gbooobooobooooosood
gooobooob ob obo

ooobbodbgboobobobooooobbboooooouon

oDooot poooot oooofr ooootf

tdbobobobobobo oogoooog
10000000 Ooooooo

0000 0D00000000000000000000000000000000000000
000000000 (00000000)000000NO0O0D0DOO 1,2,---,NOOOOO
0000000000000 00M-00000000000000000000 1,2,---,M O
000000 000000DO

000000 OK)-000000000000Afk00DDDOO0DOO OR3)0OOOO0O
OMAN) 000000000000 100000A0000000000D0DOOD0D000000
000000000000 00000000000000000000000000000O0n0O
k0000000000 000000000000000000000 O(k2legk)D0D0O000
ORPN)DDDDDO0O000DDO0OO0O0OO0O 0000000000 0000000000000
000000000000 Ook)*)H000000 O»2N)D Ok*)-00000000000000

Adaptive Long-lived Renaming Algorithm

in the asynchronous shared memory

Shinya Umetani' Michiko Inoue! Toshimitsu Masuzawa? Hideo Fujiwaral

1 Graduate School of Information Science, Nara Institute of Science and Technology

1 Graduate School of Engineering Science, Osaka University

Abstract. This paper presents an adaptive long-lived renaming algorithm in the asynchronous
shared memory system. The system consists of /N asynchronous process, and each process
initially has a distinct name in the range {1,2,---, N}. A M-renaming algorithm assigns new
unique name in the range {1,2,---, M} to any process.

The previous best O(k?)-renaming algorithm is the algorithm with O(k®) step complexity
and O(n3N) space complexity presented by Afek et. al [1], where k is the point contention and
n is upper bound of k. The point contention is the maximum number of processes that actually
take steps or hold a name while the new name is being acquired. They also presented the
algorithm with O(k?log k) step complexity and O(n®N) space complexity under the condition
where unbounded values are allowed. The step complexity of our algorithm is O(k?), and space
complexity is O(n?N). That is, our O(k?)-renaming algorithm is more efficient than two previous
algorithms.

0590

ア　ル　ゴ　リ　ズ　ム　80－９
　　（２００１． ９． ２５）

萩原 恵子
－59－

1 Introduction

An asynchronous read/write shared memory
model consists of asynchronous processes and
shared registers. FEach process has a dis-
tinct identifier, and communicates via read
and write operatins on shared registers. We
consider a long-lived M -renaming problem in
this model. In the problem, every process re-
peatedly acquires a new name in the range
{1,2,---, M}, and releases it after the use.
The problem requires that no two process keep
the same name concurrently, and renaming al-
gorithm is required to have small name space
and low complexity.

Recently, the algorithms where the step
complexities depend on only the contention,
the number of the active processes which ac-
tually participate in the algorithm, were pro-
posed. Such algorithms are called to be adap-
tive. In adaptive algorithms, the number of ac-
tually active processes is unknown in advance.
The adaptive renaming algorithm is very useful
if the number of active process is much smaller
than the number of total process which have a
potential for participation. Since the complex-
ities of most distributed algorithms depend on
the name space of processes, we can reduce the
complexities by using the renaming algorithm
to reduce the name space.

Table 1 shows the results on adaptive long-
lived renaming algorithms. Afek et al. [2] pro-
posed adaptive long-lived renaming algorithm,
which is adaptive to the point contention and
use unbounded memory, where the point con-
tention, denoted k, is the maximum number
of processes being concurrently active at some
point in the execution. Afek et al. next pro-
posed following three long-lived renaming algo-
rithms [1] which adapt to the point contention.
Their algorithms are a (2k? — k)-renaming
with O(k?log k) step complexity and O(n3N)
space complexity using unbounded values, a
(2k? —k)-renaming with O(k®) step complexity
and O(n®N) space complexity using bounded
values, and (2k—1)-renaming with Fzp(k) step
complexity and O(n3N) space complexity us-
ing unbounded values. Attiya et al. [3] pro-
posed a long-lived (2k —1)-renaming algorithm
which adapts to point contention with O(k*)

step complexity.

In this paper, we present a long-lived
(2k? — k)-renaming algorithm that adapts to
the point contention with O(k?) step com-
plexity and O(n?N) space complexity using
bounded values. That is, our algorithm is more
efficient than above (2k? — k)-renaming algo-
rithms.

