
ペイシェンス・ソートおよび最長昇順部分列問題に対する
コスト最適な並列アルゴリズム

中島孝明 藤原暁宏
takaaki@zodiac30.cse.kyutech.ac.jp fujiwara@cse.kyutech.ac.jp

九州工業大学情報工学部電子情報工学科

ペイシェンス・ソートおよび最長昇順部分列問題は互いに密接な関係を持つことが知られている問題であ
る．しかし，これら 2つの問題が，クラス NC，P 完全問題のどちらに属するのかについては知られていな
い．本稿では，はじめに n個の異なる整数に対するペイシェンス・ソートを解くアルゴリズムを 2つ提案
する．1つ目のアルゴリズムは EREW PRAMモデル上で動作し，その計算量は p台のプロセッサを用いた
場合 O(m(n

p
+ log n))となる．ここで，mはペイシェンス・ソートの解に含まれる降順部分列の数である．

2つ目のアルゴリズムは CREW PRAMモデル上で動作し，計算量は O(n log n
p

+ m2 log n
p

+ m log p)であ
り，1 < p < n

m2 の範囲でコスト最適な並列アルゴリズムとなる．最後に，ペイシェンス・ソートの解から
同一の入力に対する最長昇順部分列を求める並列アルゴリズムを提案し，そのアルゴリズムの計算量がコス
ト最適となることを示す．

Cost optimal algorithms for patience sorting
and longest increasing subsequence

Takaaki NAKASHIMA and Akihiro FUJIWARA

Department of Computer Science and Electronics, Faculty of Engineering,
Kyushu Institute of Technology

In this paper, we consider parallel algorithms for the patience sorting and the longest increasing subsequence. These
two problems are related each other and are not known to be in the class NC or P -complete. We first propose two
algorithms for the patience sorting of n distinct integers. The first algorithm runs in O(m(n

p
+log n)) time using p

processors on the EREW PRAM, where m is the number of decreasing subsequences in a solution of the patience
sorting, and the second algorithm runs in O(n log n

p
+ m2 log n

p
+ m log p) time using p processors on the CREW

PRAM. If 1 < p < n
m2 is satisfied, the second algorithm becomes cost optimal. Finally, we propose a procedure

which computes the longest increasing subsequence from a solution of the patience sorting, and obtain a parallel
algorithm, which runs with the same complexity as the algorithm of the patience sorting, for the longest increasing
subsequence.

1 Introduction

In parallel computational theory, one of major
goals is to find a parallel algorithm which runs
as fast as possible. For example, many problems
are known to have efficient parallel algorithms
which run in Θ(1) or Θ(log n) computational time,
where n is the input size of problems. From the
point of view of complexity theory, the class NC
is used to denote the measure. A problem is in
the class NC if there exists a parallel algorithm
which solves the problem in O(T (n)) time us-
ing O(P (n)) processors where T (n) and P (n) are
polylogarithmic and polynomial functions for n,
respectively. Many problems in the class P , which
is the class of problems solvable in polynomial
time sequentially, are also in the class NC . On the

other hand, some problems in the class P seem to
have no parallel algorithm which runs in polylog-
arithmic time using a polynomial number of pro-
cessors. Such problems are called P -complete.
A problem is P -complete if the problem is in the
class P and we can reduce any problem in P to the
problem using NC-reduction. (For details of the
P -completeness, see [10].) It is believed that prob-
lems in the class NC admit parallelization read-
ily, and conversely, P -complete problems are in-
herently sequential and hard to be parallelized.

However, some efficient parallel algorithms
have been recently proposed for P -complete
problems[5, 14, 15]. In the above papers, the other
well-known measure, cost optimality, is used to
denote parallelizability of problems. The cost of
a parallel algorithm is defined as the product of

研究会Temp
ア　ル　ゴ　リ　ズ　ム

研究会Temp
84－７

研究会Temp
（２００２． ５． ２３）

研究会Temp
－43－

the running time and the number of processors re-
quired in the algorithm, and a parallel algorithm
is called cost optimal if its cost is asymptotically
equal to the time complexity of the fastest known
sequential algorithm for the same problem. The
above results mean that some inherently sequen-
tial problems have cost optimal parallel algorithms
and we can parallelize the problems practically.

