gooooooboooobogeod
gooooooobooog

Ry NEREZHIETARE 2 —) 7Ty X5

HE A
B @A FERT HOUR R RGBT R A FERHE SR R K

T 211-8588 JI[IRF T R X L/ A 4-1-1
E-mail: koga@flab.fujitsu.co.jp

BEORXy NT—7BEICBIT 53y "R IN—F TRy 77 RR Y R RHOBRATH D, A
T, NI TAYTAVART DV a=TBmADF a2 =Py y Ve Ay Va—=) Y73, &
NIZF Ry T 7 BoNE ATy ha R&2PT 20 ~5, DRy 7 78Ty e 2z2Pi<IiTi
BRRF 2—RE/NS KA DBENRHY . ZOH LW REZ TR 413 Balanced Scheduling Problem (BSP)
L& T T, BSPIZZ A BEAD AR N EZRFOZ LEHTH LWARSBEETH 5,

FrTAVAT D a—Y T TNTY XAOFE, Ny bR ERIERWKEAT T AT
RLDMfED /Sy 7 7 BRHIUINT Y b ABREERVDNE WD BIGHEE > TITo7c, ZO/RER, (1) W
DR BDRTER,/ R T I Y AL H Q(logm)-competitive & D B <72\, (2) GREEDY 743U XA
I% O(log m)-competitive Z R L. 1 ZITH & 722D & W) R EHT,

Balanced Scheduling toward Loss-Free Packet Queuing

Hisashi Koga
Fujitsu Laboratories Ltd. and University of Tokyo.

4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588, Japan
E-mail: koga@flab.fujitsu.co.jp

Packet losses in the current best-effort networks take place because of buffer shortage in a router. This
paper investigates how many buffers should be prepared in a router enough to eliminate packet losses
in the context that an on-line scheduling algorithm in the router must decide the order of transmitting
packets among m queues each of which corresponds to a single traffic stream. To exclude packet losses
with a small amount of buffers, the maximum queue length must be kept low. This new problem is
named the balanced scheduling problem (BSP). By competitive analysis, we judge the power of on-line
algorithms from how many times the on-line algorithms must prepare as many buffers as the loss-free
off-line algorithm to guarantee no packet loss. The BSP is a new on-line load balancing problem which
accompanies tasks with negative loads. To solve an on-line problem which admits tasks to have negative
costs is our main theoretical contribution.

Speicifically we show that no deterministic/randomized on-line algorithm is better than Q(logm)-
competitive. Then we prove a simple greedy algorithm is ©(logm)-competitive and nearly optimal.

1 Introduction host has to retransmit the discarded packets like

Network communication represented by the Inter- T CP protocol to recover the lost information when
net has been expanded to public steadily during @ packet loss occurs. Unfortunately this solution
the past decade. However, the current Internet is has the disadvantage that additional traffic may
inadequate for commercial use because of its best- make the congestion worse, which leads to more
effort natures which admits low throughput, long awful network performances. For this reason, it

end-to-end delay and packet losses, when the net- i marvelous if one can construct a network en-
work links are congested. vironment where the network itself guarantees no

packet loss in the first place.
In the current best-effort network the end source

0370

ア　ル　ゴ　リ　ズ　ム　79－７
　（２００１． ７． ２７）

萩原 恵子
－37－

In general packet losses are caused when buffers
in a network router run short because of sudden
burst traffic. Therefore, there are two means to
prevent packet losses:

1. To restrict the amount of the total traffic flow-
ing into the router.

2. To prepare many buffers in the router.

The former approach is called the admission con-
trol in the research area of QoS (quality of ser-
vices) networks. As for the latter approach that
is the theme of this paper, avoiding packet losses
is possible if the router is ideally given infinite
buffers, which is of course an unrealistic assump-
tion. This paper studies the amount of buffers
which should be given to a single router to elim-
inate packet losses in the context that m traffic
streams into a router R shares the same output
port and a scheduling algorithm in R must decide
the order of transmitting packets among m FIFO
queues each of which is responsible for exactly one
traffic stream (Figure 1). At each time unit ¢, IV}
packets arrive at R. Here N; depends on ¢t and
Ny > 0. To which traffic stream a packet belongs
is identified by a label attached to the packet. Ac-
cording to this label, the packet is once stored into
the corresponding FIFO queue. As for the out-
put, R chooses one non-empty queue and outputs
the packet at its head per time unit. Therefore
the phenomenon that Ny > 1 implies some burst
traffic is breaking out. This paper assumes a sim-
ple fair Complete Buffer Partitioning (CBP [7])
scheme which allocates the same number of buffers
to the m queues staticly, i.e. reassigning buffers
dynamically among the queues is disallowed. The
CBP scheme has the strong advantage of being
easily implemented and is used in actual routers.