2 Preliminaries

Our computation model is an asynchronous
read/write shared memory model [4]. A
shared memory model consists of N processes,
Ppo, - ,pn—1 and a set of registers shared by
the processes. The processes communicate
each other by reading from and writing to
shared registers. We assume mulli-writer-
multi-reader registers, that is, each process can
read from and write to any register.

In the long-lived M-renaming problem, pro-
cesses repeatedly acquire and release distinct
names in the range {1,2,---, M}. A renaming
algorithm provides two procedures getName;
and releaseName; for each process p;. A pro-
cess p; uses getName; to get a new name, and
uses releaseName; to release it. FEach pro-
cess alternates between invoking getName; and
releaseName;, starting with getName;.

An execution of an algorithm is a (possi-
bly infinite) sequence of register operations and
invocations and returns of procedures where
each process follows the algorithm. Let a be
some execution of a long-lived renaming algo-
rithm, and let o/ be some finite prefix of a.
Process p; is active at the end of o/, if o in-
cludes an invocation of getName; without a re-
turn from the matching releaseName;. Process
p; which is active at the end of o/ can either
be trying to get a new name, that is, p; has
not yet returned from getName;, or holding a
name y, that is, p; has already returned from
getName;. In the latter case, we say that p;
holds a name y at the end of o' if the last in-
vocation of getName; returned y. A long-lived
renaming algorithm should guarantee the fol-
lowing uniqueness : If active processes p; and
p; (J # 1) hold names y; and y;, respectively,
at the end of o/, then y; # y;.

The contention at the end of o/, denoted

g 600

萩原 恵子
－60－

Step . Name space Space' Value size | Reference
complexity complexity
O(k?log k) 2k? — k unbounded | bounded 2]
O(k?log k) 2k* — k O(n3N) unbounded 1]
O(k3) 2k? — k O(nN) bounded 1]
Exp(k) 2k —1 O(n®N) unbounded 1]
O(k*) 2k —1 unbounded | unbounded (3]
O(k?) 2k? — k O(n?N) bounded | this paper

Table 1: Adaptive renaming algorithms.

Cont(a'), is the number of active processes at
the end of o’. Let 3 be a finite interval of «,
that is, o = a18as for some a; and as. The
point contention of 3, denoted PntCont(f), is
the maximum contention over all prefixes ;3
of a1(.

The name space which is obtained by us-
ing renaming algorithm is adaptive to the point
contention if there is a function F', such that
the name obtained in an interval 3 of getName;,
is in the range {1,2,---,F(PntCont(3))}.
The step complexity of a renaming algorithm
is adaptive to point contention if there is a
bounded function S, such that the number
of steps performed by p; in any interval § of
getName; and in the matching releaseName; is
at most S(PntCont(5)).

3 Renaming Algorithm

Our renaming algorithm is based on the (2k*—
k)-renaming algorithm presented in [1], which
is a long-lived renaming algorithm and adapts
to point contention k with O(k®) step com-
plexity using bounded memory and bounded
values. The major difference between this al-
gorithm and our algorithm is detail of proce-
dures interleaved sc_sieve, leave and clear called
in the top level procedures, getName and re-
leaseName, which is shown in Algorithm 1.
Our renaming algorithm uses a sequence of
steves, numbered 1,2,---,2n, and each sieve
has 2N copies, numbered 0,1, ---,2N — 1,
where one copy is work space for processes
which visit the sieve concurrently. The first
component of the variable sieve[s]|.count is
changed to 0,1,---,2N —1,0,1,- - -, cyclically,
and a shared variable sieve[s].count designates
the current copy of the sieve s. We can asso-

ciate a round with the value of sieve[s].count
which means how many times the variables is
updated to the current value. If a process sees
sieve[s].count with a round 7, we say the pro-
cess uses the designated copy in the round r.

In the procedure getName;, a process p; vis-
its a sequence of sieves one after the other until
it wens in some sieve. If a process p; visiting
a sieve s satisfies some conditions (Line 9), it
enters one copy and obtains a set W of process
identifiers. If W is a non-empty set including
its identifier, p; wins in the sieve s, and p; gets
a new name (s, the rank of p; in W) (Line 13).

In the procedure releaseName;, a process p;
leaves the copy which p; got a name to show
that p; released the name.

