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How to reform a terrain into a pyramid
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Abstract. Given nonnegative valued functions p and g in d variables, we consider the optimal pyramid
maximizing the total parametric gain of p against u. The pyramid can be considered as the optimal
unimodal approximation of p relative to u, and can be applied to hierarchical data segmentation. We
study properties of the optimal pyramid, and design efficient algorithms for several cases mainly for d =1

and 2.

1 Introduction

Let p and p be two nonnegative-valued functions
defined on a cube (0,7]? in the d-dimensional Eu-
clidean space R%. Naturally, we can consider them
as distributions or measure functions on the cube.
In particular, it is often convenient to regard them
as measure functions to get intuition. Consider
a family F of regions in the cube. For a region
R e F, g(R;p, 1) = p(R) — p(R) is called the gain
of p against 4 in R where p(R) = [ cpp(x)dz.
More generally, introducing a nonnegative param-
eter ¢, g:(R,p,p) = p(R) — t - u(R) is called the
parametric gain of p against p within the region R;
this can be considered as the gain value in which
we replace . by t- p.

The problem of finding the region R € F maxi-
mizing g(R; p, p) is a fundamental problem in data
segmentation. Note that maxper |g(R;p, p)| is
called the discrepancy between p and p with re-
spect to the family F. In particular, the paramet-

ric gain is useful for solving segmentation prob--

lems in several applications including image pro-

cessing and data mining; indeed, in those appli-
cations we seek for the segmentation maximizing
a given concave objective function such as entropy
or intercluster valiance, and the optimal segmenta-
tion also maximizes parametric gain for a suitable
parameter value; this enables to design efficient al-
gorithms applying standard methods of paramet-
ric optimization [1]. In data mining application
for example, we select d numerical attributes to
correspond a data record to a point in the cube
(d = 2 in the literature {4, 7]). Given a large size
of sample data set, we define u to give the data
distribution in the cube. Among the data set, we
consider the subset of data that satisfy certain con-
dition defined by a target attribute, and the subset
gives another distribution function p. An associa-
tion rule (named d-dimensional rule or region tule)
is defined by using a region in R, so that u and p
determine support p(R) and confidence p(R)/u(R)
of the rule. For obtaining a region yielding a rule
with both large support and high confidence, we
apply the above data segmentation.



In this paper, we would like to consider a para-
metric family of regions to give a good segmen-
tation at each of parameter value with respect to
the parametric gain. A pyramid P is a series of
regions {P.}t>0 in F satisfying that P, C Py if
t > t'. Our aim is to compute the optimal pyramid
P maximizing the total parametric gain V(P) =
120 9¢(Ps; p, p)dt.

The problem is more intuitive if y is the unit
function g = 1. In this case, the optimal pyra-
mid can be considered as a unimodal reformation
of p minimizing loss of positional potential. This
is a basic problem in computational geometry and
geography (especially for d = 2). In general, the
pyramid can be considered as a unimodal approx-
imation of the measure p relative to u. Figures 1
and 2 give examples of pyramids (where u = 1) for
d =1 and d = 2, respectively. In Figure 2, func-
tion values are given by using density of pixels.
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Figure 1: Input one variable function p and its
optimal pyramid

Figure 2: Optimal pyramid (right) for an input
function p (left) in two variables

Construction of an optimal pyramid is a natu-
ral extension of region segmentation, and will be
useful in several applications such as statistics, ge-
omorphology, computer vision {2}, and data min-

ing; our main motivation is to develop a tool for
constructing an optimized probabilistic decision tree
in our project to extend the SONAR data mining
system [3, 4, 6, 7].

In this paper, we study properties of optimal
pyramids, and design efficient algorithms for com-
puting them. In particular, we give an O(nlogn)
time algorithm for the one dimensional problem
where F is the set of integral intervals in (0,7},
and also give efficient polynomial-time algorithms
for several two dimensional cases.

2 Preliminaries

We consider functions on the cube C' = (0,n]¢ that
is decomposed into N = n¢ unit cubes (translated
copies of (0,1]¢) called cells. Here, for technical
reason, we prefer the left-open and right-closed in-
terval (0,n] to the closed interval [0,7].

The definition of a pyramid depends on the
family F of regions, and we are interested in fam-
ilies F of regions in C' = (0,n|¢ such that each
region is a connected union of cells; in the other

‘words, they are regions in the pixel grid G of size

nd. We also assume that F contains {.

A function f on C'is called a step function if it
is a constant function in each cell, that is, f(z) =
f(z') holds for any pair « and 2’ in the same cell.
Since we only consider regions that are union of
cells, we can assume without loss of generality that
p and p are step functions. Thus, p and p are
considered as d-dimensional real-valued arrays of
size nd. k ‘

We need to assume that u(R) # 0 in each re-
gion R € F satisfying that p(R) # 0, since other-
wise the objective function V(P) = [iZ, g¢(Ps; p, )dt
is not bounded. For making the argument simple,
we assume that p(c) # O for each cell c.

