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概要

近年、量子・古典計算モデル間計算力差は計算量理論上の重要な問題となり、多数の量子・古典間計算力

差が知られている。しかし、各計算力差間の関係は明らかになっていない。

本研究では、既に量子-古典間差が知られている通信計算問題を、古典的計算モデルである OBDD におけ

る問題に変換し、 OBDD 上の量子-古典間計算量差の存在を考察した。

結果として、多パーティ間通信計算理論由来の関数を対象に誤りなしの場合において、古典的には k パー

ティに対して log k� 1 以上の幅が要求される一方、幅 2 の量子 OBDD でその関数を計算するものが存在

することを示した。

この結果は、量子計算においても OBDD の容量計算量と、通信計算量との間に何らかの関連が存在する

ことを示唆するものである。

Sasaki Yuuya
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Department of Computer Science, The University of Tokyo

Abstract

In recent years, one of the important problems on complexity theory is quantum-classical computational

gap and many quantum-classical gaps have been found. However, how these results relate each other

remains still to be unknown.

In this paper, we investigate the quantum-classical OBDD size complexity gap through a function which

is already known to have quantum-classical communication complexity gap.

Consequently, by targeting a function from multi-party communication theory, we obtain: there exists a

2-width bound quantum OBDD with zero error such that classical OBDDs with zero error need at least

log k � 1 width where k is the number of parties.

This result suggests that there is also some relation between OBDD size and communication complexity

in quantum case.

1 Introduction

With rapid increase in research of Quantum

Computing, many examples of computational

power gap has been found between quantum com-

putational model and their classical counterpart.

For instance, there are well known and important

results such as Shor's factoring, discrete log[12] and

Grover's quantum searching[4]. The above exam-

ples are all on time complexity, there are also other
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results including Raz's 2-party quantum commu-

nication protocol[10] on communication complex-

ity and Kondacs and Watrous' 2-way quantum �-

nite state automaton which accepts non-regular

language[6]. For more detail of quantum compu-

tations, we suggest seeing Gruska[5].

In this paper, we will focus on branching pro-

grams or more restricted model, Ordered Binary

Decision Diagrams, which are another classical

model obtained from extension of decision tree.

There are some good reasons why branching pro-

grams are promising models of computation :

1. Some standard complexity classes like the class

L(the class which a deterministic Turing Ma-

chine can recognize on log-space restriction)

can even be directly characterized in terms of

branching programs.

2. Their combinatorial structure and computa-

tion process are very simple.

3. It is easy to de�ne reasonably-restricted

branching program variants to classify speci�c

problems.

4. If there is a Branching Program which com-

putes some function, then there is a polynomial

time bounded algorithm that makes a circuit

which computes the same function.

It was shown by Nakanishi, Hamaguchi and

Kashiwabara in [8] that there is computational

power gap between bounded-width ordered quan-

tum Branching Program and its counterpart in

terms of bounded error.

However, it has been unknown how those com-

putational power gap on time, communication, au-

tomata or branching program width complexity re-

late to each other.

On the other hand, there is a fact that the

size of a Ordered Binary Decision Diagram which

computes some function relates the communication

complexity of that function closely (Babai,Nisan

and Szegedy [1] seem to be the �rst who have ex-

plicitly used this relation to show lower bounds

for branching programs). And also Buhrman, van

Dam, H�yer and Tapp[2] proved that quantum

multi-party communication protocol can achieve

asymptotically smaller communication complexity

in terms of zero error than that of classical case.

On the basis of those results, in this paper, we

show another example of computational power gap

between bounded-width quantum OBDD and its

counterpart with zero-error. Speci�cally, we prove

:

1. For any k; n n � log k, there is 2-width bound

quantum OBDD that computes f : f0; 1gnk !
f0; 1g; f(x1; x2; : : : ; xk) =the n-th least signif-

icant bit of the sum of the xi's with zero error.

2. There is no classical OBDD that computes

same f with zero error, width smaller than k.

We prove 1 by simply constructing a 2-width bound

quantum OBDD. In order to prove 2, we apply a

technique from transformation of OBDD to multi-

party communication protocol. Because the trans-

formation relates directly the size (width) of the

OBDD to the amount of information bits, the lower

bound on the size of the OBDD is proved.

