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概要 G を n頂点とm辺をもつ無向グラフとする。Gの準平衡彩色とは、Gの最短路ハイパーグラフの
ディスクレパンシー条件に基づく 2色彩色であり、疑平衡彩色たちはGの独立集合のあるクラスに対応す
る。本論文では、Gの異なった準平衡彩色の数と数え上げについての結果を与える。即ち、二部グラフな
ら高々n+ 1, トライアングルフリーならm, 一般にm+ 1が準平衡彩色の数の上界である。更に、これら
全ての準平衡彩色は O(nm2) 時間で列挙される。
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Abstract. Let G be an undirected, unweighted, connected graph with n vertices and m edges. We
introduce the concept of a semi-balanced coloring of G, which is a 2-coloring of the shortest-paths
hypergraph of G under a certain discrepancy condition yielding a class of independent sets of G. We
prove that the number of different semi-balanced colorings of G is: (1) at most n+1 if G is bipartite; (2) at
most m if G is non-bipartite and triangle-free; and (3) at most m+1 if G is non-bipartite. Based on the
above combinatorial investigation, we design an algorithm that enumerates all semi-balanced colorings
in O(nm2) time.

1 Introduction

Given a set V , a coloring of V is a mapping π from
V to {−1, 1}. For a graph G = (V,E), a coloring
π of the vertex set V is called a 2-coloring of G if
π(x) �= π(y) for every edge {x, y} in E. We call a
vertex which has been mapped to 1 (resp. −1) a red
(resp. blue) vertex. A graph has a 2-coloring if and
only if it is bipartite; in fact, by symmetry, a bi-
partite graph always has two different 2-colorings.
A natural way to extend 2-colorings is by allowing
k colors to be used, where k is any positive integer.
Such a coloring is called a k-coloring of G. The
number of possible k-colorings of a graph is given
by its chromatic polynomial, and has been studied
extensively (see [10] or [12]).

Another way to generalize 2-colorings is by re-

laxing the restriction on two adjacent vertices never
being allowed to have the same color. If we only
require that no blue vertices are adjacent to each
other, the problem of coloring the graph becomes
equivalent to the problem of finding an indepen-
dent set (often called stable set) in the graph since
any set of blue vertices then forms an independent
set of G. However, the number of different inde-
pendent sets of G can be very large, and we usuall
want a “good” one satisfying some additional re-
strictions: The maximum independent set problem
and the minimum maximal independent set prob-
lem are famous examples, in each of which the addi-
tional restriction is basically quantative and results
in an optimization problem that is hard to approx-
imate within a factor n1−ε under some hypothesis
on computational hierarchy [4].
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Discrepancy conditions
In this paper, we consider a class of independent
sets with an imposed structural condition.

We can observe that the red and blue vertices
along any path in a 2-colored bipartite graph are
always arranged in an alternating fashion. Thus,
−1 ≤ ∑

v∈P π(v) ≤ 1 must hold for the set P of
vertices on any path in the graph. This can be
regarded as a discrepancy condition.

Discrepancy is a popular measure of uniformity
and the quality of approximations, and has been
used in combinatorics, geometry, and Monte-Carlo
simulations [5, 8, 9]. It is defined as follows. Let
H = (V,F) be a hypergraph, where F ⊆ 2V .
Given a coloring π of V , let π(F ) =

∑
v∈F π(v) for

every F ∈ F and let Dc(H,π) = maxF∈F |π(F )|.
The combinatorial (or homogeneous) discrepancy
Dc(H) is defined asDc(H) = minπ Dc(H,π), where
we take the minimum over all possible colorings of
V . In particular, if Dc(H,π) ≤ 1 then π yields a
coloring which is uniform in every hyperedge; this
means that −1 ≤ π(F ) ≤ 1 for every F ∈ F . Such
a π is called a balanced coloring of H. We call a col-
oring π semi-balanced if −1 ≤ π(F ) ≤ 2 for every
F ∈ F .

The shortest-paths hypergraph induced by G is
the hypergraph H(G) = (V,PG), where PG is the
set of all shortest-path vertex sets in G. A 2-
coloring of G is equivalent to a balanced coloring
of H(G); hence, we generalize 2-colorings of G by
considering semi-balanced colorings of H(G). A
balanced (semi-balanced) coloring of H(G) is also
called a balanced (semi-balanced) coloring of G.