~
Stream 1——
St ream 2——
Stream 3—— I
QUTPUT
Stream m—
J

Figure 1: Scheduling in a router

In the above setting, the number of buffers
enough to exclude packet losses is equal to m times
the maximal queue length where the maximum
is taken over the whole period during which the
scheduling algorithm in R serves all the packets.

This quantity depends on the scheduling policy, so
that we can judge the power of scheduling algo-
rithms in terms of the prevention of packet loss
from the maximal queue length over the whole
scheduling period. For this reason, this paper in-
vestigates a new on-line scheduling problem whose
purpose is to minimize the maximal queue length
over the whole scheduling period. We name this
fresh problem the on-line balanced scheduling prob-
lem (BSP). We would like to emphasize that the
basic essence of the BSP to balance some objec-
tive function among traffic streams is getting more
and more important as QoS is essential in network
communications, though many previous theoret-
ical works on on-line scheduling problems try to
suppress only the total completion time or the fo-
tal waiting time of all the tasks. For example,
a promising QoS model named Proportional De-
lay Differentiation Service suggested by Dovrolis et
al. [5] requires that the weighted delay per packet
should be balanced among traffic streams so that
each traffic stream may receive a different level of
service proportional to its importance.

We evaluate the power of on-line algorithms
for the BSP using competitive analysis [8] which
compares the performance of an on-line algorithm
to that of the optimal off-line algorithm. Con-
cretely, we examine how many times on-line al-
gorithms must prepare as many buffers as the op-
timal off-line algorithm so as to eliminate packet
losses. Let Ly(o) be the maximal queue length
over the whole scheduling period when a schedul-
ing algorithm A serves a packet arrival sequence
0. An on-line algorithm A is called c-competitive
if La(o) < ¢ X Lopt(o) for any packet arrival se-
quence o. Here opt is the optimal off-line algo-
rithm which can know the entire packet arrival se-
quence in advance. Competitive analysis is partic-
ularly suited for problems handling packet losses
for the two reasons below. It is important to find
application areas for which competitive analysis is
effective, because it is often said that competitive
analysis is too much theoretical.

1. Under burst traffic, assuming a probabilistic
distribution over packet arrivals is difficult.

2. To warrant no packet loss, it is essential to ex-
amine the worst case like competitive analysis
rather than the average case.

First in Section 2, the balanced scheduling prob-
lem is formally defined. Then we show that
the competitiveness of m becomes a trivial upper
bound for the BSP. In Section 3 the lower bounds
of the competitiveness of on-line algorithms are
investigated. @'We show that any deterministic

0 380

萩原 恵子
－38－

on-line algorithm cannot exceed the competitive-
ness of Q(logm). Then we prove that randomiza-
tion technique cannot overcome this lower bound
of Q(logm). Specifically the popular algorithm
ROUND ROBIN is not better than the trivial up-
per bound of m-competitiveness. In Section 4, the
greedy algorithm named GREEDY which always
selects the longest queue at each time unit is stud-
ied. We show that GREEDY is a nearly optimal
on-line algorithm and achieves the competitiveness
of O(logm). Thus, GREEDY is by far superior
to ROUND ROBIN regarding to the prevention of
packet losses.

However, this paper does not intend to argue
that ROUND ROBIN is useless, because ROUND
ROBIN achieves the throughput fairness among
the streams which GREEDY does not. For
practical use, it would be reasonable to combine
GREEDY with another scheduling algorithm.
That is, GREEDY should be adopted after the
length of the longest queue goes beyond some

threshold value and another scheduling algorithm
like ROUND ROBIN should be used till then.