2 Branching Programs and OBDDs

Branching Program is another non-uniform com-

putational model,which generalize the concept of

decision trees to decision graphs.

2.1 Branching Program and its variations

2.1.1 Deterministic Branching Program

De�nition 1 A branching program (bp) on the

variable set fx1; x2; : : : xng is directed acyclic

graph with one source and sinks labeled by the

constants 0 or 1 respectively. Each non-sink

node is labeled by a variable xi and has ex-

actly two outgoing edges labeled by 0 or 1,re-

spectively.

This graph represents a Boolean function f :

f0; 1gn ! f0; 1g in the following way. To com-

pute f(a) for some input a 2 f0; 1gn, start at
the source node. For a non-sink node labeled

by xi check the value of this variable and follow

the edge which is labeled by this value (this is
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called \test of variable xi "). Iterate this until

a sink node is reached. The value of f on in-

put a is uniquely determined and is called the

computational path for a.

The size of a branching program G is the num-

ber of its nodes and is denoted by jGj.

The depth of a branching Program is the max-

imum length (number of edges) of a path from

the source to one of the sinks.

The width of a branching program is de�ned as

follows : for a node v of a branching program

G, de�ne l(v) as the number of edges on the

longest path from the source to v. If for each

node v ofG all paths from the source to v are of

the same length, then we call G is synchronous.

For i � 0, let the i-th level of G be the set

of all nodes v with l(v) = i. The width of a

branching program is the maximum taken over

the size of its levels.

2.1.2 Randomized Branching Program

A randomized branching program is probabilistic

computational model de�ned as analogue to prob-

abilistic circuit.

De�nition 2 Let a deterministic branching pro-

gram G with the following special properties

be given:

1. G is de�ned on two disjoint sets of

variables X = fx1; : : : ; xng and Z =

fz1; : : : ; zrg

2. on each path from the source to a sink,

each variable from Z is tested at most

once.

By an obvious extension of the usual semantics

for deterministic branching programs, G repre-

sents a function g : f0; 1gn � f0; 1gr ! f0; 1g.

We call G a randomized branching program if

for all assignments a = (a1; : : : ; an) 2 f0; 1gn

to the variable in X it either holds that:

Prfg(a; b) = 1g > 1=2orPrfg(a; b) = 0g > 1=2

where b = (b1; : : : ; br) is an assignment to the

variables in Z chosen randomly according to

the uniform distribution from f0; 1gr. We say

that G as a randomized branching program

represents the function f : f0; 1gn ! f0; 1g
de�ned by

f(a) :=

8
<
:
1; if Prfg(a; b) = 1g > 1=2

0; if Prfg(a; b) = 0g > 1=2

2.1.3 Probabilistic Branching Program

There is also known another probabilistic compu-

tational model based on branching program,called

simply probabilistic branching program.

The randomized branching program has surely

very simple structure and so has many good prop-

erties. It is di�cult, however, to de�ne a quan-

tum computational model as its extension. There-

fore, we need a new classical branching program

with probabilistic computation process, equivalent

for quantum branching model.

Nakanishi, Hamaguchi and Kashiwabara �rst in-

troduced this model in [8] for comparability to

quantum branching program.

De�nition 3(Nakanishi et al.) A probabilistic

branching program is acyclic directed graph

with one source in-degree 0 node and two sink

nodes labeled by 0 or 1 respectively. The inter-

nal node (non-sink node) is labeled by a vari-

able xi and has two types of outgoing edges,

called 0-edges or 1-edges respectively. Each

edge e has a weight on it w(e) (0 � w(e) � 1).

let E0(v) and E1(v) be the set of 0-edges and

the set of 1-edges of outgoing from node v. The

weight on edges from each node satis�es follow-

ing local probability condition:

X
e2E0

w(e) = 1;
X
e2E1

w(e) = 1:

The computation of probabilistic branching

program is as follows: Starting at the source,

the value of labeled variable is tested at

reached node. If this is 0(1) then an edge in

E0(v) (E1(v)) is chosen according to the prob-

ability distribution given as the weight of the
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edges. The node pointed by the edge is acti-

vated as next node.