Naturally, the set of all blue vertices of a semi-
balanced coloring is an independent set that is ei-
ther maximal or submaximal. Although a semi-
balanced coloring does not always exist, the semi-
balancing condition defines a nonempty subpoly-
tope of the stable set polytope of G [12]. More-
over, for any independent set W in G, there is a
supergraph G′ of G obtained by adding suitable
edges such that W is the set of blue nodes in a
semi-balanced coloring of G′. Thus, the set of in-
dependent sets of G corresponds to the union of
sets of semi-balanced colorings of supergraphs of

G, and the correspondence yields a covering struc-
ture of the set of independent sets. This motivates
us to study combinatorics and algorithms for semi-
balanced colorings of a graph.

Our results
The most fundamental combinatorial themes are
counting and enumeration. In this paper, we show
that the number of semi-balanced colorings is al-
ways polynomial in the input size. More precisely,
we prove that if G is a connected graph with n ver-
tices and m edges, the number of different semi-
balanced colorings is: (1) at most n + 1 if G is
bipartite; (2) at most m if G is non-bipartite and
triangle-free; and (3) at most m + 1 if G is non-
bipartite. Moreover, we can enumerate all the semi-
balanced colorings of G in O(nm2) time; thus, this
version of the independent set problem is polyno-
mial time soluble.

Because of space limitation, we only deal with
(1) and (2) in the present paper, and (3) will be
given in our companion paper.

Relation to a rounding problem
Another motivation for studying semi-balanced col-
orings comes from a conjecture in [2] called the
rounding conjecture. Given a hypergraph H =
(V,F), where F ⊆ 2V , along with a real-valued
function α : V → [0, 1], a rounding of α is any
function from V to {0, 1}. For every rounding β
of α, define the linear discrepancy D	(H,α, β) =
maxF∈F |α(F ) − β(F )|, where α(F ) = ∑

v∈F α(v)
and β(F ) =

∑
v∈F β(v). Roundings with low lin-

ear discrepancy have several applications including
digital halftoning [2, 3, 1, 6, 11]. If, for a round-
ing β of α, it holds that D	(H,α, β) < 1 then β is
called a global rounding of α in H. If F = PG for
a graph G with real-valued node weights, a global
rounding approximates the node weights by inte-
gral node weights such that the weight sum on each
shortest path becomes either floor or ceiling of the
original weight sum.

Now, the rounding conjecture states that ifG =
(V,E) is a connected graph with n vertices and α
is a function V → [0, 1] then there are at most
n + 1 global roundings of α in the shortest-paths
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hypergraph H(G) = (V,PG), regardless of α. The
rounding conjecture has been proved for some spe-
cial types of graphs: If G is a path then PG is a
set of intervals; the corresponding rounding prob-
lem was studied by Sadakane et al. in [11]. This is
a natural extension of the fact that a single real
number (i.e., the case n = 1) has at most two
roundings (floor and ceiling). The conjecture has
also been proved for cycles, meshes, trees, and trees
of cycles [2]. However, it seems difficult to prove
in general, and it will be helpful to investigate
other special cases. One such case is when the in-
put α is restricted to αU+(v) = 1/2 + ε for every
v ∈ V , where 0 < ε < 1/n; then, the number of
global roundings in H(G) is precisely the number
of semi-balanced colorings of G1. Thus, although
our results so far on semi-balanced colorings pro-
vide weak evidence in support of the rounding con-
jecture, we hope that they will give some insight.
Moreover, our algorithm in Section ?? might be a
useful tool when searching for a counterexample to
the rounding conjecture.

2 Preliminaries

Let H = (V,F) be a hypergraph, where F ⊆ 2V .
A coloring of H is a mapping from V to {−1, 1}.
For any coloring π of H and any F ∈ F , let π(F ) =
∑

v∈F
π(v).

Definition 2.1 A coloring π of H is called a bal-
anced coloring of H if for every F ∈ F , it holds
that −1 ≤ π(F ) ≤ 1; π is called a semi-balanced
coloring of H if for every F ∈ F , it holds that
−1 ≤ π(F ) ≤ 2.

For the rest of this paper, let G = (V,E) be
an undirected, unweighted, connected graph with
n vertices and m edges.

Consider a path p in G connecting two vertices
u, v. The set of all vertices on p (including u and v)
is called the vertex set of p and is denoted by F (p).
If p is a shortest path between u and v, then F (p) is

1Given a rounding β of αU+, define β′ as β′(v) = 2β(v)−1

for every v ∈ V . Then β is a global rounding in H(G) if and

only if β′ is a semi-balanced coloring of G.

a shortest-path vertex set. There may exist several
different shortest paths between u and v, and hence
each pair of vertices induces one or more shortest-
path vertex sets. For any two vertices u, v ∈ V ,
dist(u, v) denotes the length of a shortest path in
G between u and v.