1.1 Related Work

Theoretically the BSP is related to the so-called
on-line load balancing problem initiated by Gra-
ham [6]. In the load balancing problem, given m
servers, we must assign each incoming task to one
of the m servers in such a way that the maximum
load on the servers is minimized. Each task arrives
one by one and holds its own positive load vector of
length m whose coordinates indicate the increase
in load when it runs on the corresponding server.
Many variants of on-line load balancing problems
have been considered so far. In the identical ma-
chines model [6] all the coordinates of a load vector
are the same. In the restricted machines model [4],
each task can be handled only by a subset of the
servers, though all the coordinates of a load vec-
tor are still the same. In the unrelated machines
model [1], there is no constraint on the coordi-
nates of load vectors except that they are positive.
The natural greedy algorithm becomes (2 — 1)-
competitive in the identical machines model 7FG],
©(log m)-competitive in the restricted machines
model [4] and ©(m)-competitive in the unrelated
machines model [1] respectively. The temporal
tasks model of the on-line load balancing problem
[2][3] assumes that tasks have a limited duration
and disappear after their duration. The greedy
algorithm becomes @(m%)—competitive [2] in the
temporal tasks model.

The BSP differs greatly from the traditional on-
line load balancing problem in that load of all the

servers must be balanced by selecting departing
packets. By the procedure illustrated in Figure
2, the BSP is transformed to a new on-line load
balancing problem that must face two difficulties
that all the previous models do not have:

e The coordinates of a load vector of a task may
take a negative value.

e A subset of servers on which a individual
task can run depends on the behavior of the
scheduling algorithm.

Especially, handling the former difficulty is a large
contribution of this paper, because tasks with neg-
ative costs usually make on-line problems so in-
tricate. Roughly speaking, the transformed BSP
seems to be the extension of the restricted ma-
chines model that admits tasks with negative costs.
Because GREEDY is O(logm)-competitive for
the BSP, the complexity of the BSP does not differ
from that of the restricted machines model of the
on-line load balancing problem interestingly, de-
spite tasks with negative costs are introduced. By
contrast, GREEDY achieves a quite smaller up-
per bound in the BSP than in the temporal tasks
model, though both problems admit tasks to leave
servers. We infer the reason for this difference is
that the scheduler decides aggressively the finish
time of tasks in the BSP unlike the temporal tasks
model. On the other hand, constructing the opti-
mal off-line algorithm for the BSP is very difficult
like the temporal tasks model.

1. A packet arrival in the BSP is mapped to a
task of size 1 which only a single specific server
can process.

2. A packet output from R in the BSP is mapped
to a task of size -1 which only non-idol servers
can process.

Figure 2: Transforming Procedure of the BSP

2 Balanced Scheduling Problem

The balanced scheduling problem (BSP) is for-
mally defined as follows. We are given m FIFO
queues qi1,4g2,...9m in a router R and a sequence
of packet arrivals at R. Initially at time 0, all the m
queues are empty. At each time ¢ > 0, V; packets
expressed by m-tuples (N}, NZ,... N/*) first arrive
at R, where each NN} is a non-negative integer and
N; = Y™, N}. The packets that have just arrived
are stored into the m queues such that N} pack-
ets go into ¢; for 1 < ¢ < m. Then a scheduling
algorithm A operating in R selects one non-empty

0390

萩原 恵子
－39－

queue and outputs a packet at its head unless all
the queues are empty. We assume that at least
one queue is not empty until the end of the whole
scheduling period. This assumption does not lose
generality, because, if there is a time when all the
queues are empty, we can partition the packet ar-
rival sequence into multiple subsequences for each
of which the BSP is separately solved.

Let 1% (t) be the length of g; at time ¢ in the run-
ning of the scheduling algorithm A after arriving
packets are stored into the corresponding queue.
Since the length of a queue before A outputs a
packet from R may differ from that after A outputs
it within the same time instance ¢, we distinguish
the time after the output of the packet by attach-
ing a superscript a to t like ¢® specially when nec-
essary. Since the maximum instantaneous queue
length must be considered to avoid packet losses,
we normally pay attention to the length of the
queues before A outputs a packet, i.e. I%(t), not
1% (t%). The notation of ¢* is used only for the anal-
ysis of algorithms. The maximal queue length at
time ¢t by A is defined as

L(t) = max (T4 (1)}

Let o be a sequence of packet arrivals and |o| be
the time of the last arrival. Then, the maximal
queue length over the whole scheduling period for
o by A is defined as

La(o) = max l4(t). (1)

0<t<|o]|
The purpose of the BSP is to find a scheduling
algorithm A that reduces L4(o).

