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Abstract We consider a 1-way Quantum Finite Automata (1QFA) that has imperfectidns in initial
states. We show that for a 1QFA with initial state |¥) and the same 1QFA with initial state |¥’), where

| @) = /T =8 |¥) + V3 |¢), their accepting probabilities differ at most /8 for the same input sequence.

1 Introduction

It is well accepted to assume that a quantum computer in the early stage will be an elementary system,
e.g., a quantum (combinatorial) circuit or a quantum sequential machine with a stage register of small
size. The latter is usually modeled as a quantum finite automaton (QFA), which has been constantly
popular in the recent literature{KW97),|AF98],[AI99]. However, even if we were able to design a finite
automaton M whose operation satisfies our purpose perfectly, there are still several difficulties when using
it, including the difficulty of resetting M before starting its operation. Reset can be done by increasing
the amplitude of the initial state vector, say |00 ...0). This however means that it is reasonable to assume
that there remain several other vectors (like |100-..0)) with small amplitudes. Namely, the initial state
vector is not |¥) = |go) but [¥') = /1 - 0|¥) + Vi e). ‘

In this paper we investigate how this erroreous vector |e) changes accepting and/or rejecting prob-
abilities of input sequences compared to the original probabilities for |e) = 0. If QFA’s includes only
unitary transformations, then it is well known that the difference of two vectors are preserved by the
transformation, which implies that the initial error can expand only limitedly. Our results in this paper
show that the probability of acceptance (and rejection also) does not change by more than V6. Namely,
the error in the initial state does not expand with the number of operation steps. This result is used
to show a similar result for the model which uses mixed-states for the imperfection; we show that the
imperfection in the density matrix can be decomposed into imperfections in pure states.

Note that & is supposed to be a small positive value less than one. Then the additional term V8 can
be much larger than §; for instance if § = 0.01, V& = 0.1. Note that the amount of difference in the
initial vector can be regarded as § in terms of probability. Thus, our result shows that the expansion
of the initial error is certainly bounded, but the bound itself is not small and may be somewhat serious
in certain cases. Actually there is a specific example of 1QFA for which the initial error é results in

the difference 1/8(1 — 8) of the accepting probability. The expansion is apparently due to a coherence
between the initial state and the error state. There is no expansion in the mixed-state model where such
incoherence does not exist. ' : ; ;

The issue of imperfection has already been discussed for quantum TMs (QTMs)[BV97], mainly mo-
tivated by the needed precision of state transitions (for example real amplitudes must be simulated by
rational ones in digital systems). In [BV97], Bernstein and Vazirani showed the error in each step of
evolution only adds and the total error does not increase exponentially as in the case of classical com-
putation. However, in the case of QTMs it is enough to conduct observation only once at the end of
computation, and therefore we can assume that the overeall evolutions is unitary. This is an important
difference compared to our present case as mentioned already.



2 Models

In this section, we consider two different models of 1-way Quantum Finite Automata (1QFAs), Many-
Measurements 1QFAs (MM-1QFAs) and Measurement-One 1QFAs (MO-1QFAs). As the name implies,
the head of a 1QFA always moves one way from left to right. A 1QFA consists of a classical head which
reads an input string on the classical tape. The difference between 1QFAs and 1FAs is that internal
states of a 1QFA are quantum states.

We use the following standard definition of MM-1QFAs which originally appeared in [KW97].

Definition 1 A Many-Measurements 1QFA (MM-1QFA) M is specified by a 6-tuple
= (Q) 21 6, qo, Qacc, Qrej)y

where Q is a finite set of states, ¥ is an input alphabet, § is a transition function, go € Q is a starting
state and Qacc C Q and Qrej C Q are sets of accepting and rejecting states with Qacc NQrej = (Z) The

transition functzon
J.QXFXQ—)C[O’II,

where I' = LU {#,$} is the tape alphabet of M. # and $ are left and right end-markers not in . Thus,
the value of 6(q1,0,q2) is the amplitude of |q2) in the superposition states to which M goes from |q1) after
reading o. For o € X, V, is a linear transformation on l3(Q) (the space of mappings from Q to C with Iy

norm) defined by
Vol = 3 6(a1,0,a2) las) -
2€Q

Vs is required to be unitary.

The computation of M starts in the superposition |go). Then transformations corresponding to the
input characters are applied. The transformation corresponding to ¢ € ¥ consists of two steps.

1. The linear transformation corresponding to o, V,, is applied to obtain the new superposition ¥/ =
V5(¥), where U is the superposition before applying V.

