NN
HEN

gg oo

Jooog
Ood o

o ooood
Jooooot

ggooooooogd

8400

gbooooooooo

Jodoodoogogt

gg oo

t akaaki @odi ac30. cse. kyutech.ac.jp fujiwara@se. kyutech.ac.jp

gbbodgboobuooooboboan

gobooooooooooooobobOooobOoOoO0oooooobObOobODOO0oOoOooOoOoDOobOoOoD
ooooO0Oooob0 2000000000 NCOPOOOOOOOOOODODOOOOOOOODOOOOO
oo0oooooobO0oO0 nO0O0OO0O0OO0OOOOOODOOOOOOO0O0OOOOODODOOOO0O00 2000
0001000000 0000 EREWPRAMOOOOODOODODOOODODOOO pO0O0O0OO0OO0O0OOO
0od O(m(%—klogn))DDDD[IDEIEIm[IDEIDEI[IDDDDDDDDDDDDDDDDDDDDDDD

20000000000 CREWPRAMOOO0000000000 O +m?log2 +mlogp) 00
D01<p<-% 00
00
000000000000

Cost optimal algorithmsfor patience sorting
and longest increasing subsequence

Takaaki NAKASHIMA and Akihiro FUJIWARA

Department of Computer Science and Electronics, Faculty of Engineering,
Kyushu Institute of Technology

In this paper, we consider parallel algorithmsfor the patience sorting and thelongest increasing subsequence. These
two problems are related each other and are not known to bein the class NC' or P-complete. We first propose two
algorithmsfor the patience sorting of n distinct integers. Thefirst algorithm runsin O(m(%: +logn)) timeusing p
processors on the EREW PRAM, where m is the number of decreasing subseguences in a solution of the patience
sorting, and the second algorithm runsin O(%pg" +m?log % 4+ mlog p) time using p processors on the CREW
PRAM. If 1 < p < 75 issatisfied, the second algorithm becomes cost optimal. Finally, we propose a procedure
which computes the longest increasing subsequence from a solution of the patience sorting, and obtain a parallel
algorithm, which runs with the same complexity as the algorithm of the patience sorting, for the longest increasing

subsequence.

1 Introduction

In parallel computational theory, one of major
gods is to find a paralel agorithm which runs
as fast as possible. For example, many problems
are known to have efficient parallel agorithms
whichrunin©(1) or ©(log n) computational time,
where n is the input size of problems. From the
point of view of complexity theory, the class NC
is used to denote the measure. A problem isin
the class NC' if there exists a parallel algorithm
which solves the problem in O(T'(n)) time us-
ing O(P(n)) processorswhereT'(n) and P(n) are
polylogarithmic and polynomial functions for n,
respectively. Many problemsin the class P, which
is the class of problems solvable in polynomial
time sequentially, areasointheclass NC. Onthe

other hand, some problems in the class P seem to
have no parallel agorithm which runs in polylog-
arithmic time using a polynomial number of pro-
cessors. Such problems are called P-complete.
A problem is P-complete if the problem isin the
class P and we can reduce any problemin P tothe
problem using N C'-reduction. (For details of the
P-completeness, see[10].) It isbelieved that prob-
lems in the class NC' admit paralelization read-
ily, and conversely, P-complete problems are in-
herently sequential and hard to be parallelized.

However, some efficient paralel agorithms
have been recently proposed for P-complete
problemg[5, 14, 15]. In the above papers, the other
well-known measure, cost optimality, is used to
denote parallelizability of problems. The cost of
a parallel agorithm is defined as the product of

0430

研究会Temp
ア　ル　ゴ　リ　ズ　ム

研究会Temp
84－７

研究会Temp
（２００２． ５． ２３）

研究会Temp
－43－

the running time and the number of processors re-
quired in the algorithm, and a parallel agorithm
is called cost optima if its cost is asymptotically
equal to the time complexity of the fastest known
sequential algorithm for the same problem. The
above results mean that some inherently sequen-
tial problems have cost optimal parallel algorithms
and we can parallelize the problems practically.