2.1.4 Quantum Branching Program

Finally, we introduce the focus of this work.

De�nition 4 (Nakanishi et al.) A quantum

branching program is an extension of proba-

bilistic branching program, and its structure

is same as a probabilistic branching pro-

gram except for edge weights. The weight

of each edge has a complex number w(e)

(0 � jjw(e)jj2 � 1). The weight on edges from

each node satis�es following local probability

condition:

X
e2E0

jjw(e)jj2 = 1;
X
e2E1

jjw(e)jj2 = 1:

And also satis�es the global probability condi-

tion (see below).

The edge weight represents the amplitude with

which, currently in the node v, the edge will be

followed in the next step.

Nodes of quantum branching program G are

divided into the three sets of accepting set

(Qaccor, Q1), the rejecting set (Qrejor, Q0)

and the non-halting set (Qnon). The con�g-

urations of P are identi�ed with the nodes in

Q = (Qacc [Qrej [Qnon). A superposition of

a G is any element of l2(Q). For each q 2 Q,

jqi denotes the unit vector that takes value 1

at q and 0 elsewhere.

Let de�ne a transition function � : (Q�f0; 1g�
Q)! C as follows:

�(v; a; v0) = w(e)

where w(e) is the weight of the a-edge (a =

0or1) from node v to v0. If the a-edge does not

exist, then �(v; a; v0) = 0.

De�nition of time evolution operator is as fol-

lows:

U�

x
jvi =

X
v02Q

�(v;x(�v); v0)jv0i

where x denotes the input of G and x(v) de-

notes the assigned value in x to the labeled

variable of the node v. If the time evolution

operator is unitary, then we say that quan-

tum branching program is well formed, i.e,

the branching program is valid in terms of the

quantum theory.

An observable O to be Eacc � Erej �
Enon,where

Eacc = spanfjvijv 2 Qaccg;

Erej = spanfjvijv 2 Qrejg;

Enon = spanfjvijv 2 Qnong:

The computation of quantum branching pro-

gram is as follows: The initial state is the

source node jvsi. At each step, the time evolu-

tion operator is applied to the state j ii,that
is,j i+1i = U�

x
j ii . Next,j i+1i is observed

with respect to Eacc � Erej � Enon. Note

that this observation causes the quantum state

j i+1i to be projected onto the subspace com-

patible with the observation. Let the out-

comes of an observation be \accept","reject"

and \non-halting" corresponding to Eacc , Erej

and Enon respectively. Until \accept" or \re-

ject" is observed, applying the time evolution

operator and observation is repeated.

2.2 OBDD

De�nition 5 An OBDD is a special branching

program that satis�es following condition:

Let k 2 N. A read k-times branching program

is a branching program with the restriction

that on each path from the source to a sink

each variable is allowed to appear at most k

times as the label of a node.

Let � be a permutation of the set f1; 2; : : : ng.
A �-ordered branching program on the vari-

able set fx1; x2; : : : xng is a branching program
with the following additional ordering restric-

tion: For each edge leading from a node labeled
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by some variable xi, to a node labeled xj ,it

must hold that �(i) � �(j). The permutation

� is called variable-ordering of the branching

program. We frequently will describe a vari-

able ordering simply by an ordered list of the

variables (e.g., \x1; x2; : : : xn" for � = id).

A �-Ordered Binary Decision Diagram

(OBDD) is a read-once branching program

with variable ordering � restriction.

3 Communication Complexity Ap-
proach

The main subject of communication complexity

theory is the analysis of the simple communication

game, 2-party k-round communication. In this sec-

tion, we focus on its natural modi�cation, k-party

communication case.

3.1 Multi-party Communication Complex-
ity

De�nition 6 Let f be a k-variable Boolean func-

tion whose inputs are n-bit binary strings(that

is, f : f0; 1gnk ! f0; 1g). There are k parties,

denoted by P1; : : : Pk, where party Pi holds

input data xi(i � 1; : : : ; k), and each party

has unlimited computational power. Initially,

party Pi only knows xi, so, to evaluate f ,

the parties have to communicate among each

other. The communication is done by broad-

casting classical bits, where, each time, a party

broadcasts one bit to everybody, on the total

cost of one bit of communication.