If p; notices that all candidates leave this
copy, p; initializes the copy to reuse it in
the next round by invoking the procedure
clear (Line 15 and 20).

sieve[s].allDone[c| is used as a signal that a

A Boolean variable

round in the copy ¢ of the sieve s has been fin-
ished. The value nextD B differs with the par-
ity of the round (Line 7 and 8). However, some
slow processes excluding W may still work in
the copy after the initialization started. There-
fore, after every operation to shared registers,
each process checks whether the copy has been
finished or not. If the process notices that the
copy has been finished, it initializes the last
modified register and leaves the sieve. This
mechanism is implemented by wnterleave.

In the procedure sc_sieve, a process enters
a copy c of a sieve s, if all names assigned from
the previous copy ¢ — 1 mod 2N are released
by checking a variable sieve[s|.allDone[c — 1
mod 2N]|, and the current copy c is free
by checking a variable sieve[s].inside[c| (Line
30). The Boolean variable sieve[s|.allDonelc]
is changed after all names assigned from c

0610

萩原 恵子
－61－

Algorithm 1: Procedure of renaming algorithm : part L

Shared variables :

steve[l,...,2n — 1] {
count : (integer,Boolean), initially (0,0);
status[0,...,N — 1] : Boolean, initially false;
insidel0, ...,2N — 1] : Boolean, initially false;
allDone|0, ...,2N — 1] : Boolean, initially false;
list[0,...,2N — 1] {

mark[0, ...,n — 1] : Boolean, initially false;

Non-shared Global variables :
nextC,c : integer, initially 0;
nertDB,dirtyB : Boolean, initially false;
W : set of (id,integer), initially 0;
s : integer, initially 0;
sp : integer, initially L;

view|0,...,n — 1] : set of (id,integer), initially L;

td[0,...,n — 1] : id, initially L;

X]I0,...,n — 1] : integer, initially L;
Y[0,...,n — 1] : Boolean, initially false;
done[0, ...,n — 1] : Boolean, initially false;

i3

procedure getName()

procedure releaseName()

1 s=0 18 leave(sieve[s], nextC,nextDB);
2 while (true) do 19 if (sieve[s].allDone[nextC]| = nextDB) then
3 s++; 20 clear(steve[s], nextC);
4 sieve[s].status[i] = active; 21 sieve[s].status[i] = idle;
5 (c,dirtyB) = sievels|.count;
6 nextC = ¢+ 1 mod 2N;
7 if (neztC = 0) then nextDB = not dirtyB;
8 else nextDB = dirtyB;
9 if ((nextC mod N = 1) or
(sievels|.status[nextC mod N| = idle)) then
10 W = interleaved _sc_sieve(sieve[s], nextC, nextDB);
11 if ((p:, sp) € W for some sp) then
12 sieve[s].count = (nextC, nextDB);
13 return (s,rank of p; in W);
14 else-if (sieve[s].allDone[nextC| = nextDB) then
15 clear(sieve[s], nextC);
16 steve[s|.status[i] = idle;
17 od;

The
sieve[s].inside[c| is changed after some pro-
cesses enter ¢ of s.

of s are released. Boolean variable

If the process can enter the copy c, it tries
to register in ¢ by invoking the procedure reg-
ister (Line 32). If it can register, it scans ¢
to obtain a snapshot of processes which has
registered in ¢ by invoking the procedure par-
tial_scan (Line 34). This can be achieved by
invoking the procedure collect twice which re-
turns a set of process identifiers. We call such
a set view. If two views are identical, it returns
the view as a snapshot, otherwise it returns an
empty set.

Then, the process find the minimum snap-
shot W of processes by invoking the procedure
candidates (Line 35). If a process obtains a
non-empty snapshot W, W is a set of candi-
dates of winners in s.

To implement the procedures register and
collect, we use the collect list. The collect list
consists of 2n splitters, and each splitter has
a distinct level in the range {0,1,---,2n — 1}
[5]. The splitter returns either stop, next or
abort. Algorithm 4 shows procedures register,
collect and splitter.

The procedures register and collect are
adaptive to total contention, where the total
contention is the number of active processes in
an execution of these procedures. These proce-
dures are executed by only the processes which
This
means they are concurrently active in some
point, and in a round, the processes which exe-
cutes the procedures register and collect in the
copy c of the sieve s are only them. That is, we

entered the same copy concurrently.

can use these procedures as procedures which
are adaptive to point contention.

620

萩原 恵子
－62－

Algorithm 2: Procedures renaming algorithm: part II.