In this paper, we consider parallel algorithmsfor
two problems related each other. The first prob-
lem is the patience sorting, which was invented
as a practical method of sorting a real deck of
cardg[13]. The second problem is the longest in-
creasing subsequence of n distinct integers. Al-
though these two problems are primitive combina-
toria optimization problems, both of them are not
known to be in the class NC or P-complete, that
is, no NC algorithm have been proposed for the
problems, and there is no proof which shows the
problems are P-compl ete.

There are a lot of papers which deal with the
patience sorting and the longest increasing subse-
guence. Sequentia algorithmg[2, 4, 11], show that
we can solve the two problemsin ©(n logn) time
sequentialy in case that its input is a set of dis-
tinct integers. Asfor parallel agorithms, two ago-
rithms have been proposed for the problem [6, 9].
The former algorithm isfor the linear array, which
isaclassical parale computation model, and the
latter is for the CGM model[8], which is one of
practical parallel computation models. However,
the paralel algorithms are not cost optimal since
costs of both algorithms are O(n?).

In this paper, we propose efficient parallel algo-
rithms for the problems and consider there paral-
lelizability. First we propose a simple algorithm
for the patience sorting. The algorithm consists of
repetition of the prefix operations. The algorithm
runsin O(m(2 + logn)) time using p processors
on the EREV\/pPRAM, where m is the number of
decreasing subsequences in a solution of the pa-
tience sorting. The complexity shows that the al-
gorithm is cost optimal in case of m = O(logn).
Next we propose another parallel a gorithm, which
is more complicated, for the patience sorting. The
second algorithm runs in O(™5" + m?log 2 +
mlogp) time using p processors on the CREW
PRAM. From the complexity, the algorithm is cost
optima incaseof 1 < p < -%. Finaly we pro-
pose a procedure which computes the the longest
increasing subseguence from a solution of the the
patience sorting. Since the procedure only needs
O(n) cost onthe EREW PRAM, we obtain aparal-

lel algorithm, which runs with the same complex-
ity as the algorithm of the patience sorting, for the
longest increasing subsequence.

2 Preiminaries

2.1 Patience sorting and longest increasing
subsequence

In this subsection, we make some definitions for
the patience sorting and the longest increasing sub-
seguence.

Definition 1 (Subsequence) Given a sequence S
of n distinct integers, a subsequence of S isa se-
guence which can be obtained from S by deleting
zero or some integers. The subsequence is called
increasing if each element of the subsequence is
larger than the previous element. Conversely, the
subsequence is called decreasing if each element
of the subsequence is no more than the previous
element. O

Definition 2 (Cover) Given a sequence S of n
distinct integers, a cover of S is a set of subse-
guences of S such that every element in S is con-
tained in one of the subsequences. The size of the
cover is the number of subsequences in it. The
cover is called increasing and decreasing if each
subsequence isincreasing and decreasing, respec-
tively. O

Definition 3 (Patience sorting) Let S be a se
gquence of n distinct integers. The patience sort-
ing is a problem to compute a decreasing cover
of S such that the size of the cover is the smallest
among all coversof S. O

Definition 4 (Longest increasing subsequence)

Let S be a sequence of n distinct integers. The
longest increasing subsequence is a problem to
compute an increasing subsequence of S such that
length of the subsequence is the longest among all
increasing subsequences of S. O

It is worth while noticing that each element is
not contained in two subsegquences of the same
cover, and each decreasing subsequence of the pa-
tience sorting means a pile in case of the card
game. In addition, there may be some solutions
for an input of the patience sorting and the longest
increasing subsequence. In this paper, our objec-
tivefor the problemsisto find one of the solutions.

0 440

研究会Temp
－44－

Input sequence = (10, 8, 23, 1, 3, 37, 7, 21, 35, 13, 2, 33, 39, 4, 20, 9)

1
8

2
3

4
7

9 20
13 33

Patiencesorting= 10 23 37 21 35 39

Longest increasing subsequence= (1, 3, 7, 13, 33, 39)

Fig. 1. An example of the patience sorting and the longest increasing subsequence. Each vertical se-
guence in the patience sorting forms a decreasing subsequence.

