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Abstract. We present efficient and accurate approximation algorithms for computing the premium
price of Asian option. We improve the accuracy-time tradeoff given by Aingworth et al. in SODA 2000
for pricing the Europian-Asian option both theoretically and practically, and also show the method
works for a new option named Saving-Asian option, whose merit is in the middle of European-Asian

and American-Asian options.

1 Introduction

Options are popular financial derivatives. Op-
tions give the right, but not the obligation, to
buy or sell something (we consider a stock in this
paper) at some point in the future for a specified
price (called strike price).

A simple option permits buying a stock at the
end of the year for a predetermined price. If the
stock is worth more than that price, then you can
use the option to buy the stock for less than you
otherwise could. The price of the option (called
premium of the option) is usually much less than
the underlying price of the stock. Options allow
hedging risk more cheaply than using only stocks,
and cheaply provide a chance to get large profit
if one’s speculation is good.

For example, if you are interested in a stock
of a current price $200, and forecast that it will

possibly go up beyond $300 in the year-end. You

may buy 1000 units of the stock (probably falling
in debt), and if your forecast will come true, you
will gain $100,000; however, if the stock price
will go down to $100, you will unfortunately lose
$100,000, which you will not be able to afford.
Instead, suppose that you can buy at a premium

$8 an option that gives you the right to buy the
stock at a strike price $220. If the stock price will
go up to $300, you will obtain $80 extra (called
payoff) for each unit by exercising the option and
selling the stock at the market price. Thus, if you
buy 1250 units of this option, you have a chance
to gain total payoff of $100,000 (without consider-
ing the debt for the premium) reducing the maxi-
mum loss to be $10,000 (just the total premium).
You may buy 2000 units of another option that
has a strike price $250 and a premium $2, and
dream to gain $100,000 with the maximum loss
$4,000. !

Here, you must question whether the option
premiums $8 and $2 are fair or not. Therefore,
pricing the options is a central topic in financial
engineering.

A standard method (Black-Scholes model) is
to model the movement of the underlying finan-
cial asset as Brownian motion with drift and then
to construct an arbitrage portfolio. This yields a
stochastic differential equation, and its solution
gives the premium of the option.” However, it is
often difficult to solve the above differential equa-
tion, and indeed no closed-form solution is known
for the Asian option discussed in this paper.

!But you can see that the latter option is not always better than the former one.
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Therefore, it is widely practiced to simulate
the Brownian motion by using a combinatorial
model, and obtain a solution on the model, which
we call the combinatorial exact premium price or
the ezact premium price, as an approximation of
the premium price obtained from the differential
equation. A binomial (or trinomial) model is a
combinatorial model, in which the time period is
decomposed into n time steps, and the Brownian
motion is modeled by using a biased random walk
on a directed acyclic graph named recombinant
binary (or trinary) tree of depth n with n(n+1)/2
nodes. Although our algorithms and analysis can
be easily adjusted to work on the trinomial model,
we focus on the binomial model for simplicity.

In the binomial model, the process of price-
movement of a stock (or any financial asset on
which the option is based) is represented by a
path in the binary recombinant tree. An option
is called path-dependent if its value at the time of
ezercise depends not only the current price but
also the path representing the process.

Path-dependency is necessary for designing an
option that is secure against the risk caused by
sudden change of the market, and also right of
early exercise is convenient for users. However,
an option with both functions is often difficult to
analyze.

Our Problems and Results

The Asian option is a kind of path-dependent op-
tions. If we would like to simulate the Black-
Scholes model by using a binomial model accu-
rately, the size often becomes large. Unfortu-
nately, it is known to be #P-hard to compute the
exact premium price on the binomial model for a
path-dependent option in general [4]. Therefore,
we would like to design an efficient approximation
algorithm with a provable high accuracy.

