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要旨 本稿では，CNOT(制御 NOT)ゲートにより構成されるブール関数を計算する量子回路にお
ける，回路の局所変換ルールの集合について述べる. 本稿で述べる局所変換ルールの集合は単純
であるが自明ではない. また，その集合が完全であること，つまり，任意の二つの回路に対して一
方から他方への変換が本稿で述べるルールのみを適用することによって可能であることも示す.

A Complete Set of Transformation Rules
for Quantum Boolean Circuits

Shigeru Yamashita∗† and Kazuo Iwama∗‡
∗Quantum Computation and Information, ERATO,
Japan Science and Technology Corporation (JST)

†NTT Communication Science Laboratories, Kyoto, Japan
‡School of Infomatics, Kyoto University, Kyoto, Japan

Abstract This paper gives a simple but nontrivial set of local transformation rules for CNOT-
based quantum circuits. It is shown that this rule set is complete, namely for any two equivalent
circuits, S1 and S2, there is a sequence of transformations, each of them in the rule set, which
changes S1 to S2.

1 Introduction

For given Boolean formulas or circuits, S1 and S2, to determine whether or not S1 is equivalent
to S2 is a fundamental coNP-complete problem. Note that coNP-completeness does not always
deny the existence of short witnesses or proofs. In fact, there have been a lot of efforts to seek
so-called proof systems which provide us (if any) with a short proof. Here a proof is a certificate
with which we can verify S1 = S2 in polynomial time. Such systems include Resolution [e.g.,
Iwa97, Hak85, BEGJ98] and the more powerful Frege systems [e.g., CR79, PU95], both of
which are used to prove that a given CNF formula is unsatisfiable (i.e., for the case that S1

is a CNF formula and S2 is the empty formula). Such a proof system is also known ([e.g.,
IHKS97]) for fan-in restricted combinatorial circuits. Although research efforts for these proof
systems have been mostly devoted to obtain (exponential) lower-bounds in the theory community
[IP95, Hak85, BEGJ98], their original motivation is obviously more positive, namely, to use them
for automated theorem proving and circuit design. For example, DeMorgan’s law is used very
often to make a local simplification of Boolean circuits.

In this paper, we present a similar proof system for quantum Boolean circuits (QBCs). QBCs
were introduced by Yao [Yao93] and have been popular as a standard model for describing
quantum algorithms [e.g., Sho94] and quantum Boolean oracles [DJ92, Gro93]. [BBC+95] shows
that any unitary transformation can be broken down into a sequence of basic quantum gates.
[LCKL99] gives a method of how to construct any QBC by using generalized Control-NOT
(CNOT) gates, but an obtained circuit is like an elementary two-level AND/OR circuit in the
classical design. Thus QBC’s are well accepted as a standard model for quantum computation,
just like classical Boolean circuits for classical computation, but their analysis is apparently at
an early stage compared to their classical counterpart. In particular, we have no design theory
to obtain desirable circuits while preserving the same functionality.
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Our system in this paper consists of six transformation rules for CNOT-based quantum cir-
cuits. To prove their completeness, i.e., the existence of a sequence of transformations from any
circuit to any other equivalent one, we introduce a unique canonical form of QBCs. Since each
transformation is bidirectional, we can prove the completeness of the rule set by only showing
that there is a sequence of transformations from any circuit to its canonical form. Using our
system we can modify a given circuit into another with a desirable property (e.g., of small size)
by executing a NP-type search, although the length of the search path might not be too short.

It should be noted that finding NP-type Transformation rules for coNP sets is apparently
an interesting research topic, but few successful examples are known other than the previously
mentioned proof systems for Boolean formulas. One rare but famous example is Hajós calculus
for non-3-colorable graphs [IP95, Haj61, PU95], which consists of simple and beautiful rules.
Our transformation rules are also simple and quite nontrivial, each of which is carried out in
polynomial time.

2 Quantum Boolean Circuits

Intuitively, a quantum Boolean circuit is given as illustrated in Fig.2. It is a quantum system
with n+1 qubits (quantum bits), denoted as |x1〉|x2〉 · · · |xn+1〉. As an interaction of their qubits,
we can only use control-NOT (CNOT) gates whose functionality will be given later. The input
and the corresponding output states of the first n qubits have to be identical in our model. The
(n + 1)-st qubit state |xn+1〉 is changed to |xn+1 ⊕ f(x1, · · · , xn)〉, and is considered as a special
bit, so called a work bit, which is used to obtain the value of the Boolean function f for inputs
x1, · · · , xn. Furthermore, a circuit can use any (finite) number of auxiliary qubits which are reset
to |0〉 initially. The reason why we introduce auxiliary qubits is as follows: We can sometimes
decrease dramatically the number of required gates by using auxiliary qubits although auxiliary
qubits require some implementation costs. Therefore, there is a trade-off between the number
of auxiliary qubits and the number of CNOT gates. Our circuit model can accommodate both
design strategies, i.e., the strategy for saving qubits and the strategy for saving CNOT gates.