Figure 1 shows an example of the patience sort-
ing and the longest increasing subsequence.

We can solve the patience sorting using the fol-
lowing greedy algorithm[2]. (Correctness of the
algorithmisalso provedin [2].)

Algorithm 1 (Greedy algorithm for the patience
sorting)

Input : A sequence of n distinct integers S =
(S(), Sl Sn—l)-

Output : A decreasing cover of S. (We assume
that Do U D U...U D,,_1 denotesthe decreasing
cover of S, and each D; (0 < i < m — 1) denotes
the i-th decreasing subsequence of the cover.)

Step 1: Setj=1,i=0andadd sy to Dy.

Step 2: Repeat the following substeps until j >
mn.

(2.1): Find the smallest indexed decreasing sub-
sequence whose last element islarger than s,
and add s; to the subsequence. If there is
no such subsequence, set ¢ = ¢ + 1, create
anew subsequence D;, and add s; to the sub-
sequence D;.

(2.2): Setj=j+1.

We now consider the time complexity of the
above greedy algorithm. It isobviousthat the num-
ber of repetitionin Step 2isn — 1. There are two
methods of finding the lowest indexed decreasing
subsequence in substep (2.1). One of the methods
is to examine all decreasing subsequences in or-
der. However, the method takes O(n) time in the
worst case and time complexity of the algorithm
becomes O(n?). The alternative method uses the
characteristic of the last elements of subsegquences,
that is, afeature that the last elements are ordered

in increasing order. We can use the binary search
method with any data structure which can be ac-
cessed to the last element of each subsequencesin
O(1) time. In this case, we can execute the greedy
agorithmin O(nlogn) time.

Lemmal We can solve the patience sorting in
O(nlogn) time sequentially. |

2.2 2-3tree

In the following sections, we use a balanced
search tree, called a2-3 tree, to support our parallel
agorithm for the patience sorting. We introduce a
definition and alemmafor a2-3 tree.

Definition 5 (2-3tree) A 2-3 treeis a rooted tree
in which each internal node has two or three chil-
dren and every path froma root to a leaf is of same
length. O

We can easily prove that the height of a 2-3 tree
is ©(logn) in case that the number of leaves is
n. When using a 2-3 tree as a data structure, all
elements of a sorted sequence are stored into |eaf
nodes from left to right, and each internal node v
holds two variables L[v] and M [v], which store
values of the maximum elements in the leftmost
and the second subtrees of v, respectively. Using
L[v] and M [v], we can search any element in a 2-
3 treein O(logn) time using a similar technique
to the binary search. We can construct a 2-3 tree
which stores a sorted sequence, whose sizeisn, in
O(nlogn) time sequentialy. (See[1] for details.)

Let T, T} and T3 be 2-3 trees which store sorted
sequences S, S1 and S, respectively. We use the
following four operations on 2-3 treesin this paper.

(1) MIN: MIN(T) is an operation that outputs
the minimum elementina2-3tree 7.

U 450

研究会Temp
－45－

(2) DELETE: Let = be an element in S.
DELETE(T,x) is an operation that deletes
x froma2-3treeT.

(3 IMPLANT: Assume each element in
S1 is less than every eement in Ss.
IMPLANT(T1,T>) is an operation that
implants 75 in 77 so that 77 stores the
concatenated sequence S1.55.

(4 SPLIT: Let = be an eement in S.
SPLIT(T,x) is an operation that out-
puts two trees 77 and 7, which sat-
isfy 1 = {y |y < 2,y € S} ad
So ={z|z>x,z e S}, respectively.

It isknown that the above four operations can be
processed efficiently on 2-3 trees[1].