The European Asian option is the simplest
Asian option. A most naive method (full-path
method) for computing the exact premium price
of an European Asian option is to enumerate all
the paths in the model; unfortunately, there are
exponential number of paths. Thus, a random
sampling method is a popular way to have an ap-
proximate solution; however, taking a polynomial
number of samples is not enough to assure a good
theoretically probable accuracy if we naively sam-

ple. There are several polynomial-time approx-
imation algorithms for pricing European-Asian
options [4, 5], based on sampling method. How-
ever, for path-dependent call options, the approx-
imation error for a sampling method taking a
polynomial number of samples has a lower bound
that depends on the volatility of the random pro-
cess represented by the binomial model; more-
over, O(n?) time is necessary to attain the match-
ing upper bound.

Recently, Aingworth-Motowani-Oldham [1] gave
a breakthrough idea with which the influence of
volatility to the theoretical error bound can be
avoided. The idea is to aggregate (exponential
number of) high-payoff paths by using mathemat-
ical formulae during running an approximate ag-
gregation algorithm based on dynamic program-
ming. They proposed an O(n?k) time algorithm
(referred to AMO algorithm), and proved that its
error is bounded by nX/k where X is the strike
price of the option, and k is a parameter giving
the time-accuracy tradeoff. Akcoglu et al.[2] pre-
sented efficient randomized methods for the pric-
ing of European Asian option, and by combining
random sampling and AMO algorithm they re-
duce the error bound to n'5*X /k spending the
same time complexity under the condition that
the volatility of the stock is small.

In this paper, we first give a randomized al-
gorithm with an O(n%k) time complexity and an
O(+/nX/k) error bound for which we do not need
a volatility condition. The algorithm is indeed
a variation of the AMO algorithm. The modi-
fication itself is quite small, and it looks almost
trivial at a glance. However, by this modifica-
tion, the algorithm can be regarded as a variant
of the sampling method (without limit of above
mentioned lower bound), as well as that of the
AMO algorithm. Thus, the algorithm can enjoy
advantages of both methods simultaneously. Al-
though algorithms on a uniform model has been
mainly considered in the literature [1, 2] in algo-
rithm theory, our algorithm and analysis work on
a non-uniform model where the transition prob-
abilities of the stock price may depend on the
state of the graph modeling the process, and also
work on a trinomial model. Moreover, the error
bound can be improved to O(n'/4X/k) for the
uniform case unless the transition probability p



is extremely close to 1 or 0.

Our idea is the following: By considering a
novel random variable, the aggregation process
of the algorithm can be considered as a Martin-
gale process with n random steps. The expected
value of its output equals the combinatorial exact
price, and the error of its single step is bounded
by X/k. Thus, we can apply the Azuma’s in-
equality [3] on the Martingale process to obtain
the error bound. We show practical quality of our
algorithm by an experiment: Indeed, its error ac-
curacy (for n = 30) is better by a factor nearly
100 than Aingworth-Motowani-Oldham’s original
algorithm.

Next, inspired from the analysis, we propose
an intermediate option between American-Asian
and European-Asian options, and show that our
method works for this option. In [1], it is claimed
that the AMO algorithm works for the American-
Asian option. Unfortunately, the analysis is not
complete, and accurate pricing of the American-
Asian option seems to be quite difficult.

Our option, which we name Saving-Asian op-
tion, permits early exercise, but the payoff system
is different from the American option, so that we
can anticipate the action of users and compute
the expected payoff accurately. The payoff de-
pends on the average stock price, and hence se-
cure against sudden change of the market. More-
over, compared to the American-Asian option,
the Saving-Asian option reduces the risk for the
seller; thus the premium is cheaper. Therefore,
we believe our new option and its analysis will be
useful in both theory and practice.

2 Preliminaries

We divide the period from the purchase date to
the expiration date of an option into n time peri-
ods, and the ¢-th time step is the end of the ¢-th
time period. Let S; (¢ =0,1,2,...,n) be a ran-
dom variable representing the the stock price at
the t-th time step, where Sp is a constant known
as the initial price.

Let X be the strike price of the option. Pay-
off is the value of the option, which is a random
variable. In Black-Scholes’ theory, the option pre-
mium is computed from the expected value of the
payoff by subtracting the interest on the premium

during the period, and hence it suffices to com-
pute (or approximate) the expected value of the
payoff for pricing the option.

