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Abstract

We proposc a simplc approximation scheme for computing shortest watchman routes in
simplc polygons. Given a simple polygon P with n vertices and a starting point s on its
boundary, the watchman route problem asks for a shortest route in P through s such that
cach point in the intcrior of the polygon can be scen from at lcast onc point along the route.
It is well-known that the watchman route problem can be reduced in O(nlogn) time to
that of computing the shortest route which visits a set of linc segments in polygon P. We
present an O(n) time algorithm for computing a routc that visits the sct of line scgments
and is of at most +/2 times the length of the shortest watchman route. The best known
algorithm for computing an cxact shortcst watchman route through s takes O(n*) time. In
addition, it is too complicated to be suitable in practice. Thus, our result gives a significant
improvement over the previous result. Besides, our approximation scheme can be applied to
the zookeeper’s problem, which is a variant of the watchman route problem. The previously
known factor of approximation for the zookecper’s problem is 6.



1 Introduction

Motivated by the relations to the well-known Art Gallery and Traveling Salesperson problems,
much attention has been devoted to the problem of computing the shortest watchman route in a
simple polygon such that each interior point of the polygon is visible to at least one point on the
route [2, 6, 8, 9, 10]. Recently, an O(n*) time dynamic programming algorithm was presented
to solve the problem in the case where a starting point s on the polygon boundary is given [10],
and an O(n®) time algorithm is developed for the case where no starting point is given [8].

A variant of the watchman problem, called the zookeeper’s problem, has also been studied
[3,4, 5, 7]. Given a simple polygon (z00) P with a set P of disjoint convex polygons (cages) inside
it, each sharing one edge with P, the zookeeper’s problem asks for the shortest route that visits
(without entering) at least one point of each cage in P. The best algorithms for computing a
shortest zookeeper’s route with and without a starting point take O(n log? n) time [4] and O(n?)
time [7], respectively. An approximation solution to the zookeeper’s problem (with a starting
point) guaranteed to be at most 6 times longer than the shortest zo0keeper's route is given in
[5]. ‘ ' ;

All known exact algorithms for the watchman route and sookeeper’s problems make use of
the unfolding technique, which unfolds a polygon or the polygon triangulation by reflecting it
on some line segments in the polygon O(n) times. These algorithms are not only complicated
but also far from practical. If the input coordinates have I bits of precision, then the output
has O(nL) bits [4]. Hence, such algorithms do not work well in practice.

In this paper, we propose a simple approximation scheme for computing shortest watchman
routes in simple polygons. It is well-known that the watchman route problem can be reduced
in O(nlogn) time to that of computing the shortest route which visits a set of line segments in
polygon P. We present an O(n) time algorithm for computing a route that visits the set of line
segments and is of at most v/2 times the length of the shortest watchman route. It is not only
much faster than the best exact algorithm, but also vastly simpler. Our approximation scheme
can also be used to compute a zookeeper’s route of at most v/2 times the length of the shortest
zookeeper’s route.

2 The reflection principle and its approximation

The previously known watchman route and zookeeper’s algorithms primarily make use of the
reflection principle. If ¢ and b are two points on the same side of a line L, theén the shortest
path visiting a, L and b in that order, denoted by S(a, L, b), follows the reflection principle, i.e.,
the incoming angle of path S(a, L, b) with L is equal to the outgoing angle of S {(a,L,b) with L.
To actually compute the path S(a, L, b), we first reflect b across L to get its image b', then draw
the straight line segment a¥’ from a to ¥, and finally fold back the portion of ¥ lying in the
other side of L to obtain the desired shortest path S(a, L,b). See Fig. 1a for an example. More
generally, to find a shortest path from a to b that visits a line segment [, we first compute the
shortest path that passes between the endpoints of segment [ and connects o to the reflection
Y. The desired shortest path, denoted by S(a,!, b), is then found by folding back the portion of
the path lying in the other side of the line passing through ! (Fig. 1b).

Let L(a) denote the point of L nearest to a (Fig. 1). Clearly, the path consisting of the line
segments aL(a) and L(a)b, denoted by S'(a, L, b), is a good approximation of the path S(a, L, b):
Note that three points a, L(a) and ' form an obtuse-angled triangle (Fig. 1). The following
lemma tells us that the length of S'(a, L, b) is at most /2 times that of S(a, L,b).

