googobooobobg sib4
oooobobooooo

oot ogboogbood

ooob,0guogogodd
560-8531 0000000000 1-:30000000000000000000000

{makino, takabatake, fujishig}@sys.es.osaka-u.ac.jp

oooC0 0O0O0OO0bOOoAOOODOO0ODO0ODOO0OODOOUODOUOOOObObOODbDOOO
goooo GDDnDDDmDDDDDDD%nA:mDDDDDDDDDDDGabOWD
000000000000 O(mlogn) 000000000 ODOOODOColed Hoperoft 0 O
gboboooboboobobooobboobboooboobobooo obboobooo
O(m+nlognlogA) 0000000000000 0O0ODOOOOODOOOOOOOOOOO
gboboobooooooog

gboooobodab:. goboooboooa,bob,oboaboaboo

A Simple Matching Algorithm for Regular Bipartite Graphs

Kazuhisa Makino, Takashi Takabatake and Satoru Fujishige

Division of Systems Science, Graduate School of Engineering Science, Osaka University,
Toyonaka, Osaka, 560-8531, Japan.

{makino, takabatake, fujishig}@sys.es.osaka-u.ac.jp

abstract We consider the perfect matching problem for a A-regular bipartite graph with
n vertices and m edges, i.e., %nA = m. We first give a new simple O(mlogn) algorithm
based on Gabow’s approach, and then improve it to a faster O(m+nlognlog A) algorithm
by incorporating Cole and Hopcroft’s edge-sparsification for regular bipartite graphs. Our

algorithms employ no sophisticated data structure such as dynamic tree and splay tree.

00 key words: Bipartite matching, Edge-coloring, Graph algorithm.

0270

研究会Temp
ア　ル　ゴ　リ　ズ　ム

研究会Temp
81－4

研究会Temp
（２００１． １１． ２７）

研究会Temp
－27－

1. Introduction

It is well-known that any regular bipartite graph has a perfect matching and that the
perfect matching problem for regular bipartite graphs is related to the edge-coloring prob-
lem for general bipartite graphs. For example, Kapoor and Rizzi [6] showed that the
edge-coloring problem for a bipartite graph G with m edges and the maximum degree A
can be solved in T'+ O(mlog A) time, where T is the time required to compute a perfect
matching in a k-regular bipartite graph with O(m) edges and k£ < A.

In this paper, we consider the perfect matching problem for regular bipartite graphs
with possible multiple edges. The perfect matching problem for regular bipartite graphs
has been studied and a lot of algorithms have been proposed in the literature (see, e.g.,
[1,2,3,4,5,7, 8]). Cole and Hopcroft [2] presented an O(m + nlognlog? A) algorithm
for computing a perfect matching in a A-regular bipartite graph with n vertices and m
edges. This time complexity was improved by Cole [1] and Rizzi [7] to O(m+nlognlog A).
Schrijver [8] also presented an O(mA) algorithm and Cole, Ost, and Schirra [3] obtained
an O(m) algorithm by improving Schrijver’s algorithm [8] by using splay trees, one for
each chain, as a data structure.

We present in this paper a simple O(m+nlognlog A) algorithm for the perfect match-
ing problem for A-regular bipartite graphs. Our algorithm can be obtained by extending
Gabow’s algorithm [5] for computing a perfect matching in a 2’-regular bipartite graph
for a positive integer t. Our algorithm uses no sophisticated data structure such as dy-
namic tree and splay tree employed in [1, 3], and runs in linear time for regular bipartite
graphs with A > lognlog A. Tt is expected that our algorithm will achieve good practical
performance, while efficient implementations and computational experiments of the above
algorithms (including ours) deserve further study. Note that Cole’s algorithm [1] makes
use of a dynamic tree and that our algorithm is simpler than Rizzi’s [7].

The rest of the paper is organized as follows. In Section 2 we first present an O(m logn)
algorithm for computing a perfect matching in a regular bipartite graph, which will give
us a basis for a faster algorithm. By using the edge-sparsification technique due to Cole
and Hopcroft [2], we present a faster algorithm for computing a perfect matching in a

regular bipartite graph in Section 3.