|xn+1〉
|xn〉

|x2〉
|x1〉

auxiliary bits

|xn+2〉=|0〉
|xn+3〉=|0〉

|xn+1⊕ f (x1… xn)〉
|xn〉

|x2〉
|x1〉

Figure 1: A Quantum Boolean Circuit

More formally, a quantum Boolean circuit is given as a sequence [t1, C1] · [t2, C2] · · · [tm, Cm],
where (i) ti is an integer ≥ 1 and (ii) Ci is a finite set of integers ≥ 1. Each [ti, Ci] is a Control-
NOT (CNOT) gate whose control bits are given by Ci and its target bit is given by ti. (CNOT
gates are sometimes called Toffoli gates as in [Gru99].) For example, the leftmost CNOT gate of
Fig. 2 is given by [2, {n+1, n+2}], namely, if ti ≤ n+1, then it shows xti , and if ti > n+1, then
it shows the (ti − n − 1)-th auxiliary qubit. We can use finitely many auxiliary qubits, which
are denoted by |xn+2〉 · · · |xN 〉. Note that, for example, the state of first qubit may change after
a CNOT gate whose target bit is the first qubit. However, we often say “qubit |x1〉” to show
the qubit itself regardless of its current state.
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We denote the set of n-bit basis vectors by {0, 1}n. The sate of n qubits |x1〉 · · · |xn〉 is a
superposition (a linear combination) of those 2n basis vectors. However, we often assume in
this paper that the state is a single basis vector when describing the behavior of the system.
Generalization to superposed states can be done simply by taking a linear combination of the
results for each basis vector. The following definitions of our circuits and its internal states follow
this convention: Let [t1, C1] · · · [ti, Ci] be a prefix of the circuit [t1, C1] · · · [ti, Ci] · · · [tm, Cm].
Then we define the sate Si of the quantum system as follow:

(1) S0 = |a1〉|a2〉 · · · |an+1〉|0〉|0〉 · · · |0〉, where |a1〉|a2〉 · · · |an+1〉 ∈ {0, 1}n is an input state.
(2) Suppose that Si = |xi

1〉|xi
2〉 · · · |xi

n+1〉|xi
n+2〉 · · · |xi

N 〉, and
Si+1 = |xi+1

1 〉|xi+1
2 〉 · · · |xi+1

n+1〉|xi+1
n+2〉 · · · |xi+1

N 〉. Then |xi+1
k 〉 = |xi

k〉 if k �= ti, and |xi+1
ti 〉 = |xi

ti ⊕
Xk

Ci
〉 where Xk

Ci
is a product term of all xi

j such that j ∈ Ci. For example, we can calculate S1

of Circuit A in Fig. 2 such that |x1
i 〉 = |xi〉 for i �= 6, and |x1

6〉 = |x6 ⊕ x1 · x3 · x7〉.
Definition 1. Let (a1, a2, · · · an, an+1) ∈ {0, 1}n, and suppose that the initial state S0 =

|a1〉|a2〉 · · · |an+1〉|0〉 · · · |0〉. Also suppose that the final state Sm = |b1〉|b2〉 · · · |bn+1〉|bn+2〉 · · · |bN 〉.
Then the circuit is said to be proper if |bk〉 = |ak〉 for 1 ≤ k ≤ n, |bk〉 = |0〉 for n+2 ≤ k ≤ N and
|bn+1〉 is equal to |an+1 ⊕ f(a1, · · · , an)〉. It is also said the circuit computes a Boolean function
f(x1, · · · , xn). Note that if the auxiliary qubits are not reset to |0〉 at the end of a circuit, we
cannot use the circuit as a Boolean oracles. The reason is that operations which interact some
of the states of |x1〉 · · · |xn〉 with each other, such as Hadamard transormation, do not work as
desired if the states of |x1〉 · · · |xn〉 are entangled with the sates of other qubits.