Lemma2([1]) Let 7', 71 and 7> be 2-3 trees
whosesizesare O(n), respectively. e can execute
each of four operations MIN, DELETE, IMPLANT
and SPLIT in O(log n) time sequentially. O

3 First algorithm using prefix operations

In this section, we describe our first algorithm,
which consists of repetition of prefix minima and
prefix sum operations, for the patience sorting. The
prefix minima of a sequence (zg, z1,...,%,—1) IS
defined as the sequence (mq, m1, ..., my,—1) such
that my; = min{z;, | 0 < h < k}, and the pre-
fix sum of a sequence (xg,x1,...,2,—1) IS de-
fined as the sequence (pso, psi1, - ..,pSn—1) Such
that psy, = >fi_o .

The algorithm uses the prefix minima operation
asfollows. Let S = (s, s1,...,5n,—1) beaninput
sequence for the patience sorting. We first com-
putethe prefix minimaof S, select elementswhose
indices are equal to results of the prefix minima,
and store the selected elementsin an array D. In
case of the sequential greedy algorithm (Algorithm
1), an element s;, is added to the first decreasing
subsequence Dy if s is smaller than the last ele-
mentsof Dy. Therefore each element s, in D, sat-
isfies s = min{sy, | 0 < h < k}, and D isequa
to Dy. We repeat the prefix minima operation for
remaining elements, and the other decreasing sub-
sequences are obtained from the same reason.

The followings are details of the algorithm.

Algorithm 2 (Algorithm using prefix opera-
tions)
Input: A sequence of n distinct integers S =

(807 1y 7371—1)-

Output: A decreasing cover of S. (We assume
that Dy U Dy U ... U D,,_; denotes the decreas-
ing cover of S, and each D; = (d;0,d; 1, ..., di;)
(0 < i < m — 1) denotes the i-th decreasing sub-
sequence of the cover.

Step 1: Seti = 0.
Step 2: Repeat the following substeps until sg =

S§1=—=...= 8p—-1 = OQ.

(2.1): Compute the prefix minimaof S, and store
theresultinanarray @ = (qo, q1,- - -, qn—1)-

(22): Foreach j (0 < j < n—1),ifs; =
qj # oo setr; = 1, otherwise set r; =
0. Then, compute the prefix sum of R =
(ro,m1,...,mn—1), and store the result in the
same array R.

(23): Foreachj (0 <j<n-—1),ifs; =q; #
o0, et d;, = s;, and then set s; = oco.

(2.4): Seti =i+ 1. O

Now we discuss the complexity of the above
algorithm. Let m be the number of decreasing
subsequences of the cover. Obvioudly, al of sub-
steps in Step 2 consist of a constant humber of
primitive operations and the prefix operations. Us-
ing a known parallel algorithm for the paralel
prefix[12], we can compute the prefix operation of
n elementsin O(2 + logn) time using p proces-
sors on the EREW PRAM. Since the number of
repetition of Step 2 is m, we obtain the following
theorem.

Theorem 1 Algorithm 2 solves the patience sort-
ing of n elementsin O(m(3; + logn)) time using
p processors on the EREW PRAM. O

In respect of time complexity, Algorithm 2 is
usually not efficient because optimal sequential
time complexity of the problem is O(nlogn).
However, the agorithm becomes cost optimal
in case of the number of the subsequences is
O(logn).

4 Second algorithm for the patience sort-
ing
4.1 Outline of thealgorithm

In this section, we describe the second parallel
algorithm for the patience sorting on the CREW

0460

研究会Temp
－46－

PRAM. We assume that Dy U D1 U ... U D,,_1
denotes the decreasing cover of S, and each D;
(0 < i < m — 1) denotes the i-th decreasing
subsequence of the cover. We also assume F;
(0 < j < p—1) denotes the j-th processor on
the PRAM. The algorithm basically consists of m
repetitions of a procedure. In the i-th procedure,
we compute the i-th decreasing subsequence D;.
An outline of the algorithm is as follows. Let
S be an input sequence. First, we divide S into
p blocks whose sizes are 2, and assign the j-th
block to the j-th processor. Then, on each pro-
cessor, we compute the patience sorting sequen-
tialy for each block. We assume that D;, U

Dj1U,...,UDj,,, 1 denotes a result of the pa-
tience sorting for a block assigned to a processor
P;.