Lemma 1 For an_obtuse-angled triangle, the sum of lengthes of two shorter edges is smaller
than or equal to /2 times the length of the longest edge.



Figure 1: The reflection principle and its approximation.

Proof. For an obtuse-angled triangle, we draw a semicircle using the longest edge as the
diameter. Extending either shorter edge to the boundary of the semicircle, we can obtain a
right-angled triangle that encloses the obtuse-angled triangle. The lemma is then proved by
noticing that the sum of lengths of two shorter edges of a right-angled triangle is the maximum
when two acute angles are 45°. O

Analogously, let I(a) denote the point of the line segment ! nearest to a (Fig. 1b). Then the
path consisting of two segments al(a) and 1(a)b, denoted by S'(a,1,b). is also a v/2-approximation
of the path S(a,l,b).

3 Approximating the shortest watchman route

3.1 Basic definitions

We define notation for this section; much of our notation is borrowed from {9, 10]. Let P be a
simple polygon with a point s on its boundary. We assume that P is given by the sequence of
its vertices in the clockwise order from s. A vertex is refler if its internal angle is greater than
w. Polygon P can be partitioned into two pieces by a “cut” that starts at a reflex vertex v and
extends either edge incident to v until it first hits the boundary. A cut is said to be a vistbility
cut if it produces a convez angle (< ) at v in the piece of P containing s. For a cut C, the
piece of P containing s, denoted by P(C), is called the essential piece of C.

We say cut C; dominates cut C; if P(C;) contains P(C;). Clearly, if C; dominates C;, any
route that visits C; will automatically visit C;. A cut is called an essential cut if it is not
dominated by any other cuts. The watchman route problem is then reduced to that of finding
the shortest route visiting all essential cuts. All visibility cuts can be computed in O(nlogn)
time using the ray-shooting algorithm, and the essential cuts can then be identified in O(n) time
via a clockwise scan. In the rest of this paper, we will consider only essential cuts.

An essential cut may intersect with some others and is thus divided into several segments
spanning between consecutive intersection points. We call these segments the fragments of a
cut. We say fragment f (point p) dominates cut C if f (p) is not contained in P(C). We also
say fragment f dominates fragment g if f dominates the cut to which g belongs.

A set of fragments is called the watchman fragment set if the cuts dominated by the fragments
give the whole set of essential cuts and no one is dominated by any other fragments. It is then
easy to see that any route that visits all fragments of a watchman fragment set is a watchman
route. With respect to a watchman fragment set, we distinguish a fragment as an active or
inactive fragment according to whether it belongs to the fragment set or not. A cut is actwe if
it contains an active fragment. Otherwise, it is inactive:

Given a watchman fragment set, we can compute the corresponding optimal watchman route
by repeatedly applying the reflection principle [2]. First, the non-essential pieces of all active
essential cuts are removed (since the optimum watchman route never enters them) and the
resulting polygon P’ is triangulated. The active fragments are then used as mirrors to “unfold”



the triangulation of P’ in the order they appear in the boundary of P’. The problem is now
reduced to that of finding the shortest path from s to its image s’ in the unfolded polygon. The
 optimum watchman route is finally obtained by folding back the shortest path. Note that the
watchman route computed by the unfolding method is optimum only with respect to the given
fragment set.

Usually, a watchman route R (computed by the unfolding method) makes a reflection contact
with an active cut C, i.e., R comes into cut C' at some point and then reflects on C and goes
away from that point [9, 10]. We refer the incoming (outgoing) angle of route R with respect
to cut C to the angle between C and the segment of R coming into (moving away from) C
when one follows R in the clockwise direction. The reflection is perfect if the incoming angle of
route R with cut C is equal to the outgoing angle. It is also possible that the reflection contact
degenerates into a line segment, i.e., the route R shares a segment with the cut C.

A watchman route R is said to be adjustable on an active cut C if the reflection point of R
on C can be moved to get a shorter watchman route. In this case, the incoming angle of R with
C is not equal to the outgoing angle, and the adjustable direction of R on C' is defined as the
one from the larger angle to the smaller angle. If a watchman route is adjustable only on an
active cut, we call it a one-place-adjustable route.