2.1 Options

We only consider call options in this paper, al-
though pricing of corresponding put options can
be similarly (indeed more easily) done. We adopt
a convention to write F* for max{F,0}.

2.1.1 European Option

European call option is the most basic option,
and its payoff (S, — X)* = max{S, — X,0} is de-
termined by the stock price of the expiration date
(i.e., at the n-th time step). Note that S, above
is the real stock value that is revealed on the expi-
ration date. A drawback of the European option
is that the payoff may be changed drastically by
the movement of the stock price just before the
expiration date; thus, even if the stock price goes
very high during most of the period, it may hap-
pen that the option does not make money at the
end.

2.1.2 European-Asian Option

The payoff of the European-Asian option is (4, —
X)*t, where A, = (3°7_; S;)/n is the average of
the stock prices during the period. Let Tj =

z=1 S; be the running total of the stock price up
to the j-th time step. If T; > nX, we know that
we will surely exercise the option at the expira-
tion date, and the payoff is at least T;j/n —X. We
call that the option is in-the-money if this hap-
pens. Thus, the European-Asian option is more
reliable than the European option for the buyer.

2.1.3 American-Asian Option

In the American-Asian option, the buyer can ex-
ercise the option in any time period, and receive
A; — X if the option is exercised at the i-th time
period, where A; = T;/i. Apparently, the option
is much advantageous for the buyer, and hence
its premium should be more expensive. One diffi-
culty of this option is that the action of the buyer
is highly path-dependent. Even after the status
of the option becomes in-the-money; the buyer
must decide whether he/she exercises the option



immediately; it should depend on both T; and
the current stock price. Thus, its accurate pric-
ing with provable accuracy seems to be difficult
(see Section 4.1).

2.1.4 Saving-Asian Option

We propose a new option, named Saving-Asian
option. In the Saving-Asian option, the buyer
can exercise the option at any time period, and
receive e~ (®=9T0/n(T; — i X} /n if the option is ex-
ercised at the i-th time period, where €™ is the
risk-free interest rate for the whole period. Thus,
it is an American type option, but different from a
standard American-Asian option since it restricts
the payoff for early exercise.

For the buyer, this option is clearly advanta-
geous to the European Asian option, since he/she
has a choice to keep the option until the expira-
tion date in which case the payoff is (4, — X)*
that is exactly same as that of European Asian
option. On the other hand, if the buyer exercises
at the i-th period and re-invest the money, he/she
will have (T; — +X)/n at the n-th step, which
might be larger than A, — X = (T, — nX)/n.
Therefore, if the stock price will drastically go
down after enjoying some high-price period, the
buyer can exercise early to avoid reduction of his
profit. Moreover, early exercise has an advantage
that the buyer can get money for urgent need.

Intuitively, this option simulates accumula-

tive investment permitting discontinuation, in which

the buyer has a right to buy 1/n unit of the stock
by X/n dollars for selling it by the market price
every time period, and can stop at the i-th step
after investing iX/n dollars to receive the profit
obtained so far. Apparently the payoff is path-
dependent, and thus the option is not in the cat-
egory of Markovian-American option given in [4].

Similarly to the American-Asian option, the
action of the buyer seems to be path-dependent.
However, it is easier to analyze the best action as-
suming that the buyer has the same model of the
stock price movement as the seller. In particular,
in the uniform model (defined in the next sub-
section), once the status of the option becomes
in-the-money, the buyer should sell the option in
the i-th step if the expectation of the running to-
tal after the (¢ 4+ 1)-th step is less than (n —i)X;
thus, the decision depends on the current stock

price and the model, but is independent of the
history of the movement of the stock. We re-
mark that in our convention in this paper, in-
the-money always means T; > nX, although it is
common that in-the-money means the buyer can
get profit if he/she exercises immediately.