Let us describe the total number of packets
stored in the m queues at time ¢ as C(t). Note that
C(t) does not depend on the scheduling algorithm,
because the number of packets that have left R
before ¢ is independent of the scheduling algo-
rithm. For any on-line algorithm A, [4(t) < C(t)
trivially. For the optimal off-line algorithm opt,
Lopt(t) > % because C(t) packets are distributed
among the m queues. Therefore it holds that
14(t) < m-lop(t) for any t. This inequality readily
yields La(c) < m - Lopt(o) for any o. Therefore,

Theorem 1 Any on-line algorithm for the BSP is
m-competitive at worst.

3 The Lower Bound

3.1 General Lower Bounds

At the beginning, we obtain lower bounds for gen-
eral on-line algorithms. A technique similar to the

lower bound technique [4] for the restricted ma-
chines model for the on-line load balancing prob-
lem is exploited. In the proof, an adversary con-
structs a packet arrival sequence o which annoys
on-line algorithms.

3.1.1 The Deterministic Lower Bound
Theorem 2 Let A be any deterministic on-line
algorithm for the BSP. Then A is not better than
(14 |logy m|)-competitive.

Proof: Let j be the largest integer satisfying 2/ <
m, i.e. j = |logym]. The adversary constructs o
by dividing it into j + 1 phases. For 1 < k < j,
the k-th phase starts at time 1 + Z’:;i 2J~" and
lasts for 2/~* time units. The final (j+1)-th phase

starts at time 1+Y"7_, 2/~ and continues only for
one time unit. For example, the first phase starts
at time 1 and finishes at time 2771, the second
phase starts at time 1 + 2/~ and finishes at time
29-1 4 29-2 and so on. How to construct o in the
k-th phase is shown below in detail.

Step 1: 29~%+1 packets arrive at R when the k-
th phase starts, so that exactly one new packet
is assigned to each of the 2/ %! Jongest queues
in A’s running. Ties are broken arbitrarily. Note
that the adversary predicts accurately the lengths
of all the m queues since A is deterministic.

Step 2: No more packet arrives during the k-th
phase after Step 1.

o has a property that the number of leaving
packets in the k-th phase is equal to the num-
ber of arriving packets in the (k + 1)-th phase for
1 < k < j. From now on, we show that L4(o)
reaches 1 + |logy m| while Lop (o) = 1. Let T}, be
the time when the k-th phase begins.

As for opt, in the k-th phase, opt selects the 2/—%
queues to which a packet is assigned in the (k+1)-
th phase exactly once. This scheduling keeps the
invariant that, at the beginning of every phase,
exactly 2/ queues hold just one packet and the
rest of the queues are empty. That is, for any
t, lopt(t) = 1. Hence, Lopt(o) = 1.

As for A, by induction on the index of phases
k, we prove that the 2/~**! longest queues have
a length of k£ at time Tj. The base case is trivial,
since 2/ queues have a length of 1 at time 1 from
the structure of 0. Assume that the 275+ longest
queues have a length of k at time T} in A’s running.
27~k packets leave R in the k-th phase because its
duration is 277, Thus, at least 2/-%+1 — 2i—k —

0400

萩原 恵子
－40－

29~k queues still have a length of k£ when the k-th
phase terminates. Because the 2/ % longest queues
increase their lengths by 1 at the beginning of the
next phase, it follows that the 2% longest queues
have a length of £ + 1 at Tj41, which completes
the proof of the induction step. Thus it holds that
14(T) =k for 1 < k < j+ 1. Therefore,

Ly(o) =1+ |logym], (2)
which completes the proof of Theorem 2. O

3.1.2 The Randomized Lower Bound

The proof technique in Theorem 2 enables us to
derive a randomized lower bound also.