In this paper, we consider parallel algorithms for
two problems related each other. The first prob-
lem is the patience sorting, which was invented
as a practical method of sorting a real deck of
cards[13]. The second problem is the longest in-
creasing subsequence of n distinct integers. Al-
though these two problems are primitive combina-
torial optimization problems, both of them are not
known to be in the class NC or P -complete, that
is, no NC algorithm have been proposed for the
problems, and there is no proof which shows the
problems are P -complete.

There are a lot of papers which deal with the
patience sorting and the longest increasing subse-
quence. Sequential algorithms[2, 4, 11], show that
we can solve the two problems in Θ(n logn) time
sequentially in case that its input is a set of dis-
tinct integers. As for parallel algorithms, two algo-
rithms have been proposed for the problem [6, 9].
The former algorithm is for the linear array, which
is a classical parallel computation model, and the
latter is for the CGM model[8], which is one of
practical parallel computation models. However,
the parallel algorithms are not cost optimal since
costs of both algorithms are O(n2).

In this paper, we propose efficient parallel algo-
rithms for the problems and consider there paral-
lelizability. First we propose a simple algorithm
for the patience sorting. The algorithm consists of
repetition of the prefix operations. The algorithm
runs in O(m(n

p + logn)) time using p processors
on the EREW PRAM, where m is the number of
decreasing subsequences in a solution of the pa-
tience sorting. The complexity shows that the al-
gorithm is cost optimal in case of m = O(log n).
Next we propose another parallel algorithm, which
is more complicated, for the patience sorting. The
second algorithm runs in O(n log n

p + m2 log n
p +

m log p) time using p processors on the CREW
PRAM. From the complexity, the algorithm is cost
optimal in case of 1 < p < n

m2 . Finally we pro-
pose a procedure which computes the the longest
increasing subsequence from a solution of the the
patience sorting. Since the procedure only needs
O(n) cost on the EREW PRAM, we obtain a paral-

lel algorithm, which runs with the same complex-
ity as the algorithm of the patience sorting, for the
longest increasing subsequence.

2 Preliminaries

2.1 Patience sorting and longest increasing
subsequence

In this subsection, we make some definitions for
the patience sorting and the longest increasing sub-
sequence.

Definition 1 (Subsequence) Given a sequence S
of n distinct integers, a subsequence of S is a se-
quence which can be obtained from S by deleting
zero or some integers. The subsequence is called
increasing if each element of the subsequence is
larger than the previous element. Conversely, the
subsequence is called decreasing if each element
of the subsequence is no more than the previous
element. 2

Definition 2 (Cover) Given a sequence S of n
distinct integers, a cover of S is a set of subse-
quences of S such that every element in S is con-
tained in one of the subsequences. The size of the
cover is the number of subsequences in it. The
cover is called increasing and decreasing if each
subsequence is increasing and decreasing, respec-
tively. 2

Definition 3 (Patience sorting) Let S be a se-
quence of n distinct integers. The patience sort-
ing is a problem to compute a decreasing cover
of S such that the size of the cover is the smallest
among all covers of S. 2

Definition 4 (Longest increasing subsequence)
Let S be a sequence of n distinct integers. The
longest increasing subsequence is a problem to
compute an increasing subsequence of S such that
length of the subsequence is the longest among all
increasing subsequences of S. 2

It is worth while noticing that each element is
not contained in two subsequences of the same
cover, and each decreasing subsequence of the pa-
tience sorting means a pile in case of the card
game. In addition, there may be some solutions
for an input of the patience sorting and the longest
increasing subsequence. In this paper, our objec-
tive for the problems is to find one of the solutions.

研究会Temp
－44－

Longest increasing subsequence

Input sequence = (10, 8, 23, 1, 3, 37, 7, 21, 35, 13, 2, 33, 39, 4, 20, 9)

Patience sorting =

= (1, 3, 7, 13, 33, 39)

39

 1
 8
10

 2
 3
23

 4
 7
37

 9
13
21

20
33
35

Fig. 1: An example of the patience sorting and the longest increasing subsequence. Each vertical se-

quence in the patience sorting forms a decreasing subsequence.

Figure 1 shows an example of the patience sort-
ing and the longest increasing subsequence.