Next, we compute the first decreasing subse-
guence Dg using the above results. We can prove
that Dy is a subset of D070 U Dl,O u...u Dpfl,(],
that is, a set of the first decreasing subsequences
of divided blocks. We can compute Dy from
DooU DypU...U D, ;0 using the prefix min-
imaoperation. (Correctness and details of this sub-
step are shown in the following subsection.) After
computing Dy, we remove elements in Dy from
each block, and reconstruct a decreasing cover for
each block. Then, we can compute remaining de-
creasing subsequences D1, Dy, ..., Dy, 1 by re-
peating the above procedure m — 1 times. How-
ever, a ssimple implementation of this step make
time complexity of the algorithm O(m(3; log 7))
since reconstruction of a decreasing cover of each
block needs O(7 log) computation time. To re-
duce the complexity, we use 2-3 trees as data struc-
tures which store adecreasing cover of each block.
We assume that each decreasing subsequence D .,
which is the k-th decreasing subsequence for pro-
cessor P;, is stored into a 2-3 tree T ;. Since we
reconstruct a decreasing cover on each processor
efficiently using 2-3 trees, we can reduce complex-
ity of the algorithm sufficiently. (The details of the
reconstruction are also described in the following
subsection.)

We now summarize an outline of the algorithm.

Algorithm 3 (Second algorithm for the patience

sorting)
Input: A sequence of n distinct integers S =
(80, 8140y Snfl).

Output: A decreasing cover of S. (We assume
that Do U D1 U. ..U D,,_; denotesthe decreasing
cover of S, and each D; (0 < i < m — 1) denotes

the i-th decreasing subsequence of the cover.)

Step 1: Divide Siintop blocks S; (0 < j < p—1)
of size 2.

Step 2: On each processor P; (0 < j < p —
1), compute a decreasing cover of S; se-
quentially. (We assume that Do U D1 U
...UDj m ;1 denotesthe decreasing cover for
S;.) Then, store each decreasing subsequence
Djrina2-3treeT); (0 <k <mj;—1).

Step 3: Set ¢ = 0, and repeat the following sub-
Stepsuntil So=51=...= p—1 = o.

(3.1): Compute the i-th decreasing subsequence
D; from a set of decreasing subsequences
Dy oUD1pU...UD,_1 . Oneach processor
P; (0 <j <p—1),elements D} = D;NDjg
are stored in anew 2-3 tree T]?, and the other
elements D;, — D; are stored in T o again.
(A set of dements Dj U D} U ... U D}, is
equal to D;.)

(3.2): On each processor P; (0 < j < p—1),
set S; = S; — D}, and reconstruct 2-3 trees
Tj70, Tj71, R ,7—}ij_1 so that the set of 2-3
trees denotes a decreasing cover of .

(3.3): Seti =i+ 1.

Step 4: Execute the following substeps to obtain
D; (0 <i <m—1)fromD{, Di,...,D}_,.

(4.1): Oneachprocessor P; (0 < j <p—1), ex-
tract all leaf elements of T]’ (0<i<m;—1)
and store the elementsinto an array C; witha
key index i.

(4.2): Sort elements Cp U Cy U ... U Cp— With
the key indices and their values, and store the
elements with the key index i into D;. O

We now consider the complexity of the above
agorithm on the CREW PRAM. Step 1 can be
easily executed in O(%) time using p processors.
In Step 2, we can compute the decreasing cover
on each processor in O(%log 2) using seguen-
tial algorithm[11] since the number of elements of
each block is O(%), and store the results into 2-3
trees with the same complexity using a sequential
agorithm for construction of a2-3 treg[1]. In Step
4, the substep (4.1) can be executed in O(% log %)
timeusing MIN and DELFETFE operations for a
2-3tree % times on each processor, and the substep

U470

研究会Temp
－47－

(4.2) can be executed in O(logn + ”1‘;#) using a
well-known sorting algorithm([7]. Let T5(n) bethe
time complexity of substeps (3.1) and (3.2). Since
the number of repetition of Step 3 is m, where
m is the number of decreasing subsequences of
the cover, complexity of the algorithm becomes
O(logn + "™ 4 mTj(n)). In the following two
subsections, We consider complexities of substeps
(3.2) and (3.2), respectively.

