
正則２部グラフに対する単純なマッチングアルゴリズム

牧野和久, 高畑貴志，藤重悟

560-8531 大阪府豊中市待兼山町 1-3 大阪大学大学院基礎工学研究科システム科学分野
{makino,takabatake,fujishig}@sys.es.osaka-u.ac.jp

あらまし 本論文では，∆-正則２部グラフに対する完全マッチング問題を考察する．ただ
し，グラフGは，n節点，m枝，すなわち，1

2 n ∆ = mとする．我々は，まず，Gabowの
方法に基づく新しい単純なO(m log n)アルゴリズムを与える．次に，ColeとHopcroftが提
案した正則２部グラフに対する辺疎化手法を取り入れることにより， そのアルゴリズムを
O(m + n log n log ∆)に改善する．我々のアルゴリズムは，動的木やスプレイ木などの高度
なデータ構造を必要としない．

和文キーワード: ２部マッチング, 辺彩色, グラフアルゴリズム

A Simple Matching Algorithm for Regular Bipartite Graphs

Kazuhisa Makino, Takashi Takabatake and Satoru Fujishige

Division of Systems Science, Graduate School of Engineering Science, Osaka University,
Toyonaka, Osaka, 560-8531, Japan.

{makino,takabatake,fujishig}@sys.es.osaka-u.ac.jp

abstract We consider the perfect matching problem for a ∆-regular bipartite graph with
n vertices and m edges, i.e., 1

2 n ∆ = m. We first give a new simple O(m log n) algorithm
based on Gabow’s approach, and then improve it to a faster O(m+n log n log ∆) algorithm
by incorporating Cole and Hopcroft’s edge-sparsification for regular bipartite graphs. Our
algorithms employ no sophisticated data structure such as dynamic tree and splay tree.

英文 key words: Bipartite matching, Edge-coloring, Graph algorithm.

研究会Temp
ア　ル　ゴ　リ　ズ　ム

研究会Temp
81－4

研究会Temp
（２００１． １１． ２７）

研究会Temp
－27－

1. Introduction

It is well-known that any regular bipartite graph has a perfect matching and that the
perfect matching problem for regular bipartite graphs is related to the edge-coloring prob-
lem for general bipartite graphs. For example, Kapoor and Rizzi [6] showed that the
edge-coloring problem for a bipartite graph G with m edges and the maximum degree ∆
can be solved in T + O(m log ∆) time, where T is the time required to compute a perfect
matching in a k-regular bipartite graph with O(m) edges and k ≤ ∆.

In this paper, we consider the perfect matching problem for regular bipartite graphs
with possible multiple edges. The perfect matching problem for regular bipartite graphs
has been studied and a lot of algorithms have been proposed in the literature (see, e.g.,
[1, 2, 3, 4, 5, 7, 8]). Cole and Hopcroft [2] presented an O(m + n log n log 2 ∆) algorithm
for computing a perfect matching in a ∆-regular bipartite graph with n vertices and m

edges. This time complexity was improved by Cole [1] and Rizzi [7] to O(m+n log n log ∆).
Schrijver [8] also presented an O(m∆) algorithm and Cole, Ost, and Schirra [3] obtained
an O(m) algorithm by improving Schrijver’s algorithm [8] by using splay trees, one for
each chain, as a data structure.

We present in this paper a simple O(m+n log n log ∆) algorithm for the perfect match-
ing problem for ∆-regular bipartite graphs. Our algorithm can be obtained by extending
Gabow’s algorithm [5] for computing a perfect matching in a 2 t-regular bipartite graph
for a positive integer t. Our algorithm uses no sophisticated data structure such as dy-
namic tree and splay tree employed in [1, 3], and runs in linear time for regular bipartite
graphs with ∆ ≥ log n log ∆. It is expected that our algorithm will achieve good practical
performance, while efficient implementations and computational experiments of the above
algorithms (including ours) deserve further study. Note that Cole’s algorithm [1] makes
use of a dynamic tree and that our algorithm is simpler than Rizzi’s [7].

The rest of the paper is organized as follows. In Section 2 we first present an O(m logn)
algorithm for computing a perfect matching in a regular bipartite graph, which will give
us a basis for a faster algorithm. By using the edge-sparsification technique due to Cole
and Hopcroft [2], we present a faster algorithm for computing a perfect matching in a
regular bipartite graph in Section 3.