We can solve the patience sorting using the fol-
lowing greedy algorithm[2]. (Correctness of the
algorithm is also proved in [2].)

Algorithm 1 (Greedy algorithm for the patience
sorting)
Input : A sequence of n distinct integers S =
(s0, s1, . . . , sn−1).
Output : A decreasing cover of S. (We assume
that D0 ∪D1 ∪ . . .∪Dm−1 denotes the decreasing
cover of S, and each Di (0 ≤ i ≤ m− 1) denotes
the i-th decreasing subsequence of the cover.)

Step 1: Set j = 1, i = 0 and add s0 to D0.

Step 2: Repeat the following substeps until j >
n.

(2.1): Find the smallest indexed decreasing sub-
sequence whose last element is larger than sj ,
and add sj to the subsequence. If there is
no such subsequence, set i = i + 1, create
a new subsequence Di, and add sj to the sub-
sequence Di.

(2.2): Set j = j + 1.

We now consider the time complexity of the
above greedy algorithm. It is obvious that the num-
ber of repetition in Step 2 is n − 1. There are two
methods of finding the lowest indexed decreasing
subsequence in substep (2.1). One of the methods
is to examine all decreasing subsequences in or-
der. However, the method takes O(n) time in the
worst case and time complexity of the algorithm
becomes O(n2). The alternative method uses the
characteristic of the last elements of subsequences,
that is, a feature that the last elements are ordered

in increasing order. We can use the binary search
method with any data structure which can be ac-
cessed to the last element of each subsequences in
O(1) time. In this case, we can execute the greedy
algorithm in O(n logn) time.

Lemma 1 We can solve the patience sorting in
O(n logn) time sequentially. 2

2.2 2-3 tree

In the following sections, we use a balanced
search tree, called a 2-3 tree, to support our parallel
algorithm for the patience sorting. We introduce a
definition and a lemma for a 2-3 tree.

Definition 5 (2-3 tree) A 2-3 tree is a rooted tree
in which each internal node has two or three chil-
dren and every path from a root to a leaf is of same
length. 2

We can easily prove that the height of a 2-3 tree
is Θ(log n) in case that the number of leaves is
n. When using a 2-3 tree as a data structure, all
elements of a sorted sequence are stored into leaf
nodes from left to right, and each internal node v
holds two variables L[v] and M [v], which store
values of the maximum elements in the leftmost
and the second subtrees of v, respectively. Using
L[v] and M [v], we can search any element in a 2-
3 tree in O(logn) time using a similar technique
to the binary search. We can construct a 2-3 tree
which stores a sorted sequence, whose size is n, in
O(n logn) time sequentially. (See [1] for details.)

Let T , T1 and T2 be 2-3 trees which store sorted
sequences S, S1 and S2, respectively. We use the
following four operations on 2-3 trees in this paper.

(1) MIN: MIN(T) is an operation that outputs
the minimum element in a 2-3 tree T .

研究会Temp
－45－

(2) DELETE: Let x be an element in S.
DELETE(T, x) is an operation that deletes
x from a 2-3 tree T .

(3) IMPLANT: Assume each element in
S1 is less than every element in S2.
IMPLANT (T1, T2) is an operation that
implants T2 in T1 so that T1 stores the
concatenated sequence S1S2.

(4) SPLIT: Let x be an element in S.
SPLIT (T, x) is an operation that out-
puts two trees T1 and T2 which sat-
isfy S1 = {y | y ≤ x, y ∈ S} and
S2 = {z | z > x, z ∈ S}, respectively.

It is known that the above four operations can be
processed efficiently on 2-3 trees[1].

Lemma 2 ([1]) Let T , T1 and T2 be 2-3 trees
whose sizes are O(n), respectively. We can execute
each of four operations MIN, DELETE, IMPLANT
and SPLIT in O(logn) time sequentially. 2

3 First algorithm using prefix operations

In this section, we describe our first algorithm,
which consists of repetition of prefix minima and
prefix sum operations, for the patience sorting. The
prefix minima of a sequence (x0, x1, . . . , xn−1) is
defined as the sequence (m0,m1, . . . ,mn−1) such
that mk = min{xh | 0 ≤ h ≤ k}, and the pre-
fix sum of a sequence (x0, x1, . . . , xn−1) is de-
fined as the sequence (ps0, ps1, . . . , psn−1) such
that psk =

∑k
h=0 xh.