We are interested the minimum number of bits

required to be broadcasted in the worst-case

for every party to know the value of f . This

number called the communication complexity

of f and is denoted C(f; k; n).

A multi-party communication protocol is an

algorithm specifying which party is the next

to communicate and determining the message

which this party will broadcast given its in-

put and the message received so far. We con-

sider only one round case, that is , each party

broadcast its message at most once (but may

broadcast multiple bits at once).

3.2 Transformation of OBDD to Commu-
nication Protocol

OBDDs and communication protocol are closely

related, especially a OBDD can be seen as a com-

munication protocol. Consequently, the size lower-

bound for the OBDD of f and communication com-

plexity of same f is related.

To put this technique intuitively, the known

proofs of lower bounds on the size of OBDDs are

all based on the fact that a large amount of infor-

mation has to be exchanged across a suitably cho-

sen cut in the graph in order to evaluate the given

function. Results from communication complexity

theory are then used to get lower bounds on the

necessary amount of information.

3.2.1 OBDD as Multi-party Communica-
tion Protocol

Lemma 1 Let G be a randomized OBDD which

represents f with zero-error. Then it holds

that

dlog(width(G))e �
1

k
C(f; k; n):

Proof We construct a randomized protocol for f

from G.

First, we partition the randomized OBDD G

into k sets of nodes Gi such that:

1. edges run only from Gi to Gj with i � j.

2. Gi contains only random node or node

which is labeled by xi;l for 1 � i � k; 1 �
l � n.

Then, we identify sets of nodes (cuts) which

separate di�erent Gi. For i = 1; : : : k, de�ne

Ci as the set of source nodes of Gi. Naturally,

Ci is also sink of Gi�1.

Now, we are ready to describe the protocol P

for f . Each party Pi obtains xi as inputs. All

party use the graph G as an \oracle". Let

v0 2 C0 be the source of G. Let i 2 f1; : : : ; kg.
The i-th party Pi follows a path in If Pi en-

counters probabilistic variable, it locally choses

a value (0 or 1) at random and precedes to

the corresponding successor. If Pi encounters a
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node labeled by Xi;l, then Pi tests the variable

and activates correct successor. Pi broadcasts

the number of the node vi 2 Ci reached in this

way. So, Pi must broadcast dCie.

Then, Pi+1 begins its computation.

Since G is a OBDD, width(G) �
max1�i�kfCig.

On the other hand, the sum of broadcasts in

protocol P is
P

i
dlogCie � C(f; k; n). To min-

imize the maximum value of the set bounded

by its sum, we must make each element of the

set have same value.

Therefore, dlog(width(G))e � 1
k
C(f; k; n)

4 Computational Gap between bw-
Quantum-OBDD and its classical
counterpart

In this section, we use the technique from previ-

ous section to show that bw-quantum OBDD with

zero error can compute some function which ran-

domized OBDD with zero error needs log k width.

We de�ne the function fk that �rst introduced in

Buhrman, van Dam, H�yer and Tapp[2]. It is

known that this function has quantum-classical sep-

aration by logarithmic factor in terms of the num-

ber of parties.

4.1 Previous result from quantum multi-
party communication theory

De�nition 7 (Buhrman et al.) There are k

parties, where party Pi obtains input data

as xi 2 f0; : : : ; 2n�1g. We say that an input

x = (x1;= ldots; xk) is valid if it satis�es that

(

kX
i=1

xi) mod 2n�1 = 0:

Let fk : f0; : : : ; 2n�1gk ! f0; 1g denote the

Boolean function on the valid inputs de�ned

by

fk(x) =
1

2n�1
[(

kX
i=1

xi) mod 2n]:

The function fk can be viewed as computing

the n-th least signi�cant bit of the sum of the

xi's.

Theorem 1 (Buhrman et al.)

C(fk; k; n) = k log k � k

for n � log k.

4.2 Bw-Quantum-OBDD that computes fk

Theorem 2 Quantum OBDD with zero error can

compute the function fk with 2-width bound.

