,1),up}

The labeled variable to the node v(; j) down is
z; ;. All other nodes are dummy node which

activate their successor(s) without testing.

We define the 0-set (Qo) and the 1-set (Q1) as

follows:

Qo = {Uo},Q1 = {U1}

The sets of edges E4, E1, Eq are defined as fol-

lows:

Ey = {(Usourcea 'U(l,l),down), (vsourcea 'U(l,l),up),

(V(i,5)up> V(irj+1),up)s (V(i,n) ups V(i 1,1),up)

(’U(k+1,1),upa vsinko)a (v(k+1,1),up7 vsinkl),

(U(k+1,1),downa vsinkO)a (v(k+1,1),down’ vsinkl)

1<i<k1<j<n-—1},

Eo = {(v(i,5),ups V(5,j+1),up)> (V(i,n) ,up> V(i+1,1),up)

1<i<k1<j<n-—1}

0 ed
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Er = {(v(i,5),up> V(i,j+1),up) > (V(i,n) ,up> V(i+1,1),up)

1<i<kl<j<n-—1)

And, amplitude of edges are as follows:

1

27 /=1 —k
e 2n—1 D=1 T

U(k+1,1),down>)-

Since, (z1,... ,zk) satisfies the condition
(Zf:l z;) mod 2"~ =0,

27 /=1 k .
e an—1 i=17Ti

— (_1)f(w)_

Consequently,

a(vsourcea v(l,l),down) = a'(vsourcea v(l,l),up) = Ta 1

a’(v(i,j) ,down» v(i,j+1),d0wn)

= a(v(i,n),downa v(i+1,1),down) =

1,

21\/?12]‘
e 2n—1

if labeled variable is 0

if labeled variable is 1

a’(v(k+1,1),down7 vsinko) = a(v(k+1,1),downa vsinkl)

1
= a(v(k+1,1),up’vsink0) = _2a

a(v(k+1,1),up,vsink1) = -

5l-

Others are all 1.
It is straight forward to see that this OBDD

has 2-width and is well formed.

This OBDD computes the function following
way:
1. First, it branches out in the state :

1

) = 7§(Iv(1,1),up>+

|v(1,1),down>)'

2. Next, the down row is applied a phase

changing transformation:

2m /=T,
|v(i,1),down> —e 2" ! v(i+1,1),down>-
3. Finally, after nk + 1 step, it is in state

1
[v) = E(|v(k+1,1),up>+

[v) = 7§(|v(k+1,1),up>+

(_1)f(m)|v(k+1,l),down>)
In the next step, the resulting state is

|vsink f(a:))'

Therefore, correct f(x) is obtained without er-

ror.

4.3 Width of Randomized-OBDD that
computes fj

Theorem 3 There is no bw-randomized OBDD

with zero error.

Proof From Lemma 1 and Theorem 1
[log(width(G))] > logk — 1 where G is
randomized OBDD that computes f; with

Z€ero €error.

5 Conclusion

At the end of this work, we summarize the
achievement of the previous section and comment
on some open problems.

We showed that from relation of classical multi-
party communication protocol and classical OBDD,
there exists bw-quantum OBDD with zero error
which can compute the function no bw-classical
OBDD cannot.
bound, we found such quantum OBDD from ad hoc
method.

The quantum OBDD
closely related to quantum multi-party protocol of

Especially, to prove the upper

structure of this is
Buhrman et al.

Therefore, this result suggests that there also ex-
ists some relation between multi-party protocols

and OBDDs in quantum case.

g0
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However, the exact transformation of quantum

multi-party protocol and quantum OBDD is still

remain unknown.

On the other hand, their remains also open how

quantum branching programs correspond to other

quantum computational model such as quantum

circuit or quantum (non-uniform) Turing Machine.
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