The algorithm uses the prefix minima operation
as follows. Let S = (s0, s1, . . . , sn−1) be an input
sequence for the patience sorting. We first com-
pute the prefix minima of S, select elements whose
indices are equal to results of the prefix minima,
and store the selected elements in an array D. In
case of the sequential greedy algorithm (Algorithm
1), an element sk is added to the first decreasing
subsequence D0 if sk is smaller than the last ele-
ments of D0. Therefore each element sk in D0 sat-
isfies sk = min{sh | 0 ≤ h ≤ k}, and D is equal
to D0. We repeat the prefix minima operation for
remaining elements, and the other decreasing sub-
sequences are obtained from the same reason.

The followings are details of the algorithm.

Algorithm 2 (Algorithm using prefix opera-
tions)
Input: A sequence of n distinct integers S =

(s0, s1, . . . , sn−1).
Output: A decreasing cover of S. (We assume
that D0 ∪ D1 ∪ . . . ∪ Dm−1 denotes the decreas-
ing cover of S, and each Di = (di,0, di,1, . . . , di,l)
(0 ≤ i ≤ m − 1) denotes the i-th decreasing sub-
sequence of the cover.

Step 1: Set i = 0.

Step 2: Repeat the following substeps until s0 =
s1 = . . . = sn−1 = ∞.

(2.1): Compute the prefix minima of S, and store
the result in an array Q = (q0, q1, . . . , qn−1).

(2.2): For each j (0 ≤ j ≤ n − 1), if sj =
qj 	= ∞ set rj = 1, otherwise set rj =
0. Then, compute the prefix sum of R =
(r0, r1, . . . , rn−1), and store the result in the
same array R.

(2.3): For each j (0 ≤ j ≤ n − 1), if sj = qj 	=
∞, set di,rj = sj , and then set sj = ∞.

(2.4): Set i = i + 1. 2

Now we discuss the complexity of the above
algorithm. Let m be the number of decreasing
subsequences of the cover. Obviously, all of sub-
steps in Step 2 consist of a constant number of
primitive operations and the prefix operations. Us-
ing a known parallel algorithm for the parallel
prefix[12], we can compute the prefix operation of
n elements in O(n

p + logn) time using p proces-
sors on the EREW PRAM. Since the number of
repetition of Step 2 is m, we obtain the following
theorem.

Theorem 1 Algorithm 2 solves the patience sort-
ing of n elements in O(m(n

p + logn)) time using
p processors on the EREW PRAM. 2

In respect of time complexity, Algorithm 2 is
usually not efficient because optimal sequential
time complexity of the problem is O(n log n).
However, the algorithm becomes cost optimal
in case of the number of the subsequences is
O(log n).

4 Second algorithm for the patience sort-
ing

4.1 Outline of the algorithm

In this section, we describe the second parallel
algorithm for the patience sorting on the CREW

研究会Temp
－46－

PRAM. We assume that D0 ∪ D1 ∪ . . . ∪ Dm−1

denotes the decreasing cover of S, and each Di

(0 ≤ i ≤ m − 1) denotes the i-th decreasing
subsequence of the cover. We also assume Pj

(0 ≤ j ≤ p − 1) denotes the j-th processor on
the PRAM. The algorithm basically consists of m
repetitions of a procedure. In the i-th procedure,
we compute the i-th decreasing subsequence Di.

An outline of the algorithm is as follows. Let
S be an input sequence. First, we divide S into
p blocks whose sizes are n

p , and assign the j-th
block to the j-th processor. Then, on each pro-
cessor, we compute the patience sorting sequen-
tially for each block. We assume that Dj,0 ∪
Dj,1∪, . . . ,∪Dj,mj−1 denotes a result of the pa-
tience sorting for a block assigned to a processor
Pj .