4.2 Computation of thei-th decreasing subse-
guence

In this subsection, we explain details of the sub-
step (3.1), which computes the decreasing subse-
guence D; from a set of thefirst decreasing subse-
quences of each block Dy gU D1 ogU...UD,_1.

For simplicity, we assume that £; denotes D;
and E denotes D;. Although we have to prove cor-
rectness of the following procedures, we omit the
proof due to space limitation.

Procedure 1 (Computation of the i-th decreas-
ing subsequence)

Input: A set of decreasing subsequences
Ey,E, ..., E,_;. Each decreasing subsequence
E; (0<j<p-1)isstoredina2-3tree T}, and
itssizeis O(3)-

Output: The first decreasing subsequence E such
that £ = EfUELU...UE, and E; C Ej
foreach j (0 < j < p—1). (Elementsin £ are
stored in anew 2-3 treeT](, and the other elements
E; — B arestored in T); again.)

Step 1. On each processor P; (0 < j < p — 1),
find the smallest element in the tree 7}, and
store the element into g;.

Step 2: Compute the prefix minima of the array
Q = (90,q1,---,qp—1), and store the result
into the same array (.

Step 3: On each processorP; (0 < j < p — 1),
split 7; into two 2-3 trees 73 and T} usmg
qj—1-

The complexity of Procedure 1 is as follows.
Step 1 can be donein O(log %) timeusing MIN
operation for a 2-3 tree in paraIIeI Step 2 can be
done in O(logp) ti) processors
using a parallel prefix algorlthm[lif Step 3 can
be donein O(log %) time using SPLIT operation
for a2-3 tree. Thus the procedure can be executed
in O(log p + log %) time using p processors.

4.3 Reconstruction of 2-3 trees

In this subsection, we explain details of the
subsection (3.2), which executes reconstruction of
2-3 trees. For each processor P;, an input of
this substep is a set of decreasing subsequences
Dj’(], Dj,h Ce. ,Dj}mjfl such that each Dj,i is
storedina2-3tree T} ;. Sincethereconstructionis
executed on each processor in parallel, we describe
a sequential procedure for one processor, and as-
sumethat F; (0 < i < m — 1) denotes D, ; and a
2-3treeT; stores F;.

Procedure 2 (Reconstruction of 2-3 trees on a
processor)

Input: A set of decreasing subsequences
Fy, F1, ..., F,_1 obtained for a processor after

the substep (3.1) of Algorithm 3. Each decreasing
subsequence F; (0 < j < m — 1) isstored in a

2-3treeT}.
Output: A set of decreasing subsequences
Fj,F{,...,F _, such that the set of decreas-

ing sub%quenc&s is the decreasing cover of
FyUFy U...U F, 1. Each decreasing subse-
quence I (0 < j <m — 1) isstoredina2-3tree
T;.

Step 1: Set k£ = 0, and repeat the following sub-
steps until & > m.

(1.2): Find the smallest element in the tree Ty,
and store the result in s,,,;p,.

(1.2): Split Tj,4; into T}, and T}, USING Sy, SO
that every element in every element in Fj
islarger than s,,;, and every element in Fj is
no more than s,,,;,.

(1.3): Implant T}, in T}, and then, set k = k + 1.
O

The proof for correctness of the procedure is
also omitted due to space limitation.

The complexity of each substep in the above
procedure is O(log) because all of the sub-
steps consist of a constant number of MIN,
IMPLANT, and SPLIT operations which we
described in Section 2. Since the number of repe-
tition is m, the time complexity of the above pro-
cedureis O(m log %).