2. An O(m log n) algorithm

In this section, we present an O(m log n) algorithm for computing a perfect matching in
a regular bipartite graph, which will be made faster in the next section. Let G = (V, E)
be a ∆-regular bipartite graph with n vertices and m edges. Here V has a bipartition

研究会Temp
－28－

(V +, V −), i.e., any edge e ∈ E is incident to a vertex in V + and a vertex in V −. Note
that m = n ∆ /2 and |V +| = |V −| = n/2.

Let us first note that a perfect matching in a 2t-regular bipartite graph G with a positive
integer t can be computed in linear time [5]. We first find an Eulerian orientation of G

that consists of Eulerian tours, one for each connected component of G, and then remove
those edges in G that are oriented from V − to V +. This gives a 2t−1-regular subgraph
of G. By repeating this procedure t times, we finally obtain a 1-regular subgraph (i.e., a
perfect matching) of G. Since an Eulerian orientation of G can be found in O(m) time,
Gabow’s algorithm [5] requires O(m + 1

2m + 1
4m + · · ·) = O(m) time. However, if a given

regular graph is not 2t-regular for any positive integer t, the above algorithm does not
work, since it ends up with a (2k + 1)-regular subgraph for some integer k ≥ 1 that has
no Eulerian orientation.

Therefore, our algorithm first makes G 2t-regular by adding new edges to G. More
precisely, let G = (V, E) be a ∆-regular bipartite graph such that 2 t−1 < ∆ ≤ 2t for
some positive integer t. Let M1 be a perfect matching of the complete bipartite graph
Kn

2
, n
2

with the bipartition (V +, V −) of V . We first construct a 2t-regular bipartite graph
Ĝ = (V, Ê) by adding 2t − ∆ copies of M1 to G. A new edge ê ∈ Ê \E is called dummy if
there exists no edge e in E such that e and ê are parallel. Note that the number of dummy
edges in Ĝ is at most n

2 (2t −∆) <
|Ê|
2 . We then apply Gabow’s algorithm [5] to Ĝ to find

a perfect matching M2 in Ĝ. Here, for an Eulerian orientation, if the number of dummy
edges oriented from V + to V − is at most the half of the number of all dummy edges, to get
M2 we remove those edges that are oriented from V − to V +; otherwise we remove those
edges that are oriented from V + to V −. Note that M2 has at most n

4 (= |V +|
2) dummy

edges. In other words, the size of the matching formed by the non-dummy edges in M2 is
at least |V +|− |V +|

2 (= |V +|
2). We again construct a 2t-regular bipartite graph Ĝ by adding

2t − ∆ copies of M2 to G, and apply Gabow’s algorithm to it. Let M 3 be the obtained
matching in Ĝ. Since Ĝ contains at most n

4 (2t − ∆) <
|Ê|
4 dummy edges, M3 has at most

|V +|
4 dummy edges (i.e., the size of the matching formed by non-dummy edges in M3 is

at least |V +| − |V +|
4 (= 3|V +|

4)). By repeating this procedure at most
log |V +|� times, we
finally obtain a perfect matching of G.

Formally, the algorithm described above can be given as follows.

Algorithm Add-Split

Input: A ∆-regular bipartite graph G = (V, E) such that 2 t−1 < ∆ ≤ 2t for some positive
integer t.

Output: A perfect matching M in G.

Step 1: Compute a perfect matching M of K n
2
, n
2

and put k := 1.

研究会Temp
－29－

Step 2: Construct a 2t-regular bipartite graph Ĝ = (V, Ê) by adding 2t − ∆ copies of M

to G.

Step 3: While Ĝ is not 1-regular do

(3-I) Find an Eulerian orientation of Ĝ.
(3-II) If the number of dummy edges oriented from V + to V − is at most the half of

the number of all dummy edges in Ĝ, then remove those edges that are oriented
from V − to V +; otherwise remove those edges that are oriented from V + to
V −. Denote the resultant graph by Ĝ = (V, Ê) again.

Step 4: Put M := Ê and k := k + 1. If k ≤
log |V +|�, then go to Step 2. Otherwise
return M and halt. ✷

Note that when M in Step 4 contains no dummy edge before we get k >
log |V +|�,
we can output M and halt.