Next, we compute the first decreasing subse-
quence D0 using the above results. We can prove
that D0 is a subset of D0,0 ∪D1,0 ∪ . . . ∪Dp−1,0,
that is, a set of the first decreasing subsequences
of divided blocks. We can compute D0 from
D0,0 ∪ D1,0 ∪ . . . ∪ Dp−1,0 using the prefix min-
ima operation. (Correctness and details of this sub-
step are shown in the following subsection.) After
computing D0, we remove elements in D0 from
each block, and reconstruct a decreasing cover for
each block. Then, we can compute remaining de-
creasing subsequences D1,D2, . . . ,Dm−1 by re-
peating the above procedure m − 1 times. How-
ever, a simple implementation of this step make
time complexity of the algorithm O(m(n

p log n
p))

since reconstruction of a decreasing cover of each
block needs O(n

p log n
p) computation time. To re-

duce the complexity, we use 2-3 trees as data struc-
tures which store a decreasing cover of each block.
We assume that each decreasing subsequence Dj,k,
which is the k-th decreasing subsequence for pro-
cessor Pj , is stored into a 2-3 tree Tj,k. Since we
reconstruct a decreasing cover on each processor
efficiently using 2-3 trees, we can reduce complex-
ity of the algorithm sufficiently. (The details of the
reconstruction are also described in the following
subsection.)

We now summarize an outline of the algorithm.

Algorithm 3 (Second algorithm for the patience
sorting)
Input: A sequence of n distinct integers S =
(s0, s1, . . . , sn−1).
Output: A decreasing cover of S. (We assume
that D0 ∪D1 ∪ . . .∪Dm−1 denotes the decreasing
cover of S, and each Di (0 ≤ i ≤ m− 1) denotes

the i-th decreasing subsequence of the cover.)

Step 1: Divide S into p blocks Sj (0 ≤ j ≤ p−1)
of size n

p .

Step 2: On each processor Pj (0 ≤ j ≤ p −
1), compute a decreasing cover of Sj se-
quentially. (We assume that Dj,0 ∪ Dj,1 ∪
. . .∪Dj,mj−1 denotes the decreasing cover for
Sj .) Then, store each decreasing subsequence
Dj,k in a 2-3 tree Tj,k (0 ≤ k ≤ mj − 1).

Step 3: Set i = 0, and repeat the following sub-
steps until S0 = S1 = . . . = Sp−1 = φ.

(3.1): Compute the i-th decreasing subsequence
Di from a set of decreasing subsequences
D0,0∪D1,0∪ . . .∪Dp−1,0. On each processor
Pj (0 ≤ j ≤ p−1), elements Di

j = Di∩Dj,0

are stored in a new 2-3 tree T i
j , and the other

elements Dj,0 − Di are stored in Tj,0 again.
(A set of elements Di

0 ∪ Di
1 ∪ . . . ∪ Di

p−1 is
equal to Di.)

(3.2): On each processor Pj (0 ≤ j ≤ p − 1),
set Sj = Sj − Di

j , and reconstruct 2-3 trees
Tj,0, Tj,1, . . . , Tj,mj−1 so that the set of 2-3
trees denotes a decreasing cover of Sj .

(3.3): Set i = i + 1.

Step 4: Execute the following substeps to obtain
Di (0 ≤ i ≤ m−1) from Di

0,D
i
1, . . . ,D

i
p−1.

(4.1): On each processor Pj (0 ≤ j ≤ p− 1), ex-
tract all leaf elements of T i

j (0 ≤ i ≤ mj −1)
and store the elements into an array Cj with a
key index i.

(4.2): Sort elements C0 ∪ C1 ∪ . . . ∪ Cp−1 with
the key indices and their values, and store the
elements with the key index i into Di. 2

We now consider the complexity of the above
algorithm on the CREW PRAM. Step 1 can be
easily executed in O(n

p) time using p processors.
In Step 2, we can compute the decreasing cover
on each processor in O(n

p log n
p) using sequen-

tial algorithm[11] since the number of elements of
each block is O(n

p), and store the results into 2-3
trees with the same complexity using a sequential
algorithm for construction of a 2-3 tree[1]. In Step
4, the substep (4.1) can be executed in O(n

p log n
p)

time using MIN and DELETE operations for a
2-3 tree n

p times on each processor, and the substep

研究会Temp
－47－

(4.2) can be executed in O(log n + n log n
p) using a

well-known sorting algorithm[7]. Let T3(n) be the
time complexity of substeps (3.1) and (3.2). Since
the number of repetition of Step 3 is m, where
m is the number of decreasing subsequences of
the cover, complexity of the algorithm becomes
O(log n+ n log n

p +mT3(n)). In the following two
subsections, we consider complexities of substeps
(3.1) and (3.2), respectively.