2. An O(mlogn) algorithm

In this section, we present an O(mlogn) algorithm for computing a perfect matching in
a regular bipartite graph, which will be made faster in the next section. Let G = (V, E)

be a A-regular bipartite graph with n vertices and m edges. Here V has a bipartition

0 280

研究会Temp
－28－

(V*T,V7), ie., any edge e € E is incident to a vertex in VT and a vertex in V~. Note
that m =nA /2 and |[VT| = |V~ | =n/2.

Let us first note that a perfect matching in a 2'-regular bipartite graph G with a positive
integer ¢ can be computed in linear time [5]. We first find an Eulerian orientation of G
that consists of Eulerian tours, one for each connected component of G, and then remove
those edges in G that are oriented from V=~ to V. This gives a 2!~ !-regular subgraph
of G. By repeating this procedure ¢ times, we finally obtain a 1-regular subgraph (i.e., a
perfect matching) of G. Since an Eulerian orientation of G can be found in O(m) time,
Gabow’s algorithm [5] requires O(m + im + $m+---) = O(m) time. However, if a given
regular graph is not 2‘-regular for any positive integer ¢, the above algorithm does not
work, since it ends up with a (2k + 1)-regular subgraph for some integer k£ > 1 that has
no Eulerian orientation.

Therefore, our algorithm first makes G 2%-regular by adding new edges to G. More
precisely, let G = (V, E) be a A-regular bipartite graph such that 27! < A < 2¢ for
some positive integer t. Let M; be a perfect matching of the complete bipartite graph
K%% with the bipartition (V+,V ™) of V. We first construct a 2¢-regular bipartite graph
G = (V, E) by adding 2t — A copies of M to G. A new edge é € E\ E is called dummy if
there exists no edge e in E such that e and é are parallel. Note that the number of dummy
edges in G is at most 2(2-A)< @ We then apply Gabow’s algorithm [5] to G to find
a perfect matching Ms in G. Here, for an Eulerian orientation, if the number of dummy
edges oriented from VT to V= is at most the half of the number of all dummy edges, to get
M, we remove those edges that are oriented from V'~ to V' T; otherwise we remove those
edges that are oriented from V't to V. Note that My has at most § (= @) dummy
edges. In other words, the size of the matching formed by the non-dummy edges in Ms is
at least |V 1| — |V2j (= @) We again construct a 2'-regular bipartite graph G by adding
2t — A copies of M to G, and apply Gabow’s algorithm to it. Let M3 be the obtained
matching in G. Since G contains at most 2(2t-A)< @ dummy edges, M3 has at most
@ dummy edges (i.e., the size of the matching formed by non-dummy edges in M3 is
at least |V 1| — @ (= 3‘%ﬂ)) By repeating this procedure at most [log [V T[] times, we
finally obtain a perfect matching of G.

Formally, the algorithm described above can be given as follows.

Algorithm ADD-SPLIT

Input: A A-regular bipartite graph G = (V, E) such that 2!~ < A < 2 for some positive
integer t.

Output: A perfect matching M in G.

Step 1: Compute a perfect matching M of Kn 2 and put k:= 1.

2

0290

研究会Temp
－29－

Step 2: Construct a 2-regular bipartite graph G = (V, E) by adding 2! — A copies of M
to G.
Step 3: While G is not 1-regular do

(3-1) Find an Eulerian orientation of G.

(8-IT) If the number of dummy edges oriented from V' to V™ is at most the half of
the number of all dummy edges in G, then remove those edges that are oriented
from V'~ to VT; otherwise remove those edges that are oriented from VT to
V~. Denote the resultant graph by G = (V, E) again.

Step 4: Put M := F and k := k+ 1. If k < [log|V*|], then go to Step 2. Otherwise
return M and halt. O

Note that when M in Step 4 contains no dummy edge before we get k& > [log|V],
we can output M and halt.