Theorem 2.1: Algorithm Add-Split correctly computes a perfect matching of G in O(m
log n) time.

Proof. Since the above argument shows the correctness of the algorithm, we consider its
time complexity. It is clear that Steps 1, 2 and 4 require O(m) time. From the result in
[5], Step 3 can be done in O(m) time. Since the number of iterations between Step 2 and
Step 4 is
log n�, the algorithm requires O(m log n) time in total. �

In concluding this section, we remark that the time complexity can be improved to
O(m log∆ n) by effectively using the information on Ĝ obtained in the previous iteration
between Step 2 and Step 4.

3. An O(m + n log n log ∆) algorithm

An edge-sparsification technique for regular bipartite graphs was proposed by Cole and
Hopcroft [2] and has been used to obtain faster algorithms for computing a perfect match-
ing in a regular bipartite graph [1, 2, 3, 7]. We also employ this technique to devise a
faster version of our algorithm.

Given a ∆-regular bipartite graph G = (V, E) with 2 t−1 < ∆ ≤ 2t for some positive
integer t, the edge-sparsification produces a subgraph G∗ = (V, E∗) of G having an edge
capacity function c : E∗ → {1, 2, 22, · · · , 2t} such that

(i) for each v ∈ V , the sum of the edge capacities c(e) for all edges e incident to v is equal
to ∆, i.e., ∑

{ c(e) | e ∈ E∗ is incident to v} = ∆,

研究会Temp
－30－

(ii) for each � ∈ {0, 1, · · · , t}, the set of all edges e with c(e) = 2 � forms a forest (i.e., it
contains no cycle).

Cole and Hopcroft [2] showed that the edge-sparsification can be done in linear time
without using any sophisticated data structure. We identify an edge e having capacity
c(e) with parallel edges formed by c(e) copies of e. It follows from (i) that G ∗ can be
regarded as a ∆-regular graph, and hence it always contains a perfect matching which can
also be regarded as a perfect matching in the original graph G. By (ii), G ∗ has at most
(n − 1)
log ∆� edges.

Intuitively speaking, we apply Algorithm Add-Split to graph G∗ instead of G. Since
G∗ has at most (n−1)
log∆� edges, the algorithm requires O(m+(n−1) log∆× log n) =
O(m + n log n log ∆) time, where the time required for the edge-sparsification is O(m).

Let us assume that 2t−1 < ∆ < 2t for some positive integer t, since a perfect matching
of a 2t-regular bipartite graph can be obtained in linear time [5]. We need some notations
to describe the details of our faster algorithm. Apply the edge-sparsification procedure
to a graph formed by (2t − ∆) (≤ 2t−1) copies of a perfect matching M in K n

2
, n
2
. Denote

by M∗ the resultant graph with edge capacities. Let Ĝ = (V, Ê) be the graph obtained
by adding M∗ to G∗, and let Ê� (� = 0, 1, · · · , t − 1) be the set of all edges e in Ê with
c(e) = 2�. Note that Ĝ with edge capacities can be regarded as a 2t-regular graph. A
2t−1-regular subgraph H = (V, F) of Ĝ can be computed as follows.

(1) Compute an Eulerian orientation of Ê0 and choose those edges that are oriented
from V + to V − (or V − to V +). Denote by R1 the set of such edges.

(2) For each � ∈ {0, 1, · · · , t − 2} define

F� =

{
R1 ∪ Ê1 if � = 0
Ê�+1 otherwise,

(3.1)

and put F =
⋃t−2

�=0 F�.

Note that each edge e ∈ F� (� = 0, 1, · · · , t − 2) has the capacity c(e) = 2�. Therefore,
Step 3 in Algorithm Add-Split can be performed as follows. Let R0 = ∅ and for each � =
1, 2, · · · , t− 1 let R� be the edge set obtained from an Eulerian orientation of Ê�−1∪R�−1.
Then we get a perfect matching of Ĝ from an Eulerian orientation of Êt−1 ∪ Rt−1.

Now, we have the following algorithm.

Algorithm Bitwise-Add-Split

Input: A ∆-regular bipartite graph G = (V, E) such that 2 t−1 < ∆ ≤ 2t for some positive
integer t.