2.2 Binomial Model

Let us consider a discrete random process simu-
lating the movement of the price of a stock. The
fundamental assumption in the binomial model
(and the Black-Scholes model) is that in each time
step the stock price S either rises to uS or falls
to dS, where u > d are predetermined constants.

Thus, we can model stock price movement as
occurring on a recombinant binary tree. A recom-
binant binary tree* G is a leveled directed acyclic
graph whose vertices have at most two parents
and two sons. We label the nodes (4, j) where ¢
denotes the level and j denotes the numbering of
the nodes in the i-th level (0 < j < i). The node
(i,7) has two sons (i + 1,7) and (i 4+ 1,5 + 1) if
i < n— 1. Therefore, the node (i,j) has parents
(i-1,j)and (i—1,j-1)ifi #0and 1 < j <i-1.
Each of the nodes (z,7) and (¢,0) has one parent.
Intuitively, the graph looks like the structure of
the Pascal’s triangle.

In the model, if we are at a node v = (4, j) and
the current stock price is S, we move to (i + 1, )
with probability p, and the stock price rises to
wS. With probability 1 — p,, we move to (i +
1,5 + 1) and the stock price falls to dS. Thus, if
we are at the node (i, 7), the stock price must be
uIdI So-

The model is called uniform if p, = p for
every node v; otherwise it is non-uniform. The
uniform model is widely considered {1, 2, 4, 5]
since p is uniquely determined under the non-
arbitrage condition of the underlying financial ob-
ject; however, non-uniform model is often useful
to customize an option. We consider the uni-
form model first, and will show later how to deal
with the non-uniform model. Our method also
works for the trinomial model where each node
(except those in the n-th level) has three sons,
and stock price moves to one of u.5, S, and u~1ls,
although we omit details in this paper. In the

20ften called binomial lattice



uniform model, the probability that the random
walk reaches to (4,7) is (;) P~ (1—p)?. We define
r = up + d(1 — p) — 1, which corresponds to the
risk-neutral interest rate for one time period in
the risk-neutral model.

Qur task is to compute the expected value
of the payoff, that is E((4, — X)*). A simple
method is to compute the running total 7,,(p) of
the stock value for each path p in the graph G to-
gether with the probability prob(p) that the path
occurs, and exactly compute E((4, — X)*) =
2_p(prob(p)(Tn(p)/n—X)*). The expected value
U of the payoff computed as above is called the
ezact value of the expected pay-off.

However, this needs exponential time com-
plexity with respect to n, since there are 2" dif-
ferent paths. Random sampling of the paths is a
popular method to reduce the computation time,
although we need to have huge number of paths
in order to have a small provable error bound if
we naively sample the path.

3 Our Algorithm for Pricing Eu-
ropean Asian Option

3.1 AMO Algorithm

We give a brief overview of the AMO algorithm
(see [1] for details). AMO algorithm is based on
dynamic programming and has an O(n%k) time
complexity with a provable error bound of nX/k,
where k is a parameter to give the time-error
tradeoff.

For a path p from the root to a node of level ¢,
its stamp is the pair of its current stock price and
the running total. Note that the current stock
price corresponds to the node. The basic idea
of AMO algorithm is approximating the running
totals appropriately so that the number of dif-
ferent stamps is at most (¢ + 1)k, and store the
approximate stamps at the {-th time step into a
table with (¢ + 1) rows and k columns. More-
over, if the running total 7; exceeds nX for a
path p (i.e., the option is in-the-money), the ex-
pectation of the payoff of paths containing p as
a prefix is computed analytically (in the uniform
model) or efficiently precomputed by using dy-
namic programming (in the non-uniform modet).
Thus, the stamp corresponding to the path p is

pruned away from the table.

The row index corresponds to the stock prices.
The stock price takes one of the (¢ + 1) values
uldt™8y for i = 0,1,..,t in the binomial model,
and hence naturally we assign paths with the
stock price S;(3) = w'd* 'Sy to the (i + 1)-st
row. The column index corresponds to the run-
ning total T; of paths. The running totals of un-
pruned paths are assorted into k buckets B(s)
for s = 1,2,...,k such that B(s) represents the
interval [bs—1,bs) = [(s — 1)nX/k, snX/k).