Given G, the shortest-paths hypergraph induced
by G is the hypergraph H(G) = (V,PG), where
PG is the set of all shortest-path vertex sets in G.
Our focus in this paper is on the semi-balanced
colorings of H(G).

Definition 2.2 A coloring is a mapping π : V →
{−1, 1}. A vertex v in V is said to be colored red
if π(v) = 1, or blue if π(v) = −1.

A balanced (semi-balanced) coloring of the shortest-
paths hypergraph H(G) is also called a balanced
(semi-balanced) coloring of G.

Definition 2.3 Let π be a coloring of G and {u, v} ∈
E. The edge {u, v} is called dangerous in π if
π(u) = π(v) = 1, i.e., if both of u and v are colored
red.

We say that an edge is “dangerous” rather than
“dangerous in π” when there is no confusion about
which coloring is being referred to.

Observation. A balanced coloring can not con-
tain any dangerous edges. Similarly, if {u, v} ∈ E

then a coloring in which both u and v are col-
ored blue can never be a semi-balanced coloring of
G. Furthermore, in any semi-balanced coloring, a
shortest path between two vertices cannot include
two dangerous edges.

Definition 2.4 ν(G) is the number of different semi-
balanced colorings of G.

It is easy to calculate ν(G) for certain types of
graphs. For example, ν(G) = n + 1 if G is a tree
since any semi-balanced coloring of a tree can have
at most one dangerous edge and G has n−1 edges,
and there are exactly two balanced colorings of G.
Also, ν(G) = n+1 if G is a complete graph because
a semi-balanced coloring of a complete graph can
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have at most one blue vertex. If G is a cycle of
length n, ν(G) = 4 if n = 3, ν(G) = n if n is odd
and n ≥ 5, ν(G) = n/2 + 2 if n ≡ 2 (modulo 4),
and ν(G) = 2 if n ≡ 0 (modulo 4).

Not all graphs admit semi-balanced colorings.
Figure 1 shows one such graph.

Figure 1: This graph has no semi-balanced color-
ing.

However, if we add an edge between the left-
most and the rightmost vertices in the graph in
Figure 1, the coloring which makes the top and
bottom vertices blue becomes a semi-balanced col-
oring. In general, we observe the following:

Proposition 2.5 For any independent set W of
G = (V,E), there is a graph G′ = (V,E′) such
that E′ ⊃ E and W is the set of blue vertices in a
suitable semi-balanced coloring of G′.

Proof Let G′ be the graph obtained by adding
edges between all pairs of vertices in V \W . Note
that W is still an independent set in G′. Let π be
the coloring of G′ in which all vertices in W are
colored blue, and the rest red. Consider a shortest
path p in G′ between any two vertices u and v.
If u and v belong to V \ W , then p consists of
a single dangerous edge and π(p) = 2. If one of
u and v belongs to W and the other to V \ W ,
then p contains one blue vertex and one or two red
vertices, i.e., π(p) = 0 or 1. Similarly, if both of u
and v belong to W , then π(p) = −1 or 0 since no
path contains two consecutive blue vertices. Hence,
π is a semi-balanced coloring of G′. �

A red vertex in π is called singular if it has no
blue neighbor vertex. Two singular vertices must
be adjacent, since otherwise a shortest path be-
tween them must have two dangeous edges. Hence,

we have the following lemma, which implies that a
semi-balanced coloring gives either a maximal in-
dependent set or a submaximal one contained in
a maximal independent set given by another semi-
balanced coloring.

Lemma 2.6 The set of singular vertices (if any)
of π forms a clique. Moreover, the coloring ob-
tained by turning a singular vertex in π into blue
is also semi-balanced.

We show the following enumerative combina-
torial result, and then design a polynomial time
enumeration algorithm based upon it.

Theorem 2.7 Let G be an undirected, unweighted,
connected graph with n vertices and m edges. If
G is bipartite, ν(G) ≤ n + 1. If G is not bipar-
tite, ν(G) ≤ m+1; moreover, if G is triangle-free,
ν(G) ≤ m.

3 The bipartite case

Proposition 3.1 If G is a bipartite graph, then
ν(G) ≤ n+ 1.

Proof Fix a spanning tree S of G. Any semi-
balanced coloring of G is either a balanced coloring
of S, or a coloring of S with one or more dangerous
edges. For each edge e in S, we claim that there
is at most one semi-balanced coloring of G that
makes e dangerous.

