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PSSMs (Position-Specific Score Matrices) have been applied to various problems in Bioin-
formatics such as protein structure prediction, identification of DNA regulatory regions and
detection of motifs. We studied the following problem: given positive examples (sequences) and
negative examples (sequences), find a PSSM which correctly discriminates between positive and
negative examples. We prove that this problem is solved in polynomial time if the size of the
PSSM is bounded by a constant. On the other hand, we prove that this problem is NP-hard if
the size is not bounded. Several related results are also presented.

1 Intrqduction

Position-Specific Score Matrices (PSSMs) have been applied to various problems in Bioinfomat-
ics such as detection of remote homology, identification of DNA regulatory regions and detection
of motifs [2]. Usually, PSSMs are derived from training data. Therefore, how to derive a good
PSSM from training data (examples) has been a key issue in these application. Various methods
have been proposed for this purpose. Among them, simple statistical methods based on residue
frequencies and local search algorithms (such as Expectation Maximization algorithms) have
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Figure 1: An example of PSSM. S§; (resp. S4) is classified as a positive sequence because
f(TGC) = 9.3 > 8.0 (resp. f(AGC) = 8.8 > 8.0).
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been widely used [2]. However, from the algorithmic viewpoint, almost no theoretical studies
have been done on the derivation of PSSM’s. Therefore, we study the following fundamental
version of the problem: given positive ezamples (sequences) and negative ezamples (sequences),
find a PSSM which completely discriminates between positive and negative ezamples. We prove
that this problem is NP-hard in general but can be solved in polynomial time if the size of a
PSSM is bounded. It follows from the latter result that derivation of position non-specific score
matrices can be derived from examples in polynomial time, where hydropathic indices [5] are
well-known examples of position non-specific score matrices.

We also consider derivation of @ mizture of PSSMs. Mixture of PSSMs are widely used in
Bioinformatics since a single PSSM is not always sufficient for characterizing sequences having
common biological properties. We consider a special case in which the regions to be identified
are already known. Derivation of a single PSSM can be solved in polynomial time by a naive
algorithm which uses linear programming. We show that derivation of a mixture of two PSSMs
is NP-hard even for this retricted case.

2 Deriving a PSSM from Examples

Let ¥ be an alphabet. Let POS = {P!,P?,...} and NEG = {N',N2,...} be sets of strings
on ¥, where POS and NEG mean a set of positive examples and a set of negative examples
respectively. For string S, S[i] denotes the i‘th letter of § and ;; denotes the substring
S[i]S[i+ 1]...5[j] of S. For strings Sy and S3, Sy - Sy denotes the concatenation of S1 and 5.
Let L be a positive integer indicating the length of a motif region to be detected.

Definition 1 (PSSM)
A PSSM is a function fi(a) from [1,...,L] X £ to the set of real numbers, where k € [1,..., L]

and ¢ € ¥ (see Fig. 1).
For string S of length L, we define f($) by f(5) = Sk, fi(S[i]).

Problem 1 (Derivation of a PSSM from examples)
Given £, POS, NEG and L, find a PSSM and a threshold ©® which satisfy the following



conditions:
o Forall P* € POS, f(P!. ;) > © holds for some j € [1,...,|P" — L + 1]

o Forall N* € NEG and for all j = 1,...,|N* ~ L+ 1, f(Nl., ;) < ©.

Theorem 1. Problem 1 is NP-hard.
(Proof) We use a polynomial time reduction from 3SAT.

Let C = {c1,...,¢m} be a set of clauses over a set of boolean variables X = {z1,...,2,},
where each clause consists of three literals. '

From this example, we construct an instance of the PSSM derivation problem (see Fig. 2).
Let ¥ = {0,1} and L = 4n. Let S(i,4y,...) denote the string of length 4n such that S[i] = 1
for @ = iy,1y,. .., otherwise S[i] = 0. Then, NEG is defined by

NEG = {S(),S(4n)} U {S(i,j)|1<i<j<4n} U
{S@)i=1,....an} U {S(2i—1,2i,4n) | i=1,...,n }.

It should be noted that the (2i — 1)-th position and the (2¢)-th position (¢ = 1,...,n) of each
string correspond to literals #; and Z; respectively.

Let ¢; = I;; VI, Vv I;,, where I;, is either z;, or Z;,. We define g(ix) by g(ix) = 2ix — 1 if
li, = ;,, otherwise g(ix) = 2ix. Then, P* is defined by P' = S(g(i1),4n) - S()---S(g(iz),4n) -
S()---S(g(i3),4n). POS consists of P, P% ... P™.

First we show that if C is satisfiable then there exists a PSSM f} satisfying the condition of
Problem. 1 for ©® = 3. From the truth assignment to X satisfying all the clauses, we construct

fr by:

e fori=1,...,m,
f2ic1(0) = 0, faia(1) =1, f22(0) =1 and f3;(1) = 0 if z; is true,
f2i21(0) = 1, fai-1(1) = 0, f2:(0) = 0 and f2;(1) = 1 otherwise,

o fori=2L+1,...,4n -1, fi(0) = f;(1) =0,
o f4n(0)=0and fs,(1) = 1.