A cell in the table is indicated by a pair of
a stock value and a bucket. Suppose that many
stamps are assorted into the cell C'(S;(z), B(s)).
Then, the algorithm approximate them as a stamp
with the current stock price S;(:) and running to-
tal bs—1. The stamp has a weight wy(s, ), where
wy(s, 1) is the summation of the probability that
each of the paths occurs.

Since the error caused in one step of the pro-
cess is bounded by nX/k for (T,, — nX)*. Thus,
the error contribution to (4, — X)* is at most
X/k for one step. Thus, the accumulated er-
rors in the final running total will be n2X/k, and
the error in the estimation of the average stock
value is bounded by nX/k. More precisely, if U =
E((A, — X)™T) is the exact value of the expected
payoff in the binomial model and ® is the payoff
computed by the algorithm, U > & > U —nX/k.

3.2 Modified Algorithm

Our modification of the AMO algorithm is quite
simple. In order to represent the stamps in the
cell C(Si(z), B(s)), we select a stamp from them
and give a weight wy(s,¢) to it. We apply ran-
dom sampling so that a stamp with weight w is
selected with a probability w/w:(s, ).

At a glance, it looks merely a heuristic, and
does not improve the theoretical bound. Let ¥
be the payoff value computed by the algorithm.
Indeed, in the worst case, the error caused in
one step is only bounded by X/k, and hence we
can only prove that the worst case error bound
|U — ¥| is nX/k. However, the algorithm can be
also viewed as a sampling method of paths, since
stamps stored in the table are real stamps of some
suitable paths. We can observe that the selection
of paths is smartly done during the runtime of
the algorithm: In each step the path-prefixes are



clustered by using the table, and a path-prefix is
selected from each cluster to continue.

Since the algorithm is randomized, ¥ is a ran-
dom variable depending on the coin-flips to choose
representatives of stamps in the table. Let Y;
be the random variable giving the “exact” payoff
value after running the algorithm up to the i-th
time step; in other words, after the choice of rep-
resentatives in all the cells of the table has been
determined up to the i-th time step, we consider
all the possible suffixes of the representing paths
to compute Y; exactly in the binomial model. Of
course, the computation time is exponential, and
thus Y; is only used in the analysis of the per-
formance of our modified AMO algorithm. By
definition, Yy =U and Y,, = ¥.

Lemma 3.1 |Y; — Y;_{| < X/k, and
E(Y;IY(L}/D},?’ u’),i-—l) = Y;—-l fOT”I: = 1727' sy N

Lemma 3.1 says that the sequence ¥y, Y1,...,Y,
is a Martingale sequence with a Lipshitz-type con-
dition. Thus, we apply Azuma’s inequality [3].

Theorem 3.2 (Azuma’s inequality) Let Zy, Zy,.

be a Martingale sequence such that for each k,
|2k — Zg-1| < cx, then for allt 2 0, |Zy — Zp| <

ey/ Sy & with probability 1 — 2e=</2,

In our case, ¢y = X/k, and hence, we have
the following:

Theorem 3.3 Our algorithm approximate the ex-
pectation of pay-off in O(n?k) time, and its error
from the ezact expectation is ot most cy/nX/k

with probability 1 — 2e=/2 for any positive value

c.

3.3 Experimental Performance

Figure 1 gives the comparison of three methods:
1. random sampling, 2. original AMO algorithm,
and 3. our algorithm. Here, we consider a uni-
form model where So = X = 100, v = 1.1,
d = 1/u, pu+ (1 — p)d = (1.06)/", and we set
k = 1000. The premium is computed by mul-
tiplying (1.06)~! to the expected payoff value.
In the random sampling method, we take 20n
sample paths for one trial and take average over
1000 trials, since taking 20000n samples at once

is oversampling for a small n. For our randomized
algorithm, we only run single trial.