研究会Temp
－31－

Output: A perfect matching M in G.

Step 0: If ∆ = 2t, then compute a perfect matching M of G by applying Gabow’s
algorithm to G, and halt.

Step 1: Apply the edge-sparsification procedure to G. Denote by G∗ the resultant graph
with edge capacities. Let M be a perfect matching of K n

2
, n
2

and put k := 1.

Step 2: Let M∗ be the graph, with edge capacities, obtained from 2t − ∆ copies of
M by the edge-sparsification procedure and construct a 2t-regular bipartite graph
Ĝ = (V, Ê) by adding M ∗ to G∗.

Step 3: Put R0 := ∅. For � = 0, 1, · · · , t − 1 do

(3-I) Find an Eulerian orientation of Ê� ∪ R�.
(3-II) If the number of dummy edges oriented from V + to V − is at most the half

of the number of all dummy edges, then remove those edges that are oriented
from V − to V +; otherwise remove those edges that are oriented from V + to
V −. Denote the resultant edge set by R�+1.

Step 4: Put M := Rt and k := k + 1. If k ≤
log |V +|�, then go to Step 2. Otherwise
return M and halt. ✷

Similarly as in algorithm Add-Split, if M in Step 4 contains no dummy edge before
we get k >
log |V +|�, we can output M and halt. Note further that in Step 2, the edge-
sparsification for 2t − ∆ copies of M can be done in O(n log ∆) time by considering the
binary representation of 2t − ∆.

Let us examine the properties of Ê�∪R� (� = 0, 1, · · · , t−1) in Step 3 of the algorithm.

Lemma 3.1: Define H� = (V, Ê� ∪ R�) for � = 0, 1, · · · , t − 1. Then the following two
statements hold for � = 0, 1, · · · , t − 1:

(i) The degree of each vertex in H� is even.

(ii) H� has at most 3n edges.

Proof. Since Ĝ is 2t-regular, the first statement holds. The second one is shown by
induction on �, since Ê� and R� have at most (n − 1) + n/2 ≤ 3n/2 and 3n/2 edges,
respectively. �

Theorem 3.2: Algorithm Bitwise-Add-Split finds a perfect matching of a ∆-regular
bipartite graph G in O(m + n log n log ∆) time.

研究会Temp
－32－

Proof. Since the discussion in Sections 2 and 3 shows the correctness of the algorithm,
we only consider its time complexity. Steps 0 and 1 can be done in O(m) time [5, 2],
and Step 2 requires O(n log ∆) time, since |E ∗|, |M ∗| ≤ (n − 1) log∆. It follows from
Lemma 3.1 that Step 3 requires O(n log ∆) time. Moreover, Step 4 requires O(n) time.
Since the number of iterations between Step 2 and Step 4 is
log n�, the algorithm requires
O(m + n log n log ∆) time in total. �

By combining it with the result by Kapoor and Rizzi [6], we have the following corollary.

Corollary 3.3: A minimum edge-coloring of a ∆-bipartite graph can be found in O((m +
n log n) log ∆) time. �

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research of the Ministry
of Education, Culture, Sports, Science and Technology of Japan.

References

[1] R. Cole. Two Problems in Graph Theory. Ph. D. thesis. Cornell University, August
1982.

[2] R. Cole and J. Hopcroft. On edge coloring bipartite graphs. SIAM Journal on Com-
puting, 11: 540–546, 1982.

[3] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in O(E log D)
time. Combinatorica, 21: 5–12, 2001.

[4] J. Csima and L. Lovász. A matching algorithm for regular bipartite graphs. Discrete
Applied Mathematics, 35: 197–203, 1992.

[5] H. N. Gabow. Using Euler partitions to edge color bipartite multigraphs. International
Journal of Computer and Information Sciences, 5(4):345–355, 1976.

[6] A. Kapoor and R. Rizzi. Edge-coloring bipartite graphs. Journal of Algorithms, 34:
390–396, 2000.

[7] R. Rizzi. Finding 1-factors in bipartite regular graphs, and edge-coloring bipartite
graphs. Preprint, October 1999.

研究会Temp
－33－

[8] A. Schrijver. Bipartite edge coloring in O(∆m) time. SIAM Journal on Computing,
28: 841–846, 1998.

研究会Temp
－34－