4.4 Complexity of the algorithm

As we described in Subsection 4.1, complexity
of the algorithm is O(log n + ™™ + mT4(n)),

0480

研究会Temp
－48－

where T3(n) is the time complexity of substeps
(3.1) and (3.2). In addition, complexities of (3.1)
and (3.2) are O(logp + log%) and O(mlog %)
from Subsections 4.2 and 4.3, respectively. Then,
T3(n) = O(log p +mlog 7).

In consequence, we obtain the following theo-
rem.

Theorem 2 Algorithm ?f solves the patience sort-

ingof n elementsinO(”—pg——i-m2 log 2+mlog p)
time using p processors on the CREWPRAM. O

From the above theorem, the complexity of the
agorithm becomes O(™%2) in case of 2 > m?,
namely 1 < p < #. In other words, we can
solve the patience sorting cost optimally if m = n¢
and 1 < p < n'~2¢ where ¢ is a constant which
satisfiese < 1.

5 Procedure for longest increasing subse-
quence

In this section, we describe how to compute
the longest increasing subsequence from a solu-
tion of the patience sorting of the same input. We
first show that the patience sorting and the longest
increasing subsequence are closely related each
other by giving the following lemma[2].

Lemma 3 ([2]) Let m be the length of the longest
increasing subsequence of a sequence S. Then, the
number of decreasing subsequences in a solution
of the patience sorting for the same sequence S is
also m. |

Using the above lemma, we obtain a solution
of the longest increasing subsequence from a so-
lution of the patience sorting for the same input
S = (s0, 51, -.,S,—1) asfollows. We assume that
DyUD1U...UD,,_ 1 denotesthe decreasing cover
of S,andeach D; (0 < j < m—1) denotesthei-th
decreasing subsequence of the cover. Let s;; bean
elementin D; (1 < j < m—1). Thenthereexists
an element s, € Dj which satisfies s,y <
s1; and l;_; < [;, and we call s,;_, aparent el-
ement of s;,. Given an element s;, | € Dy,
for s, the sequence of elements connected with
the parent relation St = (si,, 1y, - - -, S1,,,_,) I1SIN-
creasing. Therefore Sy, is the longest increasing
subsequence whose length is equal to the number
of decreasing subsequences of the patience sort-
ing. Once parent relations are obtained for al el-
ements, we can find the longest increasing subse-

guence by tracing the parent relation from an ele-
ment in D,,,_1 to an element in D,.

We now consider how to find a parent element
foreachelementin D; (1 < j < m—1). Although
there may be some candidates for a parent element
for each element, we define a parent element Sl
of s, using the following expression.

Sl = Sk st. k= max{k‘/ ‘ K < lj, Sk € Dj—l}

Then, s;;,_, < s;; holds because of definition
of the patience sorting. Since indices of elements
in each decreasing subsequence are increasing, we
can find parent relations between two decreas-
ing subsegquences using a ranking operation for
merging[7]. Moreover we can execute the search
operation for each pair of decreasing subsequences
inparalel.

We summarize the ideain the followings.

Procedure 3 (Procedure for the longest increas-
ing subsequence)

Input: A solution of the patience sorting for a se-
guence of distinct integers S.

(We assume that a solution of the patience
sorting consists of m decreasing subsequences

Do, Dy, ..., Dp1.)
Output: A longest increasing subsequence S;, =
(505 515---,5,_1) for S.

Step 1: For each element s;; in D; (1 <5<
m — 1), find the parent element s1;_, Which
satisfies s, _, = sp St. k = max{k' | ¥ <
lj,sk/ S Dj_l}.

Step 2: Trace the parent relation from an element
inD,,,_1 toanelementin Dy, and storetraced
elementsin Sy, in reverse order. O

The complexity of Procedure 3 is as follows.
Step 1 consists of m independent ranking opera-
tions for merging[7]. Since we can execute rank-
ing operation in O(logn + %) time using p pro-
cessors for two sequences whose sizes are O(n),
we can execute Step 1in O(log n + 2) time p pro-
cessors on the CREW PRAM. Step 5 can be done
in O(logn + 2) time using a paralel list rank-
ing algorithm[ﬁ] because parent relations make a
tree structure. Therefore we obtain the follow-
ing lemma and theorem for Procedure 3 and the
longest increasing subsequence, respectively.