2. W' is observed with respect to the observable E,cc® Erej ® Enon, where Eqoc = span{|q) : ¢ € Qaee},
Erej = SPan{,Q) q € Qrej}» non = Span{IQ) q € Qnon}- Here, E,c., Erej and E,,, are the
orthogonal decomposition of I3(Q), i.e. 12(Q) = Egee D Erej ® Enon. Denote by Pace, Prej and
Pron the projection operator into the subspace Egee, Erej and Epon respectively. Observation
gives ¢ € E; with the probability equal to the amplitude of the projection of ¥’. After that, the
superposition collapses to this projection. -

on input string o102...0, when no termination occ [¢ i
Thus, on input stri hen no te tion urs, the computation can be seen as an
application of the composed operator

Vi Vi Vi o)

On  On-1

where V. = Pyon Vs,
[CM97] introduced a different model of 1QFA in which only one measurement is performed, at the end
of its computation. This model is denoted as an MO-1QFA.

Definition 2 A Measurement-One 1QFA (MO-1QFA) M is specified by a 5-tuple

= (Q52351 QOaQacc)y

where @, £, §, go and Qqcc are defined similarly as MM-1QFA. Note that there is no rejecting state set.
For an input string o109 . ..0,, measurement is performed only once, i.e., after M finished reading o,.

3 Imperfections using Mixed-States Models

It is very popular to consider 1QFAs with a mixed state as their starting states. The reason is that in
general, a quantum system is not in a pure state, since our knowledge about the system is only partial.
For this purpose, we need the definition of a mixed state and its corresponding density operator.



Definition 3 A probability distribution {(p;, ®;)|1 < i < k} on pure states {®;}5_,, with probabilities
0 <p <1, Zf___lpi =1, is called a mized state, and denoted by [¥) = {(p;,®;)[1 < 1 < k}. To
each mized state [¥) corresponds a density operator which is uniquely represented in the matriz form

through density matriz. If [¥) = {(1.0,|®))} for a pure state |®), then the density matriz p is defined
as p = [®)(®|. If [¥) = {(pi,®:)|1 <1 <k}, where |®;) are pure states, then the density matriz p

corresponds to [) is p= 3. p; | ) (@y].

It is easy to deduce from the definition above, that if at any time the state of a 1QFA can be described
by a density matrix p, then its transformation corresponding to a symbol o € T is

o' =U,pUy.

Namely, its density matrix p is transformed to p’. Furthermore, measurements on density matrix p can
be considered as measurements with respect to the observable Eqcc @ Erej @ Enon as described before.
The probability of observing E; is equal to T'r(P;p), where P; is the orthogonal projection onto E;. If we
observe Eq,. or E,.;, the input is accepted or rejected respectively. In MM-1QFA model, the computation
continues with the state P,onpPron, and the next transformation, if any, is applied.

Thus, in the mixed-state model, everything is defined using density matrices. Furthermore, two dif-
ferent mixed states can correspond to the same density matrix (see, for instance, page 372 of [Gru99]).
Nevertheless, as the next theorem shows, we can make some kind of argument without using density
matrices.

Theorem 1 If an MM-1QFA M with pure initial states | V) results in the accepting (rejecting) probabil-
ity Pr(acc)(¥g) (Pr(rej)(¥y)), then M with mized states (pg, |¥x)) fork =1,2,...,n where Y p_, Pk =
1, results in the accepting (rejecting) probability > p_; px Pr{acc)(¥x) (3 j_1 px Pr(rej)(¥y)).

Proof 1t is trivial that if density matrix p of an MM-1QFA M is composed of pure states |®;) for

k=1,2,...,n, then the density matrix of M after performing unitary transformation and measurement,
i.e. the non-halting, accepting and rejecting projection, can be written as follows:

Pl = PronUpU™ Ppron.
Since p =Y j_; |®k) (Bk|, we obtain

n n
pl = Z ProonU |¢k> <q)k| U*Pron = Z I<D;c,rwn)<®;c,non!‘
k=1 k=1

Here we use |tI>jc'mm) = PponU |®k). From the equation above, it can be concluded that if a density matrix

of M is composed of pure states |®) for k = 1,2,...,n, then the new density matrix after performing
unitary transformation U and measurement is composed of pure states Pp,,U |®%) for k =1,2,...,n.
Suppose at the j-th step the density matrix of M is

n
pj = Zpklw{c,non)<\p;c,non|’
k=1

where I‘I’i,nm> is the nonhalting states of M at the j-th step when started in initial state |¥z). Then
the accepting probability obtained at the j + 1-th step pi*! can be written as follows.