The graphs show the error from the exact pre-
mium computed by using the full-path method.
The running time is approximately the same for
the three methods in the range 10 < n < 30, and
about 0.08 second for n = 30, whereas the full-
path method takes 1092 seconds. The error of our
algorithm is always less than 0.03 = 0.3X/1000,
and smaller than the other methods with factors
up to about 100. Also the error tends to decrease
if n is increased, and its average is about 0.005 for
25 < n < 30 ; therefore, it is much better than
the theoretical bound ¢\/nX/1000. At n = 30,
the exact premium value is 11.5474 and the error
ratio to the premium value is less than 0.0005.

We also run the random sampling algorithm
spending computation time 100 times more, but
the accuracy was not competitive to our algo-
rithm. Note that we did not implement AMO
algorithm with flexible bucket size (a heuristic
method that is reported to be better than the
original AMO algorithm [1]), since its performance
depends on tuning of parameters and also the
heuristic can be combined with our algorithm,

too.
0.4 = 4
random sampling (20n x 1000} ——+—-
algorithm ——-x—
0.2 our algorithm -

absolute error

0.2
A A

- A \

0.4 - x/\/\*"'x/\i/ \//\/ / \\\
[ e -~
06 \//f
0.8 - .
10 15 20 25 30

time periods

Figure 1: Errors of the computed premium by
three algorithms from the exact value

Figure 2 gives the premium prices computed
by the algorithms for 50 < n < 80, where we also
consider a version of AMO algorithm in which we
take the upper value in each bucket in order to
give an upper bound of the premium price. The
full-path method is not feasible for such a large
n. It can be observed that the premium price
computed by our algorithm is quite stable.
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Figure 2: Premiums computed by the algorithms

3.4 More Precise Analysis for the Uni-
form Case

The experimental result shows that the analysis »

in the previous sections overestimates the error.
We can theoretically improve it for the uniform
case. Here, for simplicity, we deal with a special
case where p = 1/2, although it can be applied
for any p provided that there is a constant o sat-
isfying that 1 — o < p < a < 1 and independent
of n.

We refine the analysis of the random process
such that nodes of the t-th level are processed
one-by-one, and coin flips for the cells associated
with a node is grouped into one random process;
in other words, processing of each row of the table
is one step of the random process.

The total weight w(t,j) of the paths corre-
sponding to the node (¢, j) is (;)p7 (1=p)*J. Let
Y;; be the random variable giving the “exact”
payoff value just after the algorithm processes the

* j-th node in the ¢-th level. Thus, we have a ran-
dom process with 3770 (t4+1) = n(n+1)/2 total
steps. We can easily see that this gives a Martin-
gale process, and |Y; ; — Y3 41| < w(t, 5)X/k for
7 96 t, and iYE,t - Y'H*LO’ < w(t, t)X/k

Let ¢;; = w(t,j)X/k. Then, in order to ap-
ply Azuma’s inequality, we would like to estimate
I'= Y ocjct<n-1 ctz)j. For the purpose, we want
to estimate g(t, p) = Z;zl((;)p’ (1—p)t9)2, since
T = (X/k)’ 305 g(t,p). Indeed, g(t,1/2) =
2t Z:=1((;))2 The following is an easy exercise
of combinatorics:

Lemma 3.4 E§=l((;))2 = (%), and (*) ~ 2t/V1.

Thus, we have I' = O((X/k)? 0dt-1/2 =

O((X/k)*n'/?). By Azuma’s inequality, |¥—U]| <
¢vT with probability 1 — 2e=°"/2. Thus, we have
the following:

Theorem 3.5 For a uniform model with p =
1/2, our algorithm approzimates the expected pay-
off in O(n%k) time, and its error from the ezact
expectation is O(n'/4X/k) with probability 1 —
26“02, where ¢ is any given positive constant.

4 Asian Options Permitting Early
Exercise

4.1 AMO algorithm for the American-
Asian option

In {1], it is claimed that a variant of AMO algo-
rithm also works for the American-Asian option.
However, it is based on a claim (or assumption)
that the early exercise always occurs before the
status becomes in-the-money. However, it is not
always true, since a buyer of the American-Asian
option holds the option while the stock price con-
tinues to go up. More precisely, if the current
stock price is higher than the current average, it
is advantageous to hold the option, and the in-
the-money status is irrelevant to the decision.