Non-shared Global variables :

last_modified : points to last shared variable modified by p;;
// last_modified is assumed to be updated immediately before the write.

mysplitter : integer, initially L;

procedure interleaved sc_sieve(sieve, nextC,nextDB)

// interleave is a two part construct. Part I of the interleave is executed after every read or write
// to a shared variable in Part II, the sc_sieve() and any procedure recursively called from sc_sieve().

22 last_modified = 1;
23 interleave { // Part I
24 if (sieve.allDone[nextC] = nextDB) then

25 if (last-modified # L) then write initial value to last_modified;

26 return ; // abort current sc_sieve(), s, and continue to next sieve.
27 M // PartII

28 return sc_sieve(sieve, nextC, nextDB);

20 1

procedure sc_sieve(sieve, nextC, nextDB)

30 if (previousFinish(sieve, nextC,nextDB) and sieve.inside[nextC]| = false) then

31 sieve.inside[nezt(] = true;
32 mysplitter = register(sieve.list[nextC]);
33 if (mysplitter # L) then

34 sieve.list[nextC|.view[mysplitier] = partial_scan(sieve.list[neztC]);
35 W = candidates(sieve, nextC);

36 if ({p;, mysplittery € W) then return W;

37 sieve.list[nextC|.done[mysplitier] = true;

38 W = candidates(sieve, nextC);

39 leave(sieve, nextC, nextDB);

40 return 0;

procedure previousFinish(sieve, nextC, nextDB)

41 if (nextC # 0 and sieve.allDone[nextC — 1 mod 2N| = nextDB) then return true;
42 if (nextC = 0 and sieve.allDone[2N — 1] # nextD B) then return true;

43 return false;

4 Correctness

4.1 Correctness of Collect List

A implementation of a splitter uses two shared
variables, X and Y. Initially, X = 1 and
Y = false. A process executing the proce-
dure splitter first writes its identifier into X
and then reads Y. If Y = true, the process
returns abort. Otherwise, the process writes
true into Y and checks X. If X still contains
its identifier, the process returns stop. Oth-
erwise, the process returns next. By the al-
gorithm, we have the following property of the
splitter.

Lemma 1 If s processes take access to the
same splitter concurrently, the following con-
ditions hold: (1) at most one process obtains
stop, (2) at most s—1 processes obtain abort,
and (3) at most s — 1 processes obtain next.

To prove the correctness and complexity of
the collect list, let k' be the total contention,
where the number of processes which enter a
copy of a sieve in a round and invoke register
and collect.

Lemma 2 If the level of a splitter v n the
collect list is 1, 0 < I < k', then at most k' — 1
processes take access to v.

Proof : We prove this lemma by induction
on I, the level of v. In the base case, [= 0,
the lemma trivially holds since at most k’ pro-
For the
induction step, suppose that the lemma holds
for a splitter u with level I, 0 < [< &/, and
consider some splitter v with level [+ 1. The

cesses are active in the collect list.

level of u is I, and by the inductive hypothesis,
at most k' — I processes take access to u. Then,
the property (3) of the splitter (lemma 1) im-
plies that at most k' — [— 1 of the processes

0630

萩原 恵子
－63－

Algorithm 3: Procedures renaming algorithm: part III.

procedure partial_scan(list)

44 Vi = collect(list);

45 V3 = collect(list);

46 if (Vi1 = V2) then return Vi;
47 else return 0;

procedure candidates(sieve, copy)
48 sp=0;V = 0;

49 while (sieve.list[copy].mark[sp] = true) do
50 if (sieve.list[copy].view[sp] # L) then V = V U {sieve.list[copy].view[sp]};

51 sp++;
52 od;
53 if V = 0 then return 0;

54 U = min{view|view € V and view # 0};
55 if U # @ and for every (p;,sp) € U, sieve.list[copy|.view[sp] D U
or sieve.list[copy].view[sp] = @ then return U;

56 else return 0;

procedure clear(sieve, nextC)

57 sieve.inside[neztC] = false; sp = 0;

58 while (steve.list[neztC].mark[sp] = true) do

59 write initial value to a splitter sp in sieve.list[neztC];
60 sp++;

61 od;

procedure leave(sieve, nextC, nextDB)

62 sieve.list[nextC].done[mysplitier] = true;
63 if W # 0 and for every (p;, sp) € W, sieve.list[nextC|.done[sp] = true then

64 sieve.allDone[nextC| = nextDB;

obtain next at v and take access to v. []

By Lemma 2 and the algorithm, when a
process executes register, it stops or aborts in
a splitter with level less than or equal to k' —
1. By the property (1) of the splitter (lemma
1), at most one process stops in each splitter.
Therefore, we have the following lemma.