n
«;tcl = tr (PaccUij‘PaCC) = Zpk tr (PGCCU'\II;c,non)(‘I’i:,mm’U*Pacc)
k=1

Il

n
>0k 17 ({8 pon V" Pace PaceU ¥ on))

k=1
n X n .
= Y Pkl PaccU ¥ o) IP = D PPl e
k=1 k=1

where p}c‘;lcc is the accepting probability obtained at the j + 1-th step if M started in initial state |¥g):
Hence, the total accepting probability of M with mixed states (pk,|[¥x)) for £ = 1,2,...,n, where
3 %k—1Pr = 1 and input string length is I, can be written as follows.

n l n
Pr{acc) = Zpk Zpﬁcc‘k = ZPkPT(aCC)(‘I’k)-
k=1

k=1 j=1



Thus, we have the proof of the theorem for the accepting probability. The same explanation holds for
the rejecting probability. U

Note that Theorem 1 also holds for MO-1QFA, since MO-1QFA is a special case of MM-1QFA. We now
apply Theorem 1 to preparation of initial quantum state of 1QFA M which starts from the expected pure
initial state ¥ with probability 1 — & and the erroreous state e with probability § compared to M started in
the expected pure quantum states ¥ with probability 1. One can see that if the erroreous QFA results in
accepting probability Pr’(acc) and the error-free QFA results in Pr(acc), then |Pr'(acc) — Pr(acc)| < 6.
Thus the imperfection in the density matrix can be decomposed into imperfections in pure states, which
will be discussed in the next section.

4 Imperfections in Preparation of MO-1QFA

We consider an MO-1QFA M with initial state vector |¥) and compare it with the same M that has

initial state vector |¥') = /T — 8 |¥) 4 v/5 |¢), where [¢) is a normalized error vector. If the input string
is #0q - - - 0,8, then the final accepting probability of M can be written as follows:

Pr(acc)(¥") = Tr(PaccU |9 (¥'|U*Pace),
where U = V3V, -+ - V,, Vi denotes the unitary operator of state transitions. .

Theorem 2 If an MO-1QFA M with initial state |¥’) results in the accepting probability Pr{acc)(¥') and
M with initial state |¥) results in the accepting probability Pr(acc)(¥), where [¥’') = /1 - 4|¥) + V4 |e)
,ond || Py = ||¥)| =]le) | =1, then [Pr(acc)(¥’) — Pr{acc)(¥)| is at most V. ~

Proof. For simplicity we denote p' = [¥') (¥’| and p = |¥)(¥|. Tt is straightforward to show that -

~51%) (@] + 6 e) el + VFT=8) (1) el + |e) (¥,
5 (1) (T] + e {el). |

(0 = p)
(0 —p)?

Il

It holds for the difference of accepting probability that

|Pr(ace)(¥') - Pracc)()] = |T7 (PaccU (5 ~ P)U* Pacc)|
' Tr IPaccU(p' - p)U*Paccl
Tr ( /U(p ~ p)2U*Pacc) ,

IN

where U = V3V, -~ Vy, V. At the third line of the above equation, we use |A| = vV AA* and Tr(AB) =
Tr(BA), to obtain the equation at the fourth line. Note that since Py is an orthogonal projection

operator to accepting sub-space, v/ PaccPace = Pace-
Similarly for the rejecting probability, we get

|Pr(rej)(¥') — Pr(rej)(¥)| - < Tr (\/ Ulp - p)2U*P,ej‘) ,

where P,.; is an orthogonal projection operaﬁor to réjecting sub-space. Since Puee + Pre; = I, we can
combine the last two inequalities and use (o’ — p)? to obtain

|Pr{acc)(¥') — Pr(acc)(¥)| + | Pr(rej)(¥") — Pr(rej)(¥)| < 1 (\/ U(p' = p)2U )
= Tr ( (P = p)2)
= 2v6.

Because the difference of accepting probabilities is equal to that of the rejecting ones, the upper bound
above is twice of the valué we want to prove. Thus the difference of accepting probability is at most \/3 .



5 Imperfections in Preparation of MM-1QFA

To analyze the effect of imperfection in the initial state of MM-1QFA M, it is important to point
out the fact that MM-1QFA is actually an MO-1QFA with states growing linearly with its input length.
Although simulating an MM-1QFA by an MO-1QFA this way contradicts the finite automaton definition,
the size of states of MO-1QFA is still finite relative to its input length. Thus we can apply our previous
proof of accepting differences of MO-1QFA to that of MM-1QFA, since the proof holds for operators with
finite dimensions.