Indeed, the decision for the early exercise of
the original American Asian option highly de-
pends on the current running total, and hence
it seems to be difficult to apply AMO algorithm
for the American Asian option.

4.2 Pricing Saving-Asian Option

For the Saving-Asian Option, if the buyer ex-
ercises at the i-th time step and re-invest the
money, he/she will receive (T; —iX)/n at the n-th
time step.

Suppose that the status is in-the-money at the
i-th step, and thus the advantage that the user
need not exercise the option is no more valid. In
the uniform model, the decision merely depends
on whether 7; — 1X is larger than the expected
value of T, —nX (knowing the current stock price
S) or not; In other words, we should exercise early
if and only if E(T,, — T;|S; = S) = SE;:{(l +
7)Y < (n—%)X, which means that the expectation
of the average stock price after the i-th step is
less than X. This condition is path-independent



except the path-dependent assumption that the
status is in-the-money.

In the non-uniform model, it is a little more
complicated, since even if T; —iX is larger than
the conditional expectation of T, — nX, it may
happen that we should wait for a while. For ex-
ample, we may postpone to exercise during the
X'mas week if the particular stock (e.g. a stock
of a department store) is expected to go up during
the week in the model provided that the current
stock price S is in a certain range.

For each node v in the recombinant binary
tree, we define real values f(v) and g(v) as fol-
lows: If v is a leaf, f(v) = 0 and g(v) = S(v) - X,
where S(v) is the stock price associated with v.
If v has sons w and w’ such that w is selected
with probability p,, f(v) = max{p,g(w) + (1 —
Pu)g(w'),0} and g(v) = S(v) — X + f(v).

The value p,g{w) + (1 —py)g{w') is the expec-
tation of extra (possibly negative) payoff obtained
by postponing the exercise of the option at v, and
thus f(v) is the value of the right of postponing
the exercise. Indeed, if we postpone and the pro-
cess goes to w, S(w) — X is added to the current
payoff (including the interest) and f(w) gives the
value of the right of postponing at w.

We call a node v in the i-th level of the re-
combinant binary tree a pseudo-ezercise node if
f(v) = 0. The values f(v) and g(v) can be com-
puted in a bottom-up fashion in O(n?) time for
all nodes v.

Lemma 4.1 If the status is in-the-money, one

should exercise the option at the first pseudo-exercise 2]

node that is encountered.

Now, we run a dynamic programming algo-
rithm that is basically the same as the algorithm
in the previous section for the European Asian
option. If the status becomes in-the-money and
we are at a node v of level 7 in the recombi-
nant binary tree, the expected payoff (including
the risk-free interest if early exercise is done) is
{(T —iX) + f(v)}/n.

Then, we backtrack the dynamic program-
ming process to find the early-exercise states, which
depend on both stock values and running totals
if their status is not in-the-money. Indeed, if
the payoff (including the interest obtained by re-
investment) obtained by early exercise at a state

corresponding to a cell D(S:(¢), B(s)) in the DP
table is more than the weighted average of the
payoffs of its two sons, the state is an early-exercise
state. We must update the payoff of states dur-
ing the backtrack when we find an early-exercise
state. This needs additional O(n?k) time.

Finally, we compute the expected payoff by
summing up the payoff values multiplied by their
probabilities. The Martingale property naturally
holds, and one-step error bound is X/k. Thus,
the error analysis is analogously done to the Eu-
ropean Asian option.

Theorem 4.2 The algorithm approzimates the
ezpected pay-off of the Saving-Asian option in O(n%k)
time, and its error from the exact expectation is at

" most c/nX [k with probability 1 — 2¢=*/2, More-

over, in the uniform model where 1l —a<p< a
for a constant a < 1, the error bound becomes
OmiAX/k).
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