Lemma 3 Fach process which obtains stop
by invoking splitter writes its identifier in the
splitter with level < k' —1, and no other process
writes its identifier in the same splitter.

By Lemma 3, procedure register and collect
visits at most k' splitters, each splitter requires
a constant number of operations.

Theorem 4 The step complexities of the pro-
cedure register and collect are O(k').

By the algorithm, a process p; once regis-
ter in a splitter sp; by invoking the procedure
register, processes never update the variable

id[sp;]. And the procedure collect scans a col-
lect list sequentially. By the above properties
of collect list, we have the following lemma.

Lemma 5 Assume a collect operation copy
executed by p; returns Vi, and a collect oper-
ation copy erecuted by p; returns Va. If cops
starts after copy finishes, then V4 C Vs.

The collect returns a view consisting of
all process identifiers which registered before
invoking collect and some process identifiers
which register concurrently with the execution
of collect. Let V be a set obtained by an execu-
tion of partial_scan, and let V; and V5 be non-
empty views obtained by consecutive two invo-
cations of collect in the partial_scan. If a process
obtains the identical views, that is V7 = V5 the
set V is a snapshot of processes which have
registered at some point between two collects.

Lemma 6 For every non-empty sets Vi and
Vo which 1s obtained by invoking the procedure
partial_scan, either V1 C Vy or Vo C V7.

0640

萩原 恵子
－64－

Algorithm 4: Procedures of collect list.

procedure register(list)

procedure collect(list)

65 sp = 0; 7T sp=0;V =0

66 while (true) 78 while (list.mark[sp] = true)

67 list.mark[sp] = true; 79 if (list.id[sp] # L) then V = V U {(list.id[sp], sp)}
68 move = splitter(list, sp); 80 spt++;

69 if (move = next) then 81 od;

70 sp++; 82 return V;

71 if (move = abort) then

72 return L; procedure splitter(list, currentsp)

73 if (move = stop) then 83
74 list.id[sp] = pi; 84
75 return sp; 85
76 od; 86

list. X [currentsp] = ps;

if (list.Y [currentsp| = true) then return abort;
list.Y[currentsp] = true;

if (list.X[currentsp| = p;) then return stop;

87 else return next;

4.2 Correctness of Renaming Algo-
rithm

We briefly show the correctness of our renam-
ing algorithm.

By the same access control as the renam-
ing algorithm presented in [1], our algorithm
guarantees that all processes entering a copy
in some round leave and the copy is initialized
before the copy is used in the next round. The
behavior of some copy in some round is inde-
pendent of the behavior of the previous rounds
in the copy. Therefore, the following lemmas
concern a copy in one round and it is enough
to show the procedure partial_scan and candi-
dates work well on behalf of latticeAgreement
and candidates in [1].

Lemma 7 If W1 and Wy are non-empty views
returned by invocations of candidates(s,c) for
the same copy ¢ of the same sieve s in the same

round then W1 = W5 .

Proof : We prove this lemma by contra-
diction. Assume W; # Ws. By lemma 6,
Wi C Wy or Wo C Wi. We assume W1 C Ws
without less of generality. A snapshot returned
by candidates is a snapshot obtained by us-
ing partial_scan in the same copy in the same
round. Let p; be a process which obtains W; by
partial_scan, and p; be a process which obtains
W5 by candidates. Since p; is the only process
which updates the variable s.list[c].view][sp]
in this round, the value of s.list[c].view[sp]
must be the initial value | or W;. How-
ever, p; sees that s.list[c|.view[sp] D Wy or
s.list[c].view[sp] = 0. A contradiction. [|

If an invocation of candidates(s, c) by pro-
cess p; returns a non-empty view containing it-
self, p; is a winnerin copy c of sieve s. Lemma
7 implies following lemma.

Lemma 8 If process py, s a winner in copy c
of sieve s in some round, then p, appears in
every non-empty view returned by an invoca-
tion of candidates(s,c) in this round.

Process p; is inside copy c of sieve s after
it executes line 31 with ¢. A process inside
copy c of sieve s is done after it assigns true
to sieve.list[c].done[sp] (in line 37, if it is a

winner, or in line 62, otherwise).

Lemma 9 If process p; s inside copy ¢ of
steve s 1n some round, all winners of the pre-
vious copy ¢ — 1 mod 2N of sieve s are done
wn this round.