Theorem 3 Let A be any randomized on-line al-
gorithm for the BSP. Then A is not better than
(1+ Llogzﬂ)-competitive against the oblivious ad-
versary.

The proof is omitted due to space limitations.

3.2 Lower Bound for ROUND ROBIN

Next we examine the lower bound of a spe-
cific popular algorithm ROUND ROBIN. ROUND
ROBIN cannot exceed the trivial upper bound of
m. This contrasts with another popular algorithm
GREEDY for which the upper bound of ©(log m)-
competitiveness is proved in the next section.

Algorithm ROUND ROBIN: Initially the al-
gorithm may select any non-empty queue. On con-
dition that the algorithm selects a queue g¢; at time
t, the queue selected at time ¢ 4+ 1 is the queue
9(r+i) mod m- Here r is the minimum positive in-
teger satisfying the condition that 9

not empty.

r+i) mod m 18

Theorem 4 ROUND ROBIN is not better than
m-competitive.

Proof: Without loss of generality, we assume that
ROUND ROBIN selects ¢; initially. Again an ad-
versary passes a bad packet arrival sequence o to
ROUND ROBIN. ¢ is constructed in the next way.

Stepl: At time 1, m? packets arrive at R such that
m packets are assigned to each ¢; for 1 <7 < m.

Step2: At time km + 1 for 1 < k < m, m new
packets are assigned to ¢p,.

The analysis advances by dividing the schedul-
ing period into m + 1 phases. The k-th phase be-
gins at time (k — 1)m + 1 and finishes at time km

for 1 < k < m+ 1. Note that the number of pack-
ets that leave R in the k-th phase is equal to the
number of arriving packets in the (k + 1)-th phase
for 1 < k < m. We only write RR instead of the
algorithm name ROUND ROBIN when it appears
in mathematical expressions to save the space.

The optimal off-line algorithm opt chooses g,
all the time. This assures that the length of g,
equals 0 at the end of each phase and that it in-
creases to m at the beginning of the k-th phase for
k > 2. The lengths of all the other queues take a
constant value of m all the time. Hence it holds
that lop(t) = m for an arbitrary time ¢. Thus.

Lopt(a) =m. (3)

On the other hand, ROUND ROBIN selects all
the m queues once in each phase except the last
(m+1)-th phase, since all the queues have at least
one packet at the beginning of the k-th phase (k <
m). Since the algorithm initially selects g1, g, is
always the longest queue in the running of ROUND
ROBIN. The length of g, at the beginning of the
k-th phase is calculated as:

lRR((k—l)m—i—l)zmk—(k—l):(m—l)k+1.

This value reaches to the maximum when m +1 is
substituted for k. Hence,

Lggr(o) =m”. (4)

Comparing (4) with (3) completes the proof. O

4 The Upper Bound

This section analyzes the performance of a specific
algorithm GREEDY . This algorithm has the ad-
vantage of being very simple.

Algorithm GREEDY: At any time, GREEDY
selects the longest queue. Ties are broken arbi-
trary.

Since simple greedy policies are analyzed in
many load-balancing problems [1][2][4][6], measur-
ing the performance of GREEDY enables us to
estimate the relative difficulty of the BSP to other
problems.

Theorem 5
GREEDY is (3 + [logy m|)-competitive.

Theorem 5 together with Theorem 2 claims that
GREEDY is a nearly optimal on-line algorithm.
We extend the proof technique to derive the upper

U410

萩原 恵子
－41－

bound for the restricted machines model of the on-
line load balancing by Azar et al. [4].

Proof: We introduce a function named gap which
maps packets in a FIFO queue in GREEDY’s run-
ning to some integers. Let o be an arbitrary packet
arrival sequence. Suppose p be the r-th packet
from the top (i.e. the output port) of a FIFO queue
g; at time ¢t in GREEDY ’s running. Then the gap
of the packet p at time ¢, denoted by gap(p,t) is
defined as

r— gpt(t)'

Intuitively the function gap presents the height of
packets in a FIFO queue in GREEDY’s running
relative to the length of the corresponding queue
in opt’s running.