Suppose e = {u, v} ∈ S is dangerous in a semi-
balanced coloring of G. Since G is bipartite, it
contains no odd cycles. Therefore, there is no ver-
tex whose shortest distance in G to u equals its
shortest distance in G to v. Thus, we can divide
the vertices into two disjoint sets Vu and Vv so that
Vu contains all vertices which are closer to u than
v in G, and analogously for Vv. Let Tu and Tv

be two shortest path trees (in G) of Vu and Vv

rooted at u and v, respectively. We claim there
is no dangerous edge in Tu ∪ Tv. Assume that an
edge {x, y} ∈ Tu is dangerous, where x is the fa-
ther of y in Tu. Let p be the path from u to y

in Tu. Since dist(u, y) < dist(v, y) and every edge
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in a path contributes 1 to its length, the path ap-
pending e to p is a shortest path between y and v.
But this path has two dangerous edges, which is a
contradiction. Thus, Tu and Tv must be colored in
an alternating fashion (each node in Tu is colored
red or blue depending on if its distance from u is
even or odd, and similarly for Tv). This shows that
there is a unique (if any) semi-balanced coloring of
G in which e is dangerous.

Since S has n−1 edges, there are at most n−1
semi-balanced colorings of G which make at least
one edge of S dangerous. G is bipartite, so there
are exactly two balanced colorings of G. Thus, we
obtain the proposition. �

4 The non-bipartite, triangle-free

case

In this section, we assume that G is non-bipartite
and triangle-free2. Although the triangle-free case
is a special case, we investigate it in detail since it
helps the reader understand our tools and strategy.

The following dominating relation between edges
is our key tool. It will be utilized later in an ex-
tended form for the case of general graphs.

Definition 4.1 (Dominating relation) For a pair
of edges e, f ∈ E, we say that e dominates f if
we can write e = {u, r} and f = {v, w} so that
dist(r, v) = dist(r, w) = k and dist(u, v) = dist(u,w) =
k + 1, where k is an even integer. We denote by
e > f that e dominates f .

See Figure 2 for an example.

Lemma 4.2 Let e, f ∈ E. If e is dangerous in a
semi-balanced coloring π and e > f , then f is also
dangerous in π.

Proof Let e = {u, r} and f = {v, w}, where r is
closer than u to f . Consider a shortest path p from
r to v. By Definition 4.1, the path appending e to
p is a shortest path from u to v. Hence, if there

2Triangle-free means that if two edges {u, v} and {v, w}
belong to G then G cannot contain the edge {u, w}.

v

u
e

t

f

w

Figure 2: Edge e dominates edge f .

is a dangerous edge on p, it contradicts the semi-
balanced condition. Thus, the vertices along p are
colored in an alternating fashion. Since dist(r, v)
is even, v has the same color as r, namely red.
Similarly, w must be colored red, and hence f is
dangerous. �

Definition 4.3 D(G), the dominance graph of G,
is a directed graph whose vertices are in one-to-one
correspondence with the edges of G. For any two
edges e, f ∈ E, there is a directed edge from e to f
in D(G) if and only if e > f .

Given a coloring π of G, a vertex of D(G) is
called dangerous in π if the corresponding edge in
G is dangerous in π.

Now, consider the decomposition of D(G) into
strongly connected components C1, C2, . . . , Ch.

Corollary 4.4 If a vertex in a strongly connected
component Ci is dangerous in a semi-balanced col-
oring π, then all vertices belonging to Ci are dan-
gerous in π. Furthermore, all elements in its tran-
sitive closure in D(G) are also dangerous.

We remark that the dominating relation itself
is not expanded to the transitive closure in our def-
inition.

To find an upper bound on ν(G), we need one
more definition.

Definition 4.5 For an edge e of E, a regular col-
oring associated with e is a semi-balanced coloring
which makes all the vertices in the strongly con-
nected component of D(G) containing e dangerous
and no other vertex dominating e dangerous.
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Lemma 4.6 If G is not bipartite then any semi-
balanced coloring of G is a regular coloring associ-
ated with some edge e in E.

Proof Let π be a semi-balanced coloring of G.
π cannot be balanced since G is non-bipartite, so
there is at least one dangerous edge. Let E(π) be
the set of dangerous edges. Consider the subgraph
H induced by E(π) in D(G). By Corollary 4.4, H
must be the union of some strongly connected com-
ponents. ConsiderH as a directed acyclic graph on
these strongly connected components, and pick a
source component C. Then, for any element e in
C, π is a regular coloring. �

Lemma 4.7 For each edge e ∈ E, there is at most
one regular coloring associated with e.