It should be noted that many existing Boolean oracles are proper and they need to be so.
For example, the f -controlled phase shift, U , used in the Grover’s search algorithm [Gro93]
is defined as |x1〉 · · · |xn〉|xn+1〉 = (−1)f(x1,···,xn)|x1〉 · · · |xn〉|xn+1〉 where |xn+1〉 is initialized to
1√
2
(|0〉 − |1〉). If the circuit is not proper, we can no longer use the circuit as a primitive of the

above unitary operation.
Fig. 2 shows three quantum circuits which are all equivalent, i.e., they compute the same

Boolean fucntion f(x1, · · · , x6) = (x1 ⊕ x2) · (x3 ⊕ x4) · (x5 ⊕ x6). Note that x7 is a work bit in
these circuits. As will be shown later, we can construc a circuit only using CNOT gates whose
target bit is xn+1 like Circuit B. However, different types of circuits are of course possible like
Circuits A and C, where C is simpler than A and B.

3 Transformation Rules

In this section, we introduce six transformation rules which can be applied for a sequence of
CNOT gates. Each transformation rule looks like F ⇔ G, which means that we can transform
F to G, and vice versa, where F and G are sequences of CNOT gates.

Transformation Rule Set. In the followings, ε means the empty sequence, and we refer to
a CNOT gate whose target bit is the i-th bit as CNOTi.

(1) [t1, C1] · [t1, C1] ⇔ ε.
(2) [t1, C1] · [t2, C2] ⇔ [t2, C2] · [t1, C2], if t1 �∈ C2 and t2 �∈ C1. (The condition means that the

two gates are “independent.” If there is some influence between two gates, we cannot change
the order of the two gates. Even in such cases, we can change the order by adding some gates,
as we will see in the following Transformation Rules. )

(3) [t1, C1] · [t2, C2] ⇔ [t2, C2]· [t1, C1]· [t1, C1 ∪ C2 − {t2}], if t1 �∈ C2 and t2 ∈ C1.
(4) [t1, C1] · [t2, C2] ⇔ [t2, C1 ∪ C2 − {t1}]· [t2, C2]· [t1, C2], if t1 ∈ C2 and t2 �∈ C1. (This rule

is a dual case of (3), i.e., the relationship between the two gates is just opposite.)
(5) [t1, {c1}] · [t2, C2 ∪{c1}] ⇔ [t1, {c1}] · [t2, C2 ∪{t1}], if (t1 > n+1) and there is no CNOTt1

before [t1, {c1}].
(6) [t, C] ⇔ ε, if there is a integer i such that i ∈ C, i > n + 1, and there is no CNOTi before
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Figure 2: An Example of Equivalent Circuits

[t, C].
Lemma 1. Applying any one of Rules (1) to (6) does not change the Boolean function the

circuit computes.
Proof. (1) Rule (1) is obvious since f ⊕ f = 0 for any Boolean function f .
(2) Rule (2) is also easy because [t1, C1] and [t2, C2] do not affect each other if t1 �∈ C2 and

t2 �∈ C1.
(3) Fig.3 shows this transformation. We have two important qubits, i.e., the qubits whose

indices are t1 and t2 (t1 �= t2 by the condition). Let a1 and a2 be the states of |xt1〉 before and
after the gate [t1, C1], respectively, in the lefthand-side circuit. Let a1, a′2 and a′3 be the states of
|xt1〉 before [t2, C2], after [t1, C1] and after [t1, C1∪C2−{t2}], respectively, in the righthand-side
circuit. Also, b1, b2 and b′2 are the states of |xt2〉 similarly defined (see Fig.3). Furthermore,
let A and B be the conjunction of the qubits whose indices are contained in C2 and C1 − {t2},
respectively (A and B may include common qubits). Note that the sates whose indices are in A
or B do not change throughout this portion of the circuit since there is no target bit whose index
is in A or B. Now let us calculate the states of a2, b2, a′3 and b′2. First, both b2 and b′2 can be
written as b1⊕A. Furthermore, a2 = a1⊕B·b1, a′2 = a1⊕B·b′2 = a1⊕B·(b1⊕A) = a1⊕B·b1⊕A·B
and a′3 = a′2 ⊕A ·B = a1 ⊕B · b1 ⊕A ·B ⊕A ·B = a1 ⊕B · b1. Thus we have shown that b2 = b′2
and a2 = a′3. The states of other qubits do not change obviously and hence the transformation
does not change the functionality of the circuit.

⇔
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Figure 3: An Example of Transformation Rule 3
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(4) Similar to the proof for Rule (3).
(5) If there is no CNOTt1 before [t1, {c1}], the state of the t1-th state remains as |0〉 just before

[t1, {c1}]. Therefore, after applying [t1, {c1}], the t1-th bit and the c1-th bit can be regarded as
the same, which means the rule [t2, C2 ∪ {c1}] ⇔ [t2, C2 ∪ {t1}] does not change functionality.