According to the value of gap, we partition FIFO
queues in GREEDY’s running into layers as fol-
lows. Denote Lopi(o) by I. See Figure 3 (A). The
k-th layer of a queue ¢; at time ¢ consists of pack-
ets p stored in ¢; at t in GREEDY’s running such
that (k — 1)l + 1 < gap(p,t) < kl. The number
of packets contained in the k-th layer of ¢; is ex-
pressed as W}(t). The next property about W (t)
is crucial in the analysis of GREEDY .

Lemma 1 Vk > 1, Wi(t) =1 if W} _(t) > 0.

Proof of Lemma 1: Because Wi, (t) > 0,

14,(t) > 15,,(t) + kl. Hence, the number of pack-
ets in g; whose gaps are greater than or equal to
(k— 1)l 4+ 1 but less than or equal to kl is exactly
lin GREEDY’s running. O

Corollary 1 For any k > 1, Wi(t) > W} _,(t).

time t _— time ta
Lp{t)"') l«— LAYER 3 p(_t)+2| . le— LAYER 3
l— LAYER 2 L l— LAYER 2
Lo+l L0+ -1
) l— LAYER 1 l— LAYER 1
X .
Lo L{or
4; 4;
(A) (B)

Figure 3: Partition of a queue into layers

Furthermore, the following notations are re-
quired to proceed the proof.

o Wi(t) = 7 Wi ().
o R(t) = X Wi(D)

(
o Ri(t) = Zj>k Wj(t).

Wi (t) presents the total number of packets con-
tained in the k-th layer over all the m queues,
while Ry(t) presents the total number of packets
contained in the layers strictly higher than the k-th
layer over all the m queues. R.(t) is equal to the
total number of packets in ¢; contained in the lay-
ers strictly higher than the k-th layer. Therefore,
it holds, for any k£ > 1, that

Ry41(t) = Re(t) — Wi (D). (5)

Note that Wy, (t*) = Wi(t+1) and Ry (t*) = Ry (t+
1) because the number of packets in each layer of
a certain queue g; is not affected even if the same
number of packets arrive at ¢; at the beginning of
time ¢ 4+ 1 both in opt and in GREEDY . By con-
trast Wi (t*) (Rg(t*)) may be different from Wy (t)
(Ry(t) respectively) depending on the queues se-
lected by the two algorithms at time ¢.

Our strategy is to compare the simultaneous
running of the two algorithms GREEDY and opt
on an arbitrary packet arrival sequence ¢ and to
prove the next relation is maintained all the time
for all £ > 1.

Wi(t) > Ry(t). (6)

Assume that (6) is correct. Then, from (5) and
(6), we have Ry 11(t) = Ry(t) — Wyi1(t) < Rg(t) —
Rk+1(t). ThUS, Rk+1(t) S QRk(t)

Then, by applying this inequality [log,m]
times, the next inequality is derived. Note that
R, (t) < ml, because Lop(o) = 1.

1
Rpogym1+1(t) < (i)nogzmel(t)

- Irp<™-L
m m
Therefore the number of packets included in the
layers strictly higher than the ([log,m]| + 1)-th
layer is at most [. As the result, the length of the
longest queue in GREEDY’s running at time ¢ is
bounded from above as follows.

t(t) + ([logam] + 1) +1

lo(t) < lopt(t
< (34 [logym])l. (7)

Since (7) holds without regard to time ¢, the proof
of Theorem 5 is complete.

0420

萩原 恵子
－42－

From now on we verify (6) for all ¥ > 1 and for
any t. Pick up an arbitrary positive integer as k.
The proof makes use of the induction on time t.
As for the base case, (6) is trivial at time 1 before
the packet is output, since all the m queues have
the same number of packets both in opt and in
GREEDY.

In the next, suppose that Wy(t) > Ry(t) at t
before the two algorithms select queues from which
a packet is output. It suffices to show that

Wi(t*) = Ri(2%),

because Wi(t + 1) = Wi(t?) and Ri(t + 1) =
Ry(t*). Assume ¢; is the queue selected by opt
and g¢; is the one selected by GREEDY at t. If
¢; is identical with g;, it is obvious that Wy (t%) =
Wi(t) > Rg(t) = Ry(t®). Let us suppose g; # g;
hereafter. Because W}(t) = W} (%) and R}(t) =
R} (1) for any queue g, except g; and g;, we may
concentrate on how g; and g; behave only. There
are two cases depending on whether I%(t) < I} (t)
or not.