Proof Let e = {r, p} and let C be the strongly
connected component of D(G) containing e. We
call the edges in G which are represented by ver-
tices of C predicted edges. Construct a shortest
path tree T of G rooted at r. In the construc-
tion of T , whenever two or more paths in G to the
same vertex are of equal length, we apply a con-
vention that a path containing a predicted edge is
preferred; if two or more paths contain predicted
edges, the one in which the predicted edge is nearer
to r is preferred. For any vertex v, let path(r, v)
be the path in T from r to v.

Consider a regular coloring associated with e.
By definition, e and all other predicted edges are
dangerous. Below, we show that for every edge be-
longing to T , it is dangerous only if it is a predicted
edge, implying that the set of vertices colored red
is uniquely determined.

Suppose there exists a dangerous edge in T

which is not predicted. Let f = {s, t} be the near-
est to r among such edges. Neither of s and t can
be equal to r since otherwise f and e are adjacent
dangerous edges, which is impossible in a semi-
balanced coloring of a triangle-free graph. Without
loss of generality, assume that s is the parent node
of t in T , and let k = dist(r, s). Note that k is
even; otherwise, there would be another dangerous
edge on path(r, s), and the shortest path path(r, t)
would contain two dangerous edges.

Consider the path appending e to path(r, t).
This path has length k + 2, and contains two dan-
gerous edges; hence, it cannot be a path with the
shortest length. Thus, we have a path p between
p and t whose length is less than k+2. If it is less
than or equal to k, the path obtained by appending
e to p has length at most k+1 from r to t. More-
over, it is preferred to the current path path(r, t)
in the lexicographic ordering; thus, we have a con-
tradiction. Therefore, the path p has length k+1.
If p contains the edge f , then f dominates e. But
because the coloring is a regular coloring associ-
ated with e, f can be dangerous only if f is in C

and hence predicted.
Thus, we assume that p does not contain f .

Since p has odd length, p has a dangerous edge g =
{u, v}. We assume that u is nearer than v to p on
the path. If v = t, we again derive a contradiction
because then g and {s, t} are adjacent dangerous
edges. Hence, we assume v �= t. The length * of
the path from p to u must be even since we cannot
have a dangerous edge on p in the part from p to
u, and both p and u are colored red. Consider
the path path(r, v) in T . The length of path(r, v)
must be * + 1; if it is less than or equal to *, the
path connecting path(r, v) to the part from v to t
of p has length k (or less), and contradicts that
path(r, t) is the shortest. If it is greater than or
equal to * + 2, the path appending e to the part
from p to v of p is shortest and has two dangerous
edges. Thus, path(r, v) has odd length, and hence
contains a dangerous edge. If it is not predicted, it
contradicts that f is the nearest edge among non-
predicted dangerous edges on T . If it is predicted,
the path connecting path(r, v) and the part of p
from v to t has length k+1, and it is preferred to the
current path path(r, t), which is a contradiction.

Thus, we have proved that all dangerous edges
on T are predicted, giving a unique way (if one
exists) of assigning colors to the nodes of T . �

Proposition 4.8 If G is a non-bipartite, triangle-
free graph, then ν(G) ≤ m.

Proof G is non-bipartite, so any semi-balanced
coloring of G must be a regular coloring associ-
ated with some edge in E by Lemma 4.6. Next,
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Lemma 4.7 implies that there are at most m semi-
balanced colorings of G. �

5 General case and an algorithm

We give outline for the general non-bipartite case.
A clique Q of G is called maximal if there is no
other clique in G containing Q. A clique is called
submaximal if it has at least two vertices and it is
contained in a maximal clique which has one more
vertex. For a clique Q in G, VQ denotes the set of
vertices of Q. The following lemma is immediate
since two blue vertices can never be adjacent in a
semi-balanced coloring.

Lemma 5.1 Let Q be a maximal clique in a graph
G. In any semi-balanced coloring of G, there is at
most one vertex in VQ colored blue.

In a coloring of G, Q is called a dangerous clique
if all vertices in VQ are red. Lemma 5.1 implies
that in any semi-balanced coloring, every maximal
clique of at least three vertices is either dangerous
or has a dangerous submaximal clique.

Lemma 5.2 Let Q1 and Q2 be a pair of maximal
cliques in G and let W = VQ1 ∩ VQ2 . In any semi-
balanced coloring of G, the following holds:

(1) If |W | ≥ 2, all vertices in W must be colored
red.