2.1 Properties of the optimal pyramid

We consider a pyramid on the cube C = (0,n]?
with respect to a region family F. For a pyramid
P, the trajectory function fp is defined by fp(z) =
sup{t : z € P,}, which gives the boundary surface
of the closure of the pyramid. We can observe that



the trajectory function is a unimodal function if
each region in F is connected.

The horizontal section P, of height ¢ of a pyra-
mid P can be represented by {z : fp(z) > t}. The
ezposed part of a section of height tis {z : fp(z) =
t}. If the exposed part of a section is non-empty,
we call it a flat of P. The flat with the maximum
height is called the top flat. By definition, a flat
must be a set difference of two members of . A
balancing region for t is R\ R’ of a pair R D R in
F satisfying that [,cp\ g(p(z) —t-p(z))dz =0. A
flat of P is called a balancing flat if it is a balancing
region for the height ¢ of the flat.

Lemma 2.1 For the optimnal pyramid P, the func-

tion fp satisfies the following three conditions. More-

over, a function satisfying them gives the boundary
surface of an optimal pyramid.

(1) fp is boundary surface of a pyramid.

(2) Each flat F of the above pyramid is a balancing

flat; Consequently, [, p fr(z)u(z)de = [ pp(x)de.

(8) Among all functions satisfying (1) and (2), fp
mazimizes the potential [,oo{(fr(z)) u(z)dz.

Proof: The first condition is trivial, and we will
show fp satisfies (2) and (3). In each flat of height
t of the optimal pyramid, the two regions P = P;_,
and P’ = P, for an inﬁnitesimally small e should
have the same gain at ¢, and the flat must be P'\ P;
hence the flat must be balanced, and (2) holds.
At each flat F' with height tp, the potential

A(F) = [,ep(fp(z)?u(z))dz within Ris (tg)?u(F).

On the other hand, since F is balancing, p(F) =
t- u(F); hence, B(F) = f,p, (o(F) ~ t - u(F))dt
= tp - p(F) — 5;& - w(F) = %— - u(F). Therefore,
A(F) = 2B(F). This gives (3), since the sum of
B(F) over all flats equals V (P), while that of A(F)
gives the potential defined in (3).

From the above proof, we can also see that a
function satisfying the three conditions give the
boundary surface of an optimal pyramid, since oth-
erwise there exists a pyramid with a larger value of
V(P), and thus a larger potential; a contradiction.

a

Consider a spécial case where u = 1. Then,

(2) of Lemma 2.1 says that we obtain a flat of fp
by leveling p locally, and (3) means that loss of
potential is minimized. Indeed, if d = 2, we can
consider p and fp as surfaces of a terrain and its
corresponding pyramid, and their potential (after
normalization) corresponds to the positional po-
tential of the terrain and the pyramid assuming
that the gravity is a constant. Thus, we have the
following intuitive description of the optimal pyra-
mid (we use terminology for d = 2, but it can be
generalized to any dimensional case):

If 4 = 1, regarding p as a terrain, we have the opti-
mal pyramid by moving earth from higher cells to
lower cells with the minimum loss of positional po-
tential to form a unimodal terrain such that each
horizontal section belongs to F.

2.2 Closed family

Let R be the region in F maximizing g:(R; p, ).
Intuitively, if ¢ increases, R is shrunk. If {R{¥*}
forms a pyramid , it is obviously the optimal pyra-
mid. Unfortunately, it is not always true that it is
a pyramid; however, it holds if F satisfies certain
conditions.

A (discrete) family F of regions in R? is called
a closed family ! if it is closed under intersection
and union operations, that is, RN R € F and
RUR' € F for every pair R, R’ of regions in F.

Proposition 2.2 If F is a closed family, and let
PP be the region in F mazimizing g;(R, p, 1) If

there are more than one regions mazimizing gs(R, p, i),

we take any one which is minimal under inclusion.
Then, {prt}tzg gives the optimal pyramid P.

Proof: It suffices to show that A = P’ C B =
PP if t > t'. Note that the function g:(R,p, x) —
9:(R', p, 1) is a nonincreasing function in t if R’ C
R. If A\ B is not empty, 0 > gy(AU B,p,u) —

g (B, p, 1) = gy (A, p, 1) —g¢ (ANB, p, 11) > ge(A, p, 1)~

9(ANB,p,u) > 0. Since A = P, g(A,p, 1) <
g:(A N B, p,p); thus, g(A4,p,p) = g:(AN B, p,p)

1 “Closed family” is not a common naming: it is a discrete
analogue of “a system of closed sets” in topology theory.



and because of minimality under inclusion, A =
AN B. Thus, AC B. . O

Thus, if a family F is constructed by using
closed families as its building blocks, we have hope
to design an efficient algorithm for computing the
optimal pyramid for F.