(Case I) Suppose that I (t) < lf,pt(t): Because
I5(t9) < (1), Wi(t) = Wi(t) = 0 and Ry(t) =
R, (t*) = 0. Hence Wi(t) and Rj(t) does not
change.

Now let us consider the behavior of g;. If lé(t) <
lopt(t), 15(t%) < Igp(t%). Thus Wi (t) = Wi(t*) =
0 and Rj(t) = R;,(t*) = 0 and (6) obviously holds
for this case. Next consider the case when IL(t) >

i ()= (t) .
lopt(t). Let X be [-<——°*“=]. From the definition
of Wi (t) and RJ(t), the next arithmetic formulas

are obtained.

e ={ s, x ©
. TR
Ri(t“>={ e, wiex ©

From (8) and (9), if k # X, W} (%) = W} (t) and
R} (t*) < Rl (t) so that (6) is proved. If k = X, be-
cause g; is the longest at ¢ in GREEDY’s running,
we have, for all integers h satisfying 1 < h < m,

I5(t%) < 1Bt <1
< U o(t)+XI< (X +1)L

opt

(10)

Since I,(t*) > 0, the (X +2)-th layers in all the m
queues contain no packet at t® from (10). Hence,
from Corollary 1, Wx(ta) > WX_H(ta) = Rx(ta).

This finishes the proof for this case.

(Case II) Suppose that () > lf,pt(t): First as-

sume that lé(t) < lf;pt(t) < I. Since g; is the
longest at t in GREEDY’s running, the lengths

of all the queues are not larger than [at ¢ (and
hence at t* also) in GREEDY’s running. There-

fore Wy (t*) = 0 for any ¥’ > 2. Hence the
next inequality holds for any k£ > 1: Ry(t%) =
Dok Wi (t%) < Zpsa Wi (%) = 0 < Wi(29).

Thus (6) is assured in this case.

Finally we go on to the case l’é(t) > lf;pt(t). Let

Y be LMJ +1. From the definition of W} (%)
and Ri(t), the next arithmetic expressions are ob-
tained. See Figure 3 (B).

T40Y) _ i(t)a ifk;éY

Wit)_{ Wi+ 1, ik—y (D
ian | RE()+1, ifk<Y

Ri(t)_{ ‘ Ri(t), fk>Y (12)

From (8), (9), (11), (12) and the assumption
that Wy(t) > Ry(t) at t, in order to break the
relation (6) at t*, at least either of the next two
conditions need to be satisfied.

1. Wi(t%) = Wi(t) — 1.
2. RL(t*) = Ri(t) + 1.

From now on, we show that (6) is preserved even
if either of the above conditions takes place.

1. Suppose that W} (t%) = W}(t) — 1. From (8), k
must be X. Hence Ig(t) < I7,,,(t) +1X. We show
the (X +2)-th layers of all the m queues are empty

at t% by contradiction. Since lg(t) < lf;pt(t) +1X,
I5(t%) = I5(t) — 1 < I,,(t%) +1X and the (X 4+ 2)-
th layer of g; is empty at . Assume there exists
a queue gp(# ¢;) whose (X + 2)-th layer contains

some packets at t*. Since g; is not selected by
GREEDY at t, we have

Gt = 1&(t°)
> (X+1)+1
(the (X + 2)-th layer of g is not empty)

> () +1X > 13(t).
This contradicts with the fact that g; is selected
by GREEDY at t. Thus the (X + 2)-th layers
of all the m queues must be empty at t®. Thus,
by applying Corollary 1, Wx(t®) > Wx11(t%) =
Rx (t%), which shows (6) holds for this case.

0430

萩原 恵子
－43－

2. Suppose that Rj(t*) = Rj(t) + 1. Since
Ri(t%) > 1, we have I5(t) = IL,(t*) > kl + 1. Since
GREEDY selects not g; but g;, we have

() > 1g(t) > kl+1>1,(t) + (k— 1)1 + 1.