4.2 Computation of the i-th decreasing subse-
quence

In this subsection, we explain details of the sub-
step (3.1), which computes the decreasing subse-
quence Di from a set of the first decreasing subse-
quences of each block D0,0 ∪D1,0 ∪ . . .∪Dp−1,0.

For simplicity, we assume that Ej denotes Dj,0

and E denotes Di. Although we have to prove cor-
rectness of the following procedures, we omit the
proof due to space limitation.

Procedure 1 (Computation of the i-th decreas-
ing subsequence)
Input: A set of decreasing subsequences
E0, E1, . . . , Ep−1. Each decreasing subsequence
Ej (0 ≤ j ≤ p − 1) is stored in a 2-3 tree Tj , and
its size is O(n

p).
Output: The first decreasing subsequence E such
that E = E′

0 ∪ E′
1 ∪ . . . ∪ E′

p−1 and E′
j ⊆ Ej

for each j (0 ≤ j ≤ p − 1). (Elements in E′
j are

stored in a new 2-3 tree T ′
j , and the other elements

Ej − E′
j are stored in Tj again.)

Step 1: On each processor Pj (0 ≤ j ≤ p − 1),
find the smallest element in the tree Tj , and
store the element into qj .

Step 2: Compute the prefix minima of the array
Q = (q0, q1, . . . , qp−1), and store the result
into the same array Q.

Step 3: On each processorPj (0 ≤ j ≤ p − 1),
split Tj into two 2-3 trees T ′

j and Tj using
qj−1. 2

The complexity of Procedure 1 is as follows.
Step 1 can be done in O(log n

p) time using MIN
operation for a 2-3 tree in parallel. Step 2 can be
done in O(log p) time using O(p

log p) processors
using a parallel prefix algorithm[12]. Step 3 can
be done in O(log n

p) time using SPLIT operation
for a 2-3 tree. Thus the procedure can be executed
in O(log p + log n

p) time using p processors.

4.3 Reconstruction of 2-3 trees

In this subsection, we explain details of the
subsection (3.2), which executes reconstruction of
2-3 trees. For each processor Pj , an input of
this substep is a set of decreasing subsequences
Dj,0,Dj,1, . . . ,Dj,mj−1 such that each Dj,i is
stored in a 2-3 tree Tj,i. Since the reconstruction is
executed on each processor in parallel, we describe
a sequential procedure for one processor, and as-
sume that Fi (0 ≤ i ≤ m− 1) denotes Dj,i and a
2-3 tree Ti stores Fi.

Procedure 2 (Reconstruction of 2-3 trees on a
processor)
Input: A set of decreasing subsequences
F0, F1, . . . , Fm−1 obtained for a processor after
the substep (3.1) of Algorithm 3. Each decreasing
subsequence Fj (0 ≤ j ≤ m − 1) is stored in a
2-3 tree Tj .
Output: A set of decreasing subsequences
F ′

0, F
′
1, . . . , F

′
m−1 such that the set of decreas-

ing subsequences is the decreasing cover of
F0 ∪ F1 ∪ . . . ∪ Fm−1. Each decreasing subse-
quence F ′

j (0 ≤ j ≤ m− 1) is stored in a 2-3 tree
Tj .

Step 1: Set k = 0, and repeat the following sub-
steps until k > m.

(1.1): Find the smallest element in the tree Tk,
and store the result in smin.

(1.2): Split Tk+1 into T ′
k and Tk+1 using smin so

that every element in every element in Fk+1

is larger than smin and every element in F ′
k is

no more than smin.

(1.3): Implant Tk in T ′
k, and then, set k = k + 1.

2

The proof for correctness of the procedure is
also omitted due to space limitation.

The complexity of each substep in the above
procedure is O(log n

p) because all of the sub-
steps consist of a constant number of MIN ,
IMPLANT , and SPLIT operations which we
described in Section 2. Since the number of repe-
tition is m, the time complexity of the above pro-
cedure is O(m log n

p).