Therefore we obtain the following theorem for MM-1QFA.

Theorem 3 If an MM-1QFA M with initial state | ') results in the accepting probability Pr(acc)(¥’) and
M with initial state |U) results in the accepting probability Pr(acc)(¥), where |¥') = /1 ~8|¥) + V3 e)
and | [¥) | = [|T) ] =||e) | =1, then |Pr(acc)(¥’) — Pr{acc)(¥)| is at most V3. ‘ '

Thus, we have shown that for both models of MO-1QFAs and MM-1QFAs, the difference of the ac-

cepting probability is at most V5. To see how tight our result is, we show that there is an MM-1QFA
which has the accepting probability difference 1/6(1 — ) on certain input sequnces, when started in the

starting state /T — dgo) +v/8]q1) instead of |go). In fact, our example is the MM-1QFA to recognize the
language #a*b*$ which appeared in [AF98]. Details of this MM-1QFA are shown in the next section.

6 Example
[AF98] used the following MM-1QFA, here denoted as My, to recognize the language Lo = {#a*b*$}.

MO = ({QO, 41,492,493, q4}7 {a, b}, 6) 4o, {q3}1 {Q4})»

with the transition function § is specified by transitions:
Vi o) = V1 -pla) +vPla2),

Vala) = (1 —p)la1) + V(L = p) la2) + v/ las) ,
Valgz) = vp(1 —p)la1) +plge) — /1 —plaa),

Vola1) = laa) , Vs la2) = la2),
Vs la1) = las) , Vs lg2) = laa)

and the remaining transitions are defined arbitrarily so that unitary requirements are satisfied.

They showed that if z € Lo, then My will accept x with probability at least p and if & Lo, then My
will reject = with probability at least 1 — p®. Thus, Lo can be recognized with probability greater than
1/2. In fact, [AF98] showed that My can recognize Lo with the highest probability p ~ 0.68, i.e. the
solution of p = 1 — p3.

For our purpose, we add

Vi la) = —vPla) + V1 -plg2)
to Mp. Certainly even after this addition the unitary requirements are still satisfied.

Then, if My starts in v/1 — 0|go) + v/d]g1), then Mo accepts #b*$ with probability p + § — 2dp +
24/p(1 — p)6(1 — 8). Since My which starts in |go) accepts #b*$ with probability p, then the difference of
the accepting probability is § — 26p + 2+/p(1 — p)é(1 — §). For p ~ 0.68, this difference is approximately
—0.366 + 0.93/3(1 — 8). However if p = 1/2 + e for e > 0, note that Mo still recognizes Lo with
probability larger than 1/2, then the difference of the accepting probability on input #b*$ can be very

close to 1/d(1 — ¢), since

lim (6 — 26p + 2/p(1 — p)d(1 — 8)) = \/6(1 — ).
p—1/2

Thus, we have shown that there is an MM-1QFA which has the difference 1/d(1 — d) in its accepting
probability on certain input sequences.



7 Concluding Remarks

Our study in this paper reveals that imperfection in preparation of 1QFA results in a limited error term,
i.e. there is no growth of error despite of measurements performed during its computation. We prove

that the difference is at most v/3. Using the model of MM-1QFA shown in’ [AF98], we show the example

of MM-1QFA which has 1/8(1 — §) difference of accepting probability, i.e. our result is somewhat tight.
Studies on imperfection using mixed states also reveal the similar result, but the difference of the
accepting probability is at most §, where ¢ is the probability of having the erroreous initial state e.

References

[AF98] A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, weaknesses and gen-
eralizations. In Proceedings of the 39th IEEE Conference on Foundations of Computer Science,
pages 332-341, 1998.

[AI99] M. Amano and K. Iwama. Undecidability on quantum finite automata. In Proceedings of the
31st ACM Symposium on Theory of Computing, pages 368-375, 1999.

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411-1473, 1997.

[CM97] James P. Crutchfield Christopher Moore. Quantum automata and quantum grammars. Theo-
retical Computer Science, to appear, 1997.

[Gru99] Josef Gruska. Quantum Computing. Mc Graw Hill, 1999.

[KW97] A. Kondacs and J. Watrous. On the power of quantum finite automata. In Proceedings of the
38th IEEE Conference on Foundations of Computer Science, pages 66—75, 1997.