Then, it is easy to see that f(N*) < 3 holds for all N* € N, and either f(PEy) = 3,
F(PE t112n) = 3 or f(PY .| 50,) = 3 holds for all P* € POS. :

Next we show that if there is a PSSM satisfying the condition of Problem 1, there exists a
truth assignment satlsfymg all the clauses in C. Let &; = fa;—1(1) = f2;~1(0), Z; = fa:(1) — f2:(0)
and @ = fi,(1) — fan(0). Let f(S()) = z. Then, it is easy to check that for all P* € POS, all
substrings of length L except P1 dns éln_H 12, and P16n+1 20n appear in NEG. Therefore, the
following relations hold if Problem 1 has a solution:

e 2<0,24+4a< 0O

o 2+ li+1; <O forall l; # I,

o 2+1; <O forall

o 24+ d&;+T;+a< 0 for all z;,

. z+l;k + 4 > © holds for some k € [1,2,3] forall c=1;, VI, VI,.
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Figure 2: Construction of POS and NEG in Theorem 1.

From f and © satisfying the above relations, we construct a truth assignment to X as follows:
z;is trueif 2 + 4; + @ > O, x; is false if 2 + Z; + & > O, otherwise z; is arbitrary.

It is sufficient to show that either z + #; + & < ® or z + %; + @ < © holds. Suppose that
2+ @; + @ > O held. Then, #; > 0 would hold from this inequality and 24+ @ < ©. From &; > 0
and 2+ 4, +F+a< 0, 2+ 7%;+a < O would hold. O

Theorem 2. Problem 1 can be solved in polynomial time if ¥ and L are fixed.

(Proof) We construct an arrangement of hyperplanes, where the arrangement is a well-known
concept in computational geometry [3]. We construct the arrangement in the (|Z|L + 1)-
dimensional Euclidean space for the following hyperplanes:

o f(Plyp_1)—©=0forj=1,..,|P"~L+1andforal P"€ POS,
o f(N}ijp1)—©=0forj= 1,...,|N* = L +1 and for all N* € NEG.

Then, we pick an arbitrary point (which corresponds to a pair of f and ©) from each cell and
check whether or not the condition of Problem 1 holds. Since the sign of each function (i.e.,
f(P;fj_‘_L_l) -0, f(N}fﬁL_l) — ©) does not change within a cell, this algorithm correctly solves
Problem 1.

Since the arrangement of hyperplanes in fixed dimensions can be constructed in polynomial
time and the combinatorial complexity of the arrangement is also polynomially bounded [3], the
algorithm works in polynomial time. O

Hydropathic indices have been used for the identification of transmembrane domains of
"membrane proteins. Usually, hydropathic indices are not position-specific, i.e., fia] = f;la] for



all ¢ # j. The algorithm above can also be applied to this case. In this case, the arrangement
in the (|%| + 1)-dimensional Euclidean space is constructed. Since |X| is 4 or 20, we have:

Corollary 1. Hydropathic indices satisfying the condition of Problem 1 can be derived from
examples in polynomial time.

In most cases in deriving hydropathic indices, positive examples given as training data con-
tain information about the positions of the transmembrane domains. Therefore, various learning
algorithms have been applied to derivation of hydropathic indices. But, the above theorem sug-
gests that hydropathic indices can be derived even if the positions of the transmembrane domains
are not known. Of course, the time complexity of the algorithm is still too high even for |X}| = 4.
Thus, an improved algorithm should be developed.

3 Deriving a mixture of PSSMs from Examples

In this section, we consider the following problem.

Problem 2. (Derivation of mixture of PSSMs from examples) .
Given ¥, POS, NEG, L and N where N denotes the number of PSSMs, find a set of PSSMs
with cardinality N and a threshold ©® which satisfy the following conditions:

e For all PP € POS, fk(Pj’j_,_L_l) > O holds for some j € [1,...,|P;| — L + 1] and for some

kell,...,N],
o Forall N' € NEG, forall j = 1,...,|N'|=L+1andforall k € [1,...,N], F¥(N! ;1) <
o,

where f* denotes the score given by the k-th PSSM.

Clearly, Problem 2 is NP-hard from Theorem 1. We are interested in the case where all of
strings are of the same size L (Problem 3).

Proposition 1. Problem 3 can be solved in polynomial time if N = 1 or N > |POS|.
(Proof) The case of N = 11is trivial and well-known. We simply construct the linear inequalities:
fY(P") > @ for all P" € POS, and fY(N*) < © for all N* € NEG. Then, we can obtain PSSM
and © by applying any polynomial time algorithm for linear programming.