By Lemma 8 and 9, we can show the fol-
lowing uniqueness.

Lemma 10 If active processes p; and pj(j #
i) hold names y; and y;, respectively, at the end
of some finite prefix of some execution, then

Yi £ Yj-

The following two lemmas are used to give
an upper bound of the number of sieves to
which each process visits.

Lemma 11 If one or more processes enter a
copy ¢ of a sieve s in some round, at least
one process obtains a snapshot by invoking par-
tial_scan n ¢ in this round.

0 650

萩原 恵子
－65－

Proof :
tion. Assume that no process obtains a snap-
shot. In this case, no process writes non-empty
set to a variable s.list[c|.view|sp|, obtains non-
empty set by candidates, and writes nextD B to

We prove the lemma by contradic-

the variable s.allDone[nextC]. Since a copy
is initialized after s.allDone[nextC] is set to
nextDB, no process initializes the copy. Let
p; be the last process which writes its identi-
fier to a variable s.list[c].id[sp] of some splitter
sp in the copy c in the procedure register. The
process p; then executes collect twice in par-
tial_scan. Since a set of processes which have
registered does not changes after p; registered,
p; can obtains a snapshot. A contradiction. B

Lemma 12 If one or more processes enter a
copy ¢ of a sieve s in some round, at least one
process wins in ¢ in this round.

Proof:
cess obtains a snapshot by invoking the proce-
dure partial_scan in the copy ¢ in this round.
Let W be the minimum snapshot obtained in

Lemma 11 shows that at least one pro-

¢ in this round, and p; be the last process in
W which writes a value to s.list[c|.view[sp] in
some splitter sp. Since W is the minimum
snapshot, every process p; in W obtains a
snapshot W' not smaller than W or fails to
obtain a snapshot. Therefore p; writes a view
W' in its splitter such that W C W' or W = 0.
The process p; can see these values in candi-
dates and return W including p;. That is, p;
wins in ¢ in this round. [|

We use Lemma 12 to show the following
lemma by the similar way to Lemma 3.5 in [1].

Lemma 13 Every process p wins in sieve at
most 2k — 1, where k s the point contention of
p’s interval of getName.

The step complexity of our algorithm is as
follows. In getName, each process p; visits to
at most 2k — 1 sieves, and takes access to and
enters at most one copy in each sieve. For each
copy, p; invokes one register, two collect, and at
most one clear. Each procedure has O(k) step
complexity, and therefore, total step complex-
ity is O(k?). The algorithm uses 2n — 1 sieves,
2N copies of each sieve, and O(n) registers for

each copy. Therefore, the space complexity is

O(n®N).

Theorem 14 Our algorithm solves the point
contention adaptive long-lived (2k* — k)-
renaming problem with O(k?) step complezity
and O(n?N) space complexity using bounded
values.

5 Conclusion

We have presented a long-lived (2k% — k)-
renaming algorithm that adapts to point con-
tention k£ and uses bounded values. The step
complexity is O(k?) and the space complexity
is O(n?N) where n and N are upper bound of
k and ther number of processes, respectively.
Our future work is to improve our algo-
rithm. We would like to develop an efficient
long-lived (2k—1)-renaming algorithm which is
adaptive to point contention with polynomial
step complexity and uses bounded memory.

References

[1] Y.Afek, H.Attiya, A.Fouren, G.Stupp, and
D.Touitou. Adaptive long-lived renaming
using bounded memory. 1999. Available at
www.cs.technion.ac.il/~hagit/pubs/AAFS
T99disc.ps.gz.

[2] Y.Afek, H.Attiya, A.Fouren, G.Stupp, and
D.Touitou. Long-lived renaming made
adaptive. In Proc. 18th ACM Symp. Prin-
ciples of Dist. Comp., pages 91-103, 1999.

[3] H.Attiya and A.Fouren. Polynomial and
adaptive long-lived (2k-1)-renaming. In
Proc. 14th Int. Symp. on Dist. Comp.,

2000.

[4] M. Herlihy. Wait-free synchronization.
ACM Trans. on Programming Languages
and Systems, 13(1):124-149, January 1991.

[6] H.Attiya and A.Fouren. An adaptive col-
lect algorithm with applications. 1999.
Available at www.cs.tehnion.ac.il/~hagit/

pubs/AF99ful.ps.gz.

0660

萩原 恵子
－66－