3.2 The approximation algorithm

Let m be the number of essential cuts, and Cy, Cy, - - -, C)y, the sequence of essential cuts indexed
in the clockwise order of their left endpoints, starting at s. Also,let s = sy = smy1, and let
the edge containing s be the cuts Cy.and Cp,41. and polygon P the essential pieces P(Cy) and
P(Cm+1). Starting from sy, we first find the point of C; that is closest to sy in P(Cp). Let s3
denote the point found on Cj, which is called as the image of sy on C;. Similarly, we find the
images of 59 on C4, C3 and so on. The computation of images of sy is terminated when an image
si+1 does not dominate all the cuts Ci,...,C; before it (Fig. 2). Next, we take s; as a new
starting point. The images of s; on the cuts after it are then computed within P(C;). Also, the
computation of images of s; is terminated when an image s;41 does not dominate all the cuts
Cit1,...,C;. This procedure is repeatedly performed until the image s,, on C,, is found. In
particular, we call the images, which are considered as the starting points, the critical images.
See Fig. 2 for an example, where images sy (= s5), s2, §3 and s4 are critical. (Since sy is’
identical to sy, it is omitted in our figures.)

Let R’ denote the route which is a concatenation of the shortest paths between every pair
of adjacent critical images s;, s; (0 <1< j < m+1). Cleaily, R’ is a watchman route, which
reflects on any cut on which a critical image is defined. Note that the incoming angle of route
R’ with the cut on which a critical image is defined is smaller than or equal to 7/2 (Fig. 2). We
take rout R’ as our approximation solution. Let R denote the shortest watchman route through
s. Observe that if route R reflects on C; and the critical image s; is defined, then s; is to the
left of the reflection point of R on Cj, as viewed from sy (Fig. 2). This observation is the key
to analyze the efficiency of our approximation solution.

In the following, we denote by |zy| the length of a line segment Ty, and |Z] the length of a
route Z. A route R;; from a critical image s; to the other critical image s; is called a partial

watchman route if it lies in P(C;) and visits all the cuts Ci,Ciz1.. .. ,Cj if i < j, or the cuts
C;,Ci-1,...,C; otherwise. Note that the route R;; in P(C;) may differ from the route R;; in
P(C). ‘

Lemma 2 If route R reflects on cut C; and the critical image s; is defined, then s; is to the left
of the reflection point of R on C; (as viewed from sy).



Figure 2: Critical images and routes R, R.

Proof. The proof is by induction on the number & of critical images, excluding sy and smy1.
Assume first that k > 2. (For k = 1, the lemma is trivially true as R = R'.) To simplify the
presentation (i.e., considering the cuts with continuous indices), assume that each cut has a
critical image defined on it. Our general method is to find a route that reflects at s; on C; and
is adjustable only on C; with the rightward direction.

Figure 3: Illustration for the proof of Lemma, 2.

For k = 2, we first consider a route that concatenates two shortest partial watchman routes
Ry, and Ry;. Clearly, the concatenated route is adjustable only on C1. Since either the incoming
angle of this route with C1 is equal to 7/2 or s; is the left endpoint of C1, the adjustable direction
on C] is rightward.

Next, we show that sy is to the left of the reflection point of R on C». Without loss of
generality, assume that the shortest partial watchman route R;y1; is just the segment Fyys;
(4 = 0,1,2), and that the segment 5g57 is perpendicular to cut Cy. From the definition of critical
images, the shortest partial watchman route Ry cannot be the shortest path from sy to sy,
i.e., it has to reflect on at least one cut. Also, we assume that the route Ry» makes a perfect
reflection with cut C;. In Fig. 3a, the point s{, is obtained by reflecting s across C1, and a (a’)
is the point on the line through 3757 such that the angle Zspusy (£Ls4a’sy) is w/2. Let a denote
the (acute) angle between 3757 and the last segment of the route Ry, and § the angle between
5157 and 535z. Since triangle Ay« q is congruent with triangle Ay, o, we have |soa] = |sha’]-

Furthermore, since tan(a) = ‘:;:Zl,tan(ﬂ) = JI_:':% and |sqa’| > |sqal, we have a < . It follows
that so is to the left of the reflection point of R on Cy.