In the case of N = |POS)|, we solve the following inequalities: f*(P"*) > © for all P* € POS,
and f¥(N") < © for all N* € NEG and forall k € [1...N]. O

Theorem 3. Problem 3 is NP-hard even for N = 2.

(Proof) We reduce NOT-ALL-EQUAL 3SAT (LO3 in [4]) to Problem 3.

Let U be a set of variables and C be a set of clauses over U such that each clause ¢ € C has
le| = 3. Given the instance (U,C) for NOT-ALL-EQUAL 3SAT, we define an instance I(U,C)

for Problem 3 as follows.
Let L denote the set of literals over U and let p: L — {1,...,2|U|} be a bijection such that
for each u € U p(%) = p(u) + 1 holds. We define POS as the set

POS = {0i102VI=-1 | § = 0,...,2|U| - 1}
and NVEG as

NEG = {01102U1-=2 i =0,2,... 2U|-2} u {0V} u
{ P =11gPW)=pl@)=11gr(=)=pW)=11 g2V () | { 3,y 2} € C, p(e) < p(y) < p(2) }-



We denote the Problem 3-instance consisting of POS and NEG as I(U,C). We say a string in
POS corresponds to a literal in L, iff the 1 appears at the p(L)-th position in the string. For
a literal [ € L, we denote the string corresponding to { with w;. In the same way, we denote
strings 0°1102V1-~2 ¢ NEG as w, 3 for the variable u € U with p(u) =i + 1.

We have to show that there is a not-all-equal truth assignment for (U,C), iff there is a
~ solution for I(U,C) with 2 matrices. ‘

Let o be a not-all-equal truth assignment. Call the set of all strings of POS, for which the
corresponding literal is satisfied by o, POS4, and the set of all other strings of POS POSp. Let
A denote the PSSM, which assigns the value 1 to all occurrences of the character 1 at positions
corresponding to satisfied literals, the value —2 to all other occurrences of 1, and the value 0 to
all occurrences of 0. In the same way, let B denote the PSSM assigning 1 to the occurrences of
1 at positions corresponding to literals not satisfied by ¢ and —2 to the other occurrences.

For © = 1, A accepts all strings in POS4 and B accepts all strings in POSp. Furthermore,
for every clause ¢ € C, there is a literal in ¢ satisfied: by o and a literal not satisfied by o.
Therefore, for every string s € NEG, A(s) < 0 and B(s) < 0, which shows that (A, B) is a
solution for I(U,C).

It remains to show, that there is a not-all-equal truth assignment, for C, if there is a solution
for I(U,C). Let A, B be PSSMs solving I(U,C). Let o denote the truth assignment satisfying
all literals, for which the corresponding string in POS is accepted by A, and unsatisfying all
other literals. If there were a variable u € U with o(u) = o(7), then A(w,)+ A(wg) > 20 or

B(w,) + B(wg) > 20 would hold. Therefore, since A(w, )+ A(wg) = A(0MUN + A(w, z) holds
(and analogously for B), 02l or w,z would be accepted by either A or B, a contradiction.
Thus, o is well-defined. -

To see that o has the not-all-equal property, assume that there is a clause {z,y,2} € C with

o(z) = o(y) = o(z). If o(z) = 1, then we have
A(wx) + A(wy) + A(w,) > 30.
Moreover,

Awg) + A(wy) + Aw:) = 2402V + A(wgy,2)
holds, where w, , , denotes the string of N EG corresponding to clause {z,y,z}. Therefore, since
A(wg,y.;) < © holds, we have A(0%Ul) > @, contradicting 0%Vl € NEG. If o(z) = 0, the same

contradiction follows for B.
[m}

4 Concluding Remarks

In this paper, we have shown that derivation of a PSSM is NP- hard in general but is polynomial
time solvable if the size of the PSSM is bounded by a constant. We also showed that derivation of
mixture of two PSSM’s is NP-hard even if the regions to be identified are known. Development
of approximation algorithms for the NP-hard problems and development of faster algorithms for
derivation of bounded-size PSSMs are important future work.

Relating to derivation of PSSMs, Akutsu and Yagiura studied the following problem [1]:
given correct examples and incorrect examples, find a score function with which the scores of
the correct examples are optimal and the scores of the incorrect examples are not optimal. They
proved that this problem is computationally hard for protein threading with contact potentials
and for multiple alignment with SP-scoring. On the other hand, they showed that this problem
is solvable in polynomial time for pairwise alignment and RNA secondary structure prediction
with simple pseudo-energy functions, by using reductions to linear programming. We recently



consider the problem of deriving score matrices for pairwise alignment under the condition that
each (positive or negative) example consists of a pair of sequences (i.e., alignment results are
not given). We proved that this problem is NP-hard for general . This result is interesting
because this general case can be solved in polynomial time if alignment results are given [1]. It
is not yet known whether this problem is NP-hard for fixed X.
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