Proof We construct a bw-quantum OBDD that

computes fk for any n; k. We de�ne the set

of node Q as follows:

Q := fvsource; vsink0; vsink1g

[fv(i;j);down; v(i;j);upj1 � i � k; 1 � j � ng

[fv(k+1;1);down; v(k+1;1);upg

The labeled variable to the node v(i;j);down is

xi;j . All other nodes are dummy node which

activate their successor(s) without testing.

We de�ne the 0-set (Q0) and the 1-set (Q1) as

follows:

Q0 = fv0g; Q1 = fv1g

.

The sets of edges Ed; E1; E0 are de�ned as fol-

lows:

Ed = f(vsource; v(1;1);down); (vsource; v(1;1);up);

(v(i;j);up; v(i;j+1);up); (v(i;n);up; v(i+1;1);up);

(v(k+1;1);up; vsink0); (v(k+1;1);up; vsink1);

(v(k+1;1);down; vsink0); (v(k+1;1);down; vsink1)

j1 � i � k; 1 � j � n� 1g;

E0 = f(v(i;j);up; v(i;j+1);up); (v(i;n);up; v(i+1;1);up)

j1 � i � k; 1 � j � n� 1g

6
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E1 = f(v(i;j);up; v(i;j+1);up); (v(i;n);up; v(i+1;1);up)

j1 � i � k; 1 � j � n� 1g

And, amplitude of edges are as follows:

a(vsource; v(1;1);down) = a(vsource; v(1;1);up) =
1
p
2
;

a(v(i;j);down; v(i;j+1);down)

= a(v(i;n);down; v(i+1;1);down) =

8
<
:
1; if labeled variable is 0

e
2�
p�1

2n�1 2j ; if labeled variable is 1

a(v(k+1;1);down; vsink0) = a(v(k+1;1);down; vsink1)

= a(v(k+1;1);up; vsink0) =
1
p
2
;

a(v(k+1;1);up; vsink1) = �
1
p
2
:

Others are all 1.

It is straight forward to see that this OBDD

has 2-width and is well formed.

This OBDD computes the function following

way:

1. First, it branches out in the state :

j i =
1
p
2
(jv(1;1);upi+

jv(1;1);downi):

2. Next, the down row is applied a phase

changing transformation:

jv(i;1);downi ! e
2�
p
�1

2n
xi jv(i+1;1);downi:

3. Finally, after nk + 1 step, it is in state

j i =
1
p
2
(jv(k+1;1);upi+

e
2�
p�1

2n�1
P

k

i=1
xi jv(k+1;1);downi):

Since, (x1; : : : ; xk) satis�es the condition

(
P

k

i=1 xi) mod 2n�1 = 0,

e
2�
p�1

2n�1
P

k

i=1
xi = (�1)f(x):

Consequently,

j i =
1
p
2
(jv(k+1;1);upi+

(�1)f(x)jv(k+1;1);downi)

In the next step, the resulting state is

jvsink f(x)i:

Therefore, correct f(x) is obtained without er-

ror.

4.3 Width of Randomized-OBDD that
computes fk

Theorem 3 There is no bw-randomized OBDD

with zero error.

Proof From Lemma 1 and Theorem 1 ,

dlog(width(G))e � log k � 1 where G is

randomized OBDD that computes fk with

zero error.

5 Conclusion

At the end of this work, we summarize the

achievement of the previous section and comment

on some open problems.

We showed that from relation of classical multi-

party communication protocol and classical OBDD,

there exists bw-quantum OBDD with zero error

which can compute the function no bw-classical

OBDD cannot. Especially, to prove the upper

bound, we found such quantum OBDD from ad hoc

method.

The structure of this quantum OBDD is

closely related to quantum multi-party protocol of

Buhrman et al.

Therefore, this result suggests that there also ex-

ists some relation between multi-party protocols

and OBDDs in quantum case.
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However, the exact transformation of quantum

multi-party protocol and quantum OBDD is still

remain unknown.

On the other hand, their remains also open how

quantum branching programs correspond to other

quantum computational model such as quantum

circuit or quantum (non-uniform) Turing Machine.
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