Theorem 2.1: Algorithm ADD-SPLIT correctly computes a perfect matching of G in O(m

logn) time.

Proof. Since the above argument shows the correctness of the algorithm, we consider its
time complexity. It is clear that Steps 1, 2 and 4 require O(m) time. From the result in
[5], Step 3 can be done in O(m) time. Since the number of iterations between Step 2 and

Step 4 is [logn], the algorithm requires O(mlogn) time in total. O

In concluding this section, we remark that the time complexity can be improved to
O(mloga n) by effectively using the information on G obtained in the previous iteration
between Step 2 and Step 4.

3. An O(m+nlognlogA) algorithm

An edge-sparsification technique for regular bipartite graphs was proposed by Cole and
Hopcroft [2] and has been used to obtain faster algorithms for computing a perfect match-
ing in a regular bipartite graph [1, 2, 3, 7]. We also employ this technique to devise a
faster version of our algorithm.

Given a A-regular bipartite graph G = (V, E) with 2!=! < A < 2! for some positive
integer t, the edge-sparsification produces a subgraph G* = (V, E*) of G having an edge
capacity function ¢ : E* — {1,2,2% ... 2!} such that

(i) for each v € V, the sum of the edge capacities c(e) for all edges e incident to v is equal
to A, i.e.,

Z{ c(e) | e € E* is incident to v} = A,

0 300

研究会Temp
－30－

(ii) for each £ € {0,1,---,t}, the set of all edges e with c(e) = 2¢ forms a forest (i.e., it

contains no cycle).

Cole and Hopcroft [2] showed that the edge-sparsification can be done in linear time
without using any sophisticated data structure. We identify an edge e having capacity
c(e) with parallel edges formed by c(e) copies of e. It follows from (i) that G* can be
regarded as a A-regular graph, and hence it always contains a perfect matching which can
also be regarded as a perfect matching in the original graph G. By (ii), G* has at most
(n —1)[log A] edges.

Intuitively speaking, we apply Algorithm ADD-SPLIT to graph G* instead of G. Since
G* has at most (n— 1)[log A] edges, the algorithm requires O(m+ (n—1)logA xlogn) =
O(m + nlognlogA) time, where the time required for the edge-sparsification is O(m).

Let us assume that 271 < A < 2 for some positive integer ¢, since a perfect matching
of a 2t-regular bipartite graph can be obtained in linear time [5]. We need some notations
to describe the details of our faster algorithm. Apply the edge-sparsification procedure
to a graph formed by (2! — A) (< 2!71) copies of a perfect matching M in Kz n. Denote
by M* the resultant graph with edge capacities. Let G = (V, E) be the graph obtained
by adding M* to G*, and let By (¢ = 0,1,---,t — 1) be the set of all edges e in E with
c(e) = 2. Note that G with edge capacities can be regarded as a 2!-regular graph. A
2t=Lregular subgraph H = (V, F) of G can be computed as follows.

(1) Compute an Eulerian orientation of Ey and choose those edges that are oriented
from V* to V= (or V= to VT). Denote by R; the set of such edges.

(2) For each ¢ € {0,1,---,t — 2} define

RIUE, if¢=0
Fo={ e , (3.1)
Foa otherwise,

and put F = UZ;?) .

Note that each edge e € F, ({ = 0,1,---,t — 2) has the capacity c(e) = 2¢. Therefore,
Step 3 in Algorithm ADD-SPLIT can be performed as follows. Let Ry = () and for each £ =
1,2,---,t—11let Ry be the edge set obtained from an Eulerian orientation of Ei 1URy_;.
Then we get a perfect matching of G from an Eulerian orientation of F;_1 U Ry_1.

Now, we have the following algorithm.

Algorithm BITWISE-ADD-SPLIT
Input: A A-regular bipartite graph G = (V, E) such that 2=! < A < 2! for some positive

integer t.