(2) If W = {w} and |VQ1 | ≥ 3 and |VQ2 | ≥ 3,
the vertex w must be colored red if there is
an edge between VQ1 −W and VQ2 −W ; oth-
erwise, it must be colored blue.

(3) If W = {w} and |VQ1| ≥ 3 and |VQ2| = 2, the
clique (indeed, the edge) Q2 cannot be dan-
gerous.

Because of Lemma 5.2, if two maximal cliques
intersect at two or more vertices, we can fix the
colors of all vertices in the intersection. Also, if
two maximal cliques of size at least three intersect
at one vertex, we can fix the color of that vertex.

We first remove those vertices and their inci-
dent edges from G. For any maximal clique Q, let
Q̃ be the remaining part. Next, for each maximal
clique Q of size two (i.e., edge) intersecting another
clique of size greater than two, we set Q̃ = ∅ and
remove the corresponding edge but keep both end-
points of the edge if they have not been removed
so far. Thus, we obtain a subgraph G̃ of G.

For a submaximal clique R in a maximal clique
Q, R̃ denotes R ∩ Q̃. We call Q̃ a restricted clique
if Q is either maximal or submaximal.

Observe that if we give a coloring of Q̃ for each
maximal clique Q having at least three vertices and
determine the set of dangerous edges (i.e., red-
colored cliques of size two), the coloring of G is
uniquely determined.

We define a dominating relation among maxi-
mal and submaximal cliques which generalizes Def-
inition 4.1. Let Q be the set of all cliques which
are maximal or submaximal.

Definition 5.3 Let Q1, Q2 ∈ Q. We say that Q1

dominates Q2 if there exists an even integer k such
that for every v ∈ VQ2, there is a vertex r ∈ VQ1

and a vertex u ∈ VQ1 for which dist(r, v) = k and
dist(u, v) = k + 1. We write Q1 > Q2 if Q1 domi-
nates Q2.

Lemma 5.4 If Q1 is dangerous in a semi-balanced
coloring π and Q1 > Q2, then Q2 is dangerous in π.

Definition 5.5 D(G), the dominance graph of G,
is a directed graph whose vertices are in one-to-one
correspondence with Q. For any two (maximal or
submaximal) cliques Q1, Q2 ∈ Q, there is a directed
edge from Q1 to Q2 in D(G) if and only if Q1 > Q2.

D(G̃), is the directed graph obtained fromD(G)
by identifying vertices associated with Q1 and Q2

if Q̃1 = Q̃2, and removing the vertex associated
with Q if Q̃ = ∅ or Q − Q̃ is known to contain a
blue vertex in any semi-balanced coloring. We can
see that if a restricted clique Q̃ is dangerous in a
semi-balanced coloring, the restricted cliques in its
transitive closure in D(G̃) are also dangerous.

Definition 5.6 For a member Q̃ of a strongly con-
nected component C of D(G̃), a regular coloring
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associated with Q̃ is a semi-balanced coloring which
makes all restricted cliques in C dangerous and no
other restricted clique dominating Q̃ dangerous.

Lemma 5.7 If G is not bipartite and if there is a
clique Q of size more than two such that Q̃ �= ∅,
then any semi-balanced coloring is a regular color-
ing associated with some restricted clique in G. On
the other hand, for each restricted clique Q̃, there
is at most one regular coloring associated with Q̃.

Based on the above argument, and a counting
scheme of restricted cliques (we omit it in this ver-
sion, see [7]), we have the following:

Theorem 5.8 If G is a non-bipartite graph, then
ν(G) ≤ m + 1. Moreover, all semi-balanced color-
ings of G can be enumerated in O(nm2) time.

6 Concluding remarks

We have defined and studied the combinatorial con-
cept of a semi-balanced coloring obtained by gen-
eralizing the 2-colorings of graph. Indeed, the only
graph that the authors know of which satisfies ν(G) =
m+ 1 is the triangle. Incidentally, this graph also
satisfies ν(G) = n+ 1. We conjecture that for any
undirected, unweighted, connected graph G with n
vertices, ν(G) ≤ n+ 1. If it is true, it means that
ν(G) is maximized at the two extremes: when G is
a tree and when G is a complete graph. As noted
in Section 1, the conjecture is a special case of the
rounding conjecture. As seen in Section 2, there
are graphs for which ν(G) = 0. We would like to
know if there is some way to characterize all graphs
with ν(G) > 0.
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