For k > 3, as done above, it can be shown that sj is to the left of the reflection point of R
on C;. We now show that si is to the left of the reflection point of R on Cj. Let o (resp. )
denote the angle between C}, and the first (resp. last) segment of the shortest partial watchman
routes Ry (resp. Rgy), and o (resp. @) the angle between C} and the first segment of the
shortest path from s, to sy (resp. from s; to s1). See Fig. 3b. Since the images are computed
in the clockwise order, we have # > . If we consider s; as a starting point, ignoring sy, it
then follows from the induction hypothesis that o > #'. Consider further a partial watchman
route that concatenates two shortest partial watchman routes Ry and Ry1. Clearly, this route



is adjustable only on Cj at s1, and the adjustable direction on Cj is rightward. (Route Ry can
be obtained by performing this adjustment and the following ones. See Fig. 3b). So we have
3 > a. It follows that # > ' and thus s is to the left of the reflection point of R on C.

Finally, we show that s; (1 < ¢ < k) is to the left of the reflection point of R on Cj. Let 71
(resp. 72) denote the angle between C; and the last segment of the shortest partial watchman
route Ry, (vesp. Ri41,i). See Fig. 3c. Consider a route that concatenates Ry; and the shortest
path from s; to sp. Let y3 denote the outgoing angle of this one-place-adjustable route with Cj.
Applying the induction hypothesis, we have 41 > 3. On the other hand, the last segment of
Rp41,; has to lie in between C; and the first segment of the shortest path from s; to s¢ (Fig.
3c). Hence, 73 > 72, and thus 71 > ¥2. So s; is to the left of the reflection point of route R on
C;. This completes the proof. O

We are now ready to give the main result of this paper.

Theorem 1 For any instance bf the watchman route problem, |R'| < V2|R|. Moreover, the
watchman route R' can be found in O(n) time, provided that the set of essential cuts is given.

Proof. It follows from Lemma 2 that routes R and R’ have at least one intersection point
after a critical image (excluding s¢). Let t; and ty denote two intersection points of routes R
and R’ immediately before a critical image s; (1 < 4 < m) and its sucessor (the critical image
immediately after s;), along route R', respectively. See Fig. 4. (Note that ¢; and ¢, may be sg
and Sm41, respectively.) Let Ry ., and R;h,2 denote the parts of routes R and R’ from #; to iy,
respectively. Clearly, the first part of the theorem is true, provided that |R, 4] £ V2|Ry, 1,

Consider the situation where route R’ does.not touch the boundary of the polygon P, exclud-
ing the endpoints of essential cuts. Assume first that route Ry, ., reflects on Cj. Let t), denote
the point obtained by reflecting #, across C;. Since the incoming angle of route R’ with cut C;
is smaller than or equal to 7/2, the angle /#;s;1} is larger than or equal to 7/2. It then follows
from Lemma 1 that [t15;| + |sith| < v2|tath|. Since |R}, ,,| = [t18i] + [sith| and [t1th] < |Ryy 1),
we have |R}, ,,| < V2|Ry 1| See Fig. 4a.

Figure 4: Iustration for the proof of Theorem 1.

If route Ry, 4, does not reflect on Cy, then it has to reflect on a cut Cj, whose active fragment
dominates cut C;. In this case, we reflect ¢y across C; to obtain the point tfz. See Fig. 4b. By
noticing the fact that |s;ts| < |sith], we have |R} ;,| < V2|Ryy p]-

Consider now the situation where route R’ touches some parts of the polygon boundary.
Assume that the shortest path between two adjacent critical images s; and s;, with h < s
wraps around some reflex vertices of polygon P (i.e., the path makes left turns at these vertices
when one follows it in the clockwise direction). See Fig. 5. Let r and 7’ denote the last and
penultimate reflex vertices of P touched by the shortest path between s, and s;. (Vertex.r’
may degenerate into vertex r.) If ¢; = r, then as shown above, |R; , | < V2|Ryy 1, |- Otherwise,
we extend the segment 75; until the foot of a perpendicular to the extension and through 1) is
reached (Fig. 5). (It can always be done because r is a reflex vertex and s; is invisible from
t1.) Let R}, ,, denote the route which concatenates route R;, ,,, the extended segment along 757



and the segment connecting ¢; with the endpoint of that extension. Since the extended segment

along T%; intersects with route Ry ;,, we have |R; ;| < |RY

1] € V2[R, 1,]. Tt completes the
proof of the first part of the theorem.