3 One-dimensional problem

In this section, we consider one dimensional case
where F is the set of all integral intervals. We omit
most of proofs because of space limitation. The
main result in this section is.an O(nlogn) time al-
gorithm for computing the optimal pyramid. The
algorithm is based on the fact that the family of
all integral subintervals in (0, n] containing a. fixed
element i is a closed family. Note that the family
of all integral subintervals in (0,n] is not a closed
family, since a union of two nonintersecting inter-
vals is not an interval. The rightmost index of an
interval giving the top flat of a pyramid P is called
the peak index of P. The following lemma is trivial:

Lemma 3.1 If ¢ is the peak index of the optimal
pyramid, the height of the pyramid is p()/p(z).

An index i is called effective if there is no interval J
containing ¢ such that [, ;(p(2)p(i)—p(t)u(x))dz >
0. A peak index of an optimal pyramid must be ef-
fective. For a given effective index ¢, a pyramid P
is called locally optimal if it maximizes V(P) un-
der the condition that its top flat contains i: the
locally optimal pyramid is denoted by P(3).

We first show that the local optimal pyramid
P(4) with the fixed peak index ¢ can be computed
in linear time. Then, using the ideas in the al-
gorithm design, we proceed to an O(nlogn) time
algorithm for computing the (global) optimal pyra-
mid.

3.1 Linear time algorithm for comput-
ing a local optimal pyramid

In this subsection, we fix an effective index ¢, and
consider the local optimal pyramid P(z). It is easy

to see that each flat of a local optimal pyramid
must be a balancing flat.

Definition 3.2 For a value t, left;(t) is the index
§ < i minémizing Joe(o(P(@) — t - p(a))dz. Simi-
larly, right;(t) is the index j > i minimizing
Joem(p(x) — t - p(z))de.

A value t is left-critical if le ft;(t) is not unique,
that is, there exist two indices j; and j2 (J1 < jo <
i) such that both of them minimize [, ; (p(z) -
t - u(z))dz. Consequently, the interval (ji,72] be-
comes a balancing interval for t. Similarly, we de-
fine a right-critical value of ¢.

The following lemma is a direct consequence of
Proposition 2.2 and Lemma 2.1. k

Lemma 3.8 The horizontal section of the pyra-
mid P(i) at a height t is (left;(t), right;(t)), and
it’s exposed part is a flat if and only if t is critical.

Thus, left;(t) and right;(t) are called left-end
and right-end of the pyramid P(i) at ¢, respec-
tively. We next examine the set of left-critical val-
ues. For an index j, we consider a planar point
p() = (m(3),u)) where u(j) = foe0;p(@)de
and m(j) = [oe (0,5 #(x)dz. Let C*(4) be the lower
convex hull of the points {p(0),p(1),...,p(7)}. Here,
lower convex hull is the lower boundary chain of
the convex hull of the points; thus, the lower con-
vex hull is a list of vertices and edge segments
on the chain. Similarly, C"(s) is the lower con-
vex hull of {q(¢ +1),q(i +2),...,q(n)}, where the
points ¢(j) = (m'(j),v(j)) is defined by m'(j) =
Joe(m #(@)dz. v(5) = Jee(jm P(x)dz. Since they

“are convex hulls of sorted point sets, they can be

computed in linear time [8]. It is routine to obtain
the following lemma:

Lemma 3.4 A value t is a left (resp. right) crit-
ical walue if and only if t is a slope of an edge of
C*(3) (resp. C™(3)).

The number of critical values is at most n, and
they can be computed in O(n) time. Thus, we can
compute a local optimal pyramid in linear time.

54



3.2 An O(nlogn) time algorithm

The algorithm in the previous subsection computes
the local optimal pyramid for each effective index
independently, and naively yields an O(n?) time
algorithm for computing the global optimal pyra-
mid.

Here, we give an improved method in which we
grow the locally optimal pyramids simultaneously
from the top, and weed out pyramids that are dis-
closed to be impossible to be the optimal pyramid
during the process. If the optimal pyramid is not
unique, we compute the one with the leftmost peak
index. For a pyramid P and an interval I of x, the
potential of P within I is [, fp(z)?u(z)dz.

‘We consider a list L which is initially the sorted
list of all effective indices. Let next(:) be the next
index to ¢ in L. We remark that an index 7 is an ef-
fective index if and only if p(s) a vertex of C*(3+1)
and ¢(%) is on the chain C"(i—1). The above condi-
tions can be checked by running a linear time incre-
mental convex hull algorithm (on sorting points)
for each of two lower convex hulls C*(n) and C"(1).
Thus, the initial list can be obtained in O(n}) time.

Definition 3.5 For two indices ¢ and j, their left
meeting height is t(left,i,5) = max{t : left;(t) =
left;(t)} and right meeting height is t(right, i, j) =
max{t : right;(t) = right;(t)}.

Lemma 3.6 In any sorted list L of effective in-
dices, the following holds:
(1) lefti(t) = leftpeass) (t) ift < t(left; i, next(q)).

(2) Tight;(t) = rightpee()(t) ift < t(right, i, next(s)).
(3) t(left;i,5) < t(left;i, next(s)) and t(right;i,5) <

t(right;i,next(i)) fori < j € L.

Therefore, the left end of the pyramid P(i) at
the height ¢ coincides with that of P(next(z)) if t is

below their left meeting height. Thus, fp(nes(i)) () =