(6) If there is an integer i which satisfies the condition of the rule, [t, C] has an auxiliary bit
|xi〉 as its control bit whose current sate remains as |0〉. This means that the conjunction by C
is also always 0 and this gate is completely useless. �

4 Completeness of the Rule Set

In this section, we first introduce the canonical form for quantum Boolean circuits. Then it
is shown that any circuit can be transformed into its canonical form using the transformation
rules. The completeness of the rule set is its immediate consequence.

4.1 Canonical Form

Definition 2. A quantum Boolean circuit S is said to be of the canonical form, if (1) it has
only CNOTn+1 gates, which denote CNOT gates whose target bit is the work bit, (2) it does
not have two or more same CNOTn+1 gates, (3) CNOTn+1 gates are ordered lexicographically
in terms of the indices of their control bits, and (4) no auxiliary qubits are used.

The condition (2) means that the canonical form must not be redundant in terms of Trans-
formation Rule 1. The condition (3) means that, for example, [n + 1, {1, 2, 3}] should be placed
before [n, {2, 3, 4}]. Recall that Fig. 2 shows three circuits computing the same Boolean function,
and only Circuit B is of the canonical form. Now here is an important lemma:

Consider the following form of Boolean formulas:

a0⊕a1x1⊕a2x2⊕· · ·⊕anxn⊕a1,2x1x2⊕a1,3x1x3⊕· · ·⊕an−1,nxn−1xn⊕· · ·⊕a1,2,···n−1,nx1x2 · · · xn−1xn.

Note that there are no negative literals in the formula and each ai is 0 or 1. This form is called
a positive polarity Reed-Muller expression [DDT78].

Lemma 2 [DDT78]. Any Boolean function can be expressed by a positive polarity Reed-Muller
expression which is unique except for the order of terms.

Lemma 3. Any CNOT-based quantum circuit S has its unique canonical form.
Proof. By definition, S transforms |xi〉 to |xi〉 for 1 ≤ i ≤ n and |xn+1〉 to |xn+1 ⊕

f(x1, · · · , xn)〉 for some formula f . Compute the positive polarity Reed-Muller expression of
f , which naturally corresponds to a sequence of CNOTn+1 gates. Since the order of conjunctive
terms must be lexicographic, the resulting circuit is unique by Lemma 2. �

4.2 Transformation Procedure

Theorem 1. Any quantum circuit S can be transformed into its canonical form using the
transformation rules.

Proof. Our procedure of such a transformation is given in Figs. 4 and 5. We first call
Main(S). Then it calls Shift(S, n + 1) which “shifts” all the CNOTn+1 gates to the left part.
In Shift, MostLeft(S, “a statement′′) denotes the most left gate which satisfies the statement
in circuit S, and Left(S, f) denotes the part of S which is the left-hand side of f . MostRight
and Right have similar meanings.

Then Main calls Shift(S′, n), by which all CNOTn gates are shifted to the left. They are
placed next to CNOTn+1 gates already shifted. This continues until Shift(S′, 1).
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Now we execute the second half of Main, where all the gates whose target bits are not n + 1
are deleted, and there remain only CNOTn+1 gates. One might be curious why that happens.
The reason is simple: Suppose that some of them, say some CNOTn gate does not disappear
after applying Rules (1), (2), and (6) (note that any two CNOTn gates can be exchanged by
Rule (2)) as many times as possible. Then the output state of the n-th qubit must be different
from its input state |xn〉, which can be easily proved by the property of the positive polarity
Reed-Muller expression. This violates our definition of proper circuits, which means that the
original circuit is not proper. �

4.3 Completeness of the Rule Set

Now our main result is almost immediate:
Theorem 2. Let S1 and S2 be any equivalent quantum Boolean circuits. Then there exists

a sequence of transformation rules, each in the rule set given in Section 3, which transforms S1

to S2.

Proof. Since S1 and S2 are equivalent, Lemma 3 tells us that their canonical forms must be
the same. Let this canonical form be S. We can transform S1 into its canonical-form circuit S
by Theorem 1. Let this sequence of transformation rules be r1. We can also transform S2 into
S by sequence r2. Since all of our transformation rules are bidirectional, we can get a sequence
r′2 of rules that transforms C to C2 just by reversing r2. Now the sequence r1 followed by r′2
transforms C1 into C2. �

5 Concluding Remarks

Apparently several research topics are remaining: (1) Although we give a complete set of
transformation rules, it is open how to apply them in order to get a short sequence of trans-
formation. The sequence described in Theorem 2 is apparently not efficient. (2) We must have
some concrete goal when applying transformation rules such as simplifying the circuit. Is there
some strategy to find a sequence of transformations which gives us a better circuit? (3) It is also
interesting to develop a design theory for sequential quantum circuits which include registers,
by exploiting our design theory for combinatorial quantum circuits.
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1 Shift(S, i)
2 {
3 f = MostLeft(S, “1 ≤ target bit ≤ i − 1”)
4 while (gate g = MostLeft((Right(S, f), “target bit is i”) exists) {
5 h = the gate just before g
6 let h = [t1, C1] and g = [i, C2]
7 if (t1 ∈ C2 and i ∈ C1) {
8 let the first unused auxiliary qubit be t-th bit
9 add two gate k1 = [t, {i}] and k2 = [t, {i}] before h by Transformation Rule 1
10 change the order of k2 and h by Transformation Rule 2
11 change h = [t1, C

′
1 ∪ {i}] to h′ = [t1, C

′
1 ∪ {t}] by applying Transformation Rule 5 to k1 and h

12 let S1 = Left(S, h) and S2 = Right(S, h)
13 f1 = MostLeft(S1, “target bit is not t”)
14 while (gate g1 = MostLeft((Right(S1, f1), “ target bit is t”) exists) {
15 h1 = the gate just before g1

16 change the order of h1 and g1 by either one of Transformation Rules 2 or 4
17 /* it is always possible */
18 }
19 f2 = MostRight(S2, “1 ≤ target bit ≤ i”)
20 while (gate g2 = MostRight((Left(S2, f2), “target bit is t”) exists) {
21 h2 = the gate just after g2

22 change the order of g2 and h2 by either one of Transformation Rules 2 or 3
23 /* it is always possible */
24 }
25 }
26 /* now, we can always apply one of Transformation Rules 2 to 4 */
27 change the order of h and g by one of Transformation Rules 2 to 4
28 }
29 S3 = Left(S, MostLeft(S,“target bit is i”))
30 f3 = MostLeft(S3,“the i-th bit is a control bit”)
31 let f3 be [t1, {i}]
32 move f3 to the leftmost in S3 by applying Transformation Rule 2 /* it is always possible */
33 S4 = Right(S3, f3)
34 while (gate g3 = MostLeft((S4,“the i-th bit is a control bit”) exists) {
35 if (g3 is not the leftmost gate in S4) {
36 move g3 to the leftmost in S4 by applying Transformation Rule 2/* it is always possible */
37 change g3 = [t2, {i}] to g′

3 = [t2, {t1}] by applying Transformation Rule 6 to f3 and g3

38 }
39 }
40 f4 = MostRight(S, “1 ≤ target bit ≤ i”)
41 while (gate g4 =
42 MostRight((Left(S, f4),“the i-th bit is neither the target bit nor a control bit”) exists) {
43 h4 =the gate just after g4

44 change the order of g4 and h4 by either one of Transformation Rules 2 or 4
45 }
46 f5 = MostLeft(S,“target bit is i and t1 is not a control bit”)
47 while (gate g5 = MostLeft((Right(S, f5), “target bit is i and t1 is a control bit”) exists) {
48 h5 = the gate just before g5

49 change the order of h5 and g5 by Transformation Rule 2
50 }
51 S5 = Right(Left(S,MostLeft(S,“target bit is i and t1 is not a control bit”), f3)
52 order CNOTi lexicographically in S5 by applying Transformation Rules 2
53 delete two adjacent gates in S5 if they are the same by applying Transformation Rules 1
54 /* by the above transformation, S5 must be changed to ε because xi ⊕ xi · G(X) = xi ⊕ F (X) holds
55 only when G(X) = 0 for any Boolean function F and G,
56 where X is a variables set which does not contain xi */
57 while (gate g6 = MostLeft((Right(S, f3), “1 ≤ target bit ≤ i”) exists) {
58 h6 = the gate just after f3

59 change the order of f3 and h6 by one of Transformation Rules 2 to 4
60 }
61 }

Figure 4: Shift(S, i)
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1 Main(S)
2 {
3 S’ = S
4 for (i = n + 1 to 1) {
5 Shift(S′, i)
6 Ci = SL /* the left part of the result of Shift(S′, i) which consist of only CNOTi */
7 S′ = SR /* the right part of the result of Shift(S′, i) */
8 delete redundant gates in Ci by applying Transformation Rule 6
9 }
10 order gates lexicographically by applying Transformation Rules 2
11 delete two adjacent gates if they are the same by applying Transformation Rules 1
12 /* by the above transformation, only CNOTi gates remain */
13 }

Figure 5: Main(S)
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