Lemma4 Procedure 3 computes the longest in-
creasing subsequence from a solution of the pa-
tience sorting in O(logn + %) time using p pro-
cessors on the CREW PRAM. O

0490

研究会Temp
－49－

Theorem 3 We can solve the longest increas-
ing subsequence of n eements in O(% +
m?log 2 +mlog p) time using p processors on the
CREW PRAM. O

6 Conclusion

In this paper, we have proposed two agorithms
for the patience sorting. The first algorithm is a
paralel algorithm which consists of repetition of
the prefix operations. The second oneis aparallel
algorithm which improves the complexity of the
first algorithm, and runsin O (%2 +m?log 2 +
mlogp) time using p processors on the CREW
PRAM. The algorithm is cost optimal in case of
1 < p < . Finaly, we have proposed a proce-
dure which computes the longest increasing sub-
sequence from a solution of the patience sorting,
and obtain a paralel algorithm, which runs with
the same complexity as the patience sorting, for
the longest increasing subsequence.

Although P-completeness of both problems
have not been proven yet, aproposition of efficient
parallel algorithmsfor the problemsis not easy.We
are now considering parallelizability of some prob-
lems which have similar properties.

References

[1] A. Aho, J. Hopcroft, and J. Ullman. The De-
sign and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] A. Aldous and P. Diaconis. Longest increas-

ing subsequences. From patience sorting to

the baik-deift-johansson theorem. BAMS

Bulletin of the American Mathematical Soci-

ety, 36:413-432, 1999.

R. Anderson and G. Miller. Deterministic
parallel list ranking. In Third Aegean Work-
shop on Computing, AWOC 88, pages 81-90.
Springer-Verlag, 1988.

[3]

[4] S. Bespamyatnikh and M. Segal. Enumerat-
ing longest increasing subsequences and pa-
tience sorting. Information Processing Let-

ters, 76(1-2):7—11, 2000.

C. Castanho, W. Chen, K. Wada, and A. Fu-
jiwara. Polynomially fast parallel algorithms
for some P-complete geometric problems. In

(3]

6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

0 500

Proc. Workshop on Computational Geome-
try, 2000.

C. Cerin, C. Dufourd, and J. F. Myoupo. An
efficient parallel solution for the longest in-
creasing subseguence problem. In Fifth Inter-
national Conference on Computing and In-
formation (ICCI’'93), pages 220-224. |IEEE
Press, 1993.

R. J. Cole. Parallel merge sort. S AM Journal
on Computing, 17(4):770-785, 1988.

F. Dehne, A. Fabri, and A. Rau-Chaplin.
Scalable parallel computational geometry for
coarse grained multicomputers. In ACM
Symposium on Computational Geometry,
pages 298-307, 1993.

T. Garcia, J. Myoupo, and D. Semé. A
work-optimal CGM agorithm for the longest
increasing subsequence problem. In The
2001 International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA' 01), pages 563-569,
2001.

R. Greenlaw, H. Hoover, and W. Ruzzo. Lim-
itsto Parallel Computation: P-Completeness
Theory. Oxford university press, 1995.

D. E. Knuth. Sorting and Searching. Vol-
ume 3 of The Art of Computer Programming.
Addison-Wesley, 1973.

R. Ladner and M. J. Fisher. Parale prefix
computation. Journal of ACM, 27:831-838,
1980.

C. Madlows. Patience sorting. Bulletin of the
Institute of Mathematics and its Applications,
9:216-224, 1973.

T. Nakashima and A. Fujiwara. Paraldiz-
ability of the stack breadth-first search prob-
lem. In The 2001 International Conference
on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA 01), pages
722-727, 2001.

R. Uehara. A measure for the lexicographi-
caly first maximal independent set problem
and itslimits. International Journal of Foun-
dations of Computer Science, 10(4):473—
482, 1999.

研究会Temp
－50－