Especially if lopt()+ (E-11+1< lé(t) <
lopt() + kl, we can show that the (k + 2)-th layers
of all the m queues are empty at t* exactly in the
same way as the previous paragraph. Thus, by ap-
plying Corollary 1, Wi (t*) > Wiy1(t%) = Re(2?),
which shows (6) holds for this case.

By contrast, if l’é(t) > lopt() + kl, we have
Ri(t) > 0. Hence, Ri(t®) = Ri(t) — 1 after
GREEDY outputs a packet at ¢ from g;. By com-
paring this with (9) we have k < X.

Ri(t*) = RL(t")+RL(t*)+ Y RRt")
h#t,j
= (Ri(®)+ 1)+ (RL®) - 1)+ > Ri(t)
h#i,j
= Ry(t) (13)

About Wi(t), as k # X, it follows that Wi(t?) >
W(t) from (11) and that W} (%) = W{(t) from
(8). Hence,

Wi (t%) > Wi(t). (14)
From (13) and (14), it follows that Wj(t*) >
Wi(t) > Ry(t) = Ry(t®). Thus, we have proved
(6) for all the possible cases, the entire proof of
Theorem 5 ends. O

5 Conclusion

This paper investigates the balanced scheduling
problem in order to evaluate power of scheduling
algorithms running in a router in terms of pre-
vention of packet losses. The BSP problem is a
fresh on-line load balancing problem that faces
new difficulties that tasks with negative costs have
to be served. We prove a simple greedy algorithm
is O(log m)-competitive, where m is the number
of queues. We also present the lower bound of
Q(log m)-competitiveness. Though we consider
the BSP in association with packet losses in a
router, the BSP will have many applications rang-
ing in wide areas because of its simple structure.

There are many open problems regarding the
BSP. One important open problem is to find the
optimal off-line algorithm concretely. This enables
us to compute the exact number of buffers in order
for GREEDY to eliminate packet losses, since this
paper has given the competitiveness of GREEDY .
From the viewpoint of application research fields,
the problems below are worth pursuing.

e Changing the amount of buffers assigned to
each queue. In practical QoS networks, it is
common that each traffic is given a different
number of buffers proportional to its rate for
efficient buffer consumption. In this model,
the value of one single buffer varies for each
queue according to how many buffers are pre-
pared for it.

¢ Extending the BSP to dynamic buffer alloca-
tion policy. In this model, a communication
stream with higher priority can also use the
buffer memories prepared for the streams with
lower priority.

References

[1] J. Aspens, Y. Azar, A. Fiat, S. Plotkin, and
O .Waarts. On-line load balancing with appli-
cations to machine scheduling and virtual cir-
cuit routing. Journal of ACM, (44):486-504,
1997.

[2] Y. Azar, A.Z. Broder, and A.R. Karlin. On-line
load balancing. In Proceedings of 33rd Sym-

postum on Foundations of Computer Science,
pages 218-225, 1992.

[3] Y. Azar, B. Kalyanasundaram, S. Plotkin,
K.R. Pruhs, and O. Waarts. On-line load bal-
ancing of temporary tasks. Journal of Algo-
rithms, 22:93-110, 1997.

[4] Y. Azar, J. Naor, and R. Rom. The competi-
tiveness of on-line assignments. In Proceedings
of 8rd ACM-SIAM Symposium on Discrete Al-
gorithms, pages 203-210, 1992.

[6] C. Dovrolis, D. Stiladis, and P. Ramanathan.
Proportional differentiated services: Delay dif-
ferentiation and packet scheduling. In Proceed-
ings of ACM SIGCOMM’99, 1999.

[6] R.L. Graham. Bounds for certain multiprocess-

ing anomalies. Bell System Technical Journal,
45:1563-1581, 1966.

[7] A.M. Lin and J.A. Silvester. Priority queu-
ing strategies and buffer allocation protocols
for traffic control at an ATM integrated broad-
band switching system. IEEE Journal on Se-
lected Areas in Communications, 9:1524-1536,
1991.

[8] R.E. Tarjan and D.D. Sleator. Amortized ef-
ficiency of list update and paging rules. Com-
munication of the ACM, 28:202-208, 1985.

0440

萩原 恵子
－44－