4.4 Complexity of the algorithm

As we described in Subsection 4.1, complexity
of the algorithm is O(log n + n log n

p + mT3(n)),

研究会Temp
－48－

where T3(n) is the time complexity of substeps
(3.1) and (3.2). In addition, complexities of (3.1)
and (3.2) are O(log p + log n

p) and O(m log n
p)

from Subsections 4.2 and 4.3, respectively. Then,
T3(n) = O(log p + m log n

p).
In consequence, we obtain the following theo-

rem.

Theorem 2 Algorithm 3 solves the patience sort-
ing of n elements in O(n log n

p +m2 log n
p +m log p)

time using p processors on the CREW PRAM. 2

From the above theorem, the complexity of the
algorithm becomes O(n log n

p) in case of n
p > m2,

namely 1 ≤ p < n
m2 . In other words, we can

solve the patience sorting cost optimally if m = nε

and 1 ≤ p < n1−2ε where ε is a constant which
satisfies ε < 1

2 .

5 Procedure for longest increasing subse-
quence

In this section, we describe how to compute
the longest increasing subsequence from a solu-
tion of the patience sorting of the same input. We
first show that the patience sorting and the longest
increasing subsequence are closely related each
other by giving the following lemma[2].

Lemma 3 ([2]) Let m be the length of the longest
increasing subsequence of a sequence S. Then, the
number of decreasing subsequences in a solution
of the patience sorting for the same sequence S is
also m. 2

Using the above lemma, we obtain a solution
of the longest increasing subsequence from a so-
lution of the patience sorting for the same input
S = (s0, s1, . . . , sn−1) as follows. We assume that
D0∪D1∪. . .∪Dm−1 denotes the decreasing cover
of S, and each Dj (0 ≤ j ≤ m−1) denotes the i-th
decreasing subsequence of the cover. Let slj be an
element in Dj (1 ≤ j ≤ m− 1). Then there exists
an element slj−1

∈ Dj−1 which satisfies slj−1
<

slj and lj−1 < lj , and we call slj−1
a parent el-

ement of slj . Given an element slm−1 ∈ Dm−1

for slj , the sequence of elements connected with
the parent relation SL = (sl0 , sl1, . . . , slm−1) is in-
creasing. Therefore SL is the longest increasing
subsequence whose length is equal to the number
of decreasing subsequences of the patience sort-
ing. Once parent relations are obtained for all el-
ements, we can find the longest increasing subse-

quence by tracing the parent relation from an ele-
ment in Dm−1 to an element in D0.

We now consider how to find a parent element
for each element in Dj (1 ≤ j ≤ m−1). Although
there may be some candidates for a parent element
for each element, we define a parent element slj−1

of slj using the following expression.

slj−1
= sk s.t. k = max{k′ | k′ < lj , sk′ ∈ Dj−1}

Then, slj−1
< slj holds because of definition

of the patience sorting. Since indices of elements
in each decreasing subsequence are increasing, we
can find parent relations between two decreas-
ing subsequences using a ranking operation for
merging[7]. Moreover we can execute the search
operation for each pair of decreasing subsequences
in parallel.

We summarize the idea in the followings.

Procedure 3 (Procedure for the longest increas-
ing subsequence)
Input: A solution of the patience sorting for a se-
quence of distinct integers S.
(We assume that a solution of the patience
sorting consists of m decreasing subsequences
D0,D1, . . . ,Dm−1.)
Output: A longest increasing subsequence SL =
(s

′
0, s

′
1, . . . , s

′
m−1) for S.

Step 1: For each element slj in Dj (1 ≤ j ≤
m − 1), find the parent element slj−1

which
satisfies slj−1

= sk s.t. k = max{k′ | k′ <
lj, sk′ ∈ Dj−1}.

Step 2: Trace the parent relation from an element
in Dm−1 to an element in D0, and store traced
elements in SL in reverse order. 2

The complexity of Procedure 3 is as follows.
Step 1 consists of m independent ranking opera-
tions for merging[7]. Since we can execute rank-
ing operation in O(log n + n

p) time using p pro-
cessors for two sequences whose sizes are O(n),
we can execute Step 1 in O(log n+ n

p) time p pro-
cessors on the CREW PRAM. Step 2 can be done
in O(log n + n

p) time using a parallel list rank-
ing algorithm[3] because parent relations make a
tree structure. Therefore we obtain the follow-
ing lemma and theorem for Procedure 3 and the
longest increasing subsequence, respectively.