0310

研究会Temp
－31－

Output: A perfect matching M in G.
Step 0: If A = 2!, then compute a perfect matching M of G by applying Gabow’s
algorithm to GG, and halt.
Step 1: Apply the edge-sparsification procedure to G. Denote by G* the resultant graph
with edge capacities. Let M be a perfect matching of K%% and put k£ := 1.
Step 2: Let M* be the graph, with edge capacities, obtained from 2! — A copies of
M by the edge-sparsification procedure and construct a 2f-regular bipartite graph
G = (V, E) by adding M* to G*.
Step 3: Put Ry:=0. For / =0,1,---,t—1 do
(3-1) Find an Eulerian orientation of F; U Ry.
(3-II) If the number of dummy edges oriented from V't to V™ is at most the half
of the number of all dummy edges, then remove those edges that are oriented
from V'~ to VT; otherwise remove those edges that are oriented from VT to

V™. Denote the resultant edge set by Ryy1.

Step 4: Put M := R; and k := k + 1. If k < [log|V™|], then go to Step 2. Otherwise
return M and halt. O

Similarly as in algorithm ADD-SPLIT, if M in Step 4 contains no dummy edge before
we get k > [log|V T[], we can output M and halt. Note further that in Step 2, the edge-
sparsification for 2 — A copies of M can be done in O(nlogA) time by considering the
binary representation of 2 — A.

Let us examine the properties of FyUR; ({ = 0,1,---,t—1) in Step 3 of the algorithm.

Lemma 3.1: Define Hy = (V, E,u Ry) for £ = 0,1,---,t — 1. Then the following two
statements hold for £ =0,1,--- t —1:

(1) The degree of each vertex in Hy is even.

(ii) Hy has at most 3n edges.

Proof. Since G is 2l.regular, the first statement holds. The second one is shown by
induction on ¢, since E; and Ry have at most (n — 1) +n/2 < 3n/2 and 3n/2 edges,
respectively. O

Theorem 3.2: Algorithm BITWISE-ADD-SPLIT finds a perfect matching of a A-reqular
bipartite graph G in O(m + nlognlogA) time.

0 320

研究会Temp
－32－

Proof. Since the discussion in Sections 2 and 3 shows the correctness of the algorithm,
we only consider its time complexity. Steps 0 and 1 can be done in O(m) time [5, 2],
and Step 2 requires O(nlogA) time, since |E*|,|M*| < (n — 1)logA. It follows from
Lemma 3.1 that Step 3 requires O(nlogA) time. Moreover, Step 4 requires O(n) time.
Since the number of iterations between Step 2 and Step 4 is [logn], the algorithm requires
O(m + nlognlogA) time in total. O

By combining it with the result by Kapoor and Rizzi [6], we have the following corollary.

Corollary 3.3: A minimum edge-coloring of a A-bipartite graph can be found in O((m+
nlogn)logA) time. O

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research of the Ministry

of Education, Culture, Sports, Science and Technology of Japan.

References

[1] R. Cole. Two Problems in Graph Theory. Ph.D. thesis. Cornell University, August
1982.

[2] R. Cole and J. Hopcroft. On edge coloring bipartite graphs. SIAM Journal on Com-
puting, 11: 540-546, 1982.

[3] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in O(Elog D)
time. Combinatorica, 21: 5-12, 2001.

[4] J. Csima and L. Lovasz. A matching algorithm for regular bipartite graphs. Discrete
Applied Mathematics, 35: 197-203, 1992.

[5] H. N. Gabow. Using Euler partitions to edge color bipartite multigraphs. International
Journal of Computer and Information Sciences, 5(4):345-355, 1976.

[6] A. Kapoor and R. Rizzi. Edge-coloring bipartite graphs. Journal of Algorithms, 34:
390-396, 2000.

[7] R. Rizzi. Finding 1-factors in bipartite regular graphs, and edge-coloring bipartite
graphs. Preprint, October 1999.

0330

研究会Temp
－33－

[8] A. Schrijver. Bipartite edge coloring in O(Am) time. SIAM Journal on Computing,
98: 841 846, 1998,

0 340

研究会Temp
－34－