Figure 5: Route R’ wraps around the polygon boundary.

Let us consider the time taken to compute the watchman route R'. First, triangulate the
polygon P using the linear time algorithm [1]. To efficiently compute the group of images
$1,...,8i, where s; is the maximum image dominating all the cuts Cq,...,C;_1 before it, we
figure out a polygon P; (1 <1 < m). Let LS; and RS; denote the left and right sleeve from sy to
the left and right endpoints of C1, respectively. Sleeve LS; (RS;) is the union of the triangles,
which contains the shortest path from sy to the left (right) endpoint of C;. We define polygon
P; as the region enclosed by LS; and RS;. (Usually, it contains the region L.S; U RS;.) Clearly,
LS;, RS; and P; can be found in the time linear to their sizes.

The images 1, ..., s; can be computed as follows. We first find the shortest paths from sy
to two endpoints of C;. These two paths share parts of their length; at some vertex v they part
and proceed separately to their destinations. The region bounded by C; and the shortest paths
from v to two endpoints of C; is usually called a funnel. Each of the funnel paths is inward
conver: it bulges in toward the funnel region. Next, we compute the shortest paths from sy to
the intersection points of C; with other cuts in the increasing order of indices. By maintaining
the part of the current cut Cj which dominates all previous cuts, we can compute the image of
sy on C, and report whether or not all previous cuts are dominated by s, in O(1) time. Hence,
the images s1,..., _s; can be found in the time linear to the size of P;.

The next group of images can be found by taking s; as so and the portion of Ci41 contained
in P(C;) as C1. In this way, all images can be computed. Observe that the sum of sizes of the
polygons P; used to compute all images is linear to n. This is because a triangle appears at
most six times in these polygons P;. (Imagine that one walks in the first polygon P; from sy to
some point of Cy. Consider a pair of edges of a triangle T encountered by the walk. This pair
of edges of T can appear at most twice in all polygons P;.) Hence, the time complexity of our
approximate algorithm is O(n). O

4 Approximating the shortest zookeeper’s route

We extend our result obtained in the previous section to the zookeeper's problem. Let Py,..., Py,
denote the cages indexed in a clockwise scan of the boundary of zoo P, starting at's. Also, let
s = sy = $my1. Differing from the essential cuts defined in the previous section, all cages in P
are disjoint. So we find a point s; on the boundary of P; that is closest to sy in the interior
of z00 P (i.e. P —P), a point sy on the boundary of Py that is closest to s1, and so on. The
point s;,1 is also called as the image of s; on the boundary of P;1;. Putting the shortest paths
between s; and si41 for all 4, 0 <1 < m, gives a zookeeper’s route R'.

Theorem 2 For any instance of the zookeeper’s problem, |R'| < V2|R|, where R denote.s the
shortest zookeeper’s route through s. Moreover, the zookeeper’s route R' can be found in O(n)
time.



Proof. Let us consider the edges where images are defined as pseudo-cuts and the whole interior
of zo0 P as the essential piece of a pseudo-cut. Similar to the proof of Lemma 2, it can be shown
that image s; is to the left of the reflection point of route R on the boundary of P;.

Figure 6: Hlustration for the proof of Theorem 2.

Let t; and ¢» denote the intersection points of R and R’ immediately before image s; and -
its successor, along R, respectively. If route R’,ht? reflects at a point on the boundary of cage
P;, then similar to the proof of Theorem 1, we have |R; ;,| < v2|Ry | If route R’ wraps
around the boundary of cage P;, we can similarly enlarge the route R; ,, so that the length of
the enlarged route is at most v/2|Ry, +,| (Fig. 6). Therefore, we obtain that |R’| < v2|R].

Finally, the image s; can also be computed by considering the shortest paths from the
previous image s;-1 to two extreme endpoints of cage P;. Clearly, the time taken to compute
all images as well as the route R’ is O(n). O
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