Lemma 4 Procedure 3 computes the longest in-
creasing subsequence from a solution of the pa-
tience sorting in O(logn + n

p) time using p pro-
cessors on the CREW PRAM. 2

研究会Temp
－49－

Theorem 3 We can solve the longest increas-
ing subsequence of n elements in O(n log n

p +
m2 log n

p +m log p) time using p processors on the
CREW PRAM. 2

6 Conclusion

In this paper, we have proposed two algorithms
for the patience sorting. The first algorithm is a
parallel algorithm which consists of repetition of
the prefix operations. The second one is a parallel
algorithm which improves the complexity of the
first algorithm, and runs in O(n log n

p +m2 log n
p +

m log p) time using p processors on the CREW
PRAM. The algorithm is cost optimal in case of
1 < p < n

m2 . Finally, we have proposed a proce-
dure which computes the longest increasing sub-
sequence from a solution of the patience sorting,
and obtain a parallel algorithm, which runs with
the same complexity as the patience sorting, for
the longest increasing subsequence.

Although P -completeness of both problems
have not been proven yet, a proposition of efficient
parallel algorithms for the problems is not easy.We
are now considering parallelizability of some prob-
lems which have similar properties.

References

[1] A. Aho, J. Hopcroft, and J. Ullman. The De-
sign and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] A. Aldous and P. Diaconis. Longest increas-
ing subsequences: From patience sorting to
the baik-deift-johansson theorem. BAMS:
Bulletin of the American Mathematical Soci-
ety, 36:413–432, 1999.

[3] R. Anderson and G. Miller. Deterministic
parallel list ranking. In Third Aegean Work-
shop on Computing, AWOC 88, pages 81–90.
Springer-Verlag, 1988.

[4] S. Bespamyatnikh and M. Segal. Enumerat-
ing longest increasing subsequences and pa-
tience sorting. Information Processing Let-
ters, 76(1–2):7–11, 2000.

[5] C. Castanho, W. Chen, K. Wada, and A. Fu-
jiwara. Polynomially fast parallel algorithms
for some P -complete geometric problems. In

Proc. Workshop on Computational Geome-
try, 2000.

[6] C. Cerin, C. Dufourd, and J. F. Myoupo. An
efficient parallel solution for the longest in-
creasing subsequence problem. In Fifth Inter-
national Conference on Computing and In-
formation (ICCI’93), pages 220–224. IEEE
Press, 1993.

[7] R. J. Cole. Parallel merge sort. SIAM Journal
on Computing, 17(4):770–785, 1988.

[8] F. Dehne, A. Fabri, and A. Rau-Chaplin.
Scalable parallel computational geometry for
coarse grained multicomputers. In ACM
Symposium on Computational Geometry,
pages 298–307, 1993.

[9] T. Garcia, J. Myoupo, and D. Semé. A
work-optimal CGM algorithm for the longest
increasing subsequence problem. In The
2001 International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA’01), pages 563–569,
2001.

[10] R. Greenlaw, H. Hoover, and W. Ruzzo. Lim-
its to Parallel Computation: P-Completeness
Theory. Oxford university press, 1995.

[11] D. E. Knuth. Sorting and Searching. Vol-
ume 3 of The Art of Computer Programming.
Addison-Wesley, 1973.

[12] R. Ladner and M. J. Fisher. Parallel prefix
computation. Journal of ACM, 27:831–838,
1980.

[13] C. Mallows. Patience sorting. Bulletin of the
Institute of Mathematics and its Applications,
9:216–224, 1973.

[14] T. Nakashima and A. Fujiwara. Paralleliz-
ability of the stack breadth-first search prob-
lem. In The 2001 International Conference
on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’01), pages
722–727, 2001.

[15] R. Uehara. A measure for the lexicographi-
cally first maximal independent set problem
and its limits. International Journal of Foun-
dations of Computer Science, 10(4):473–
482, 1999.

研究会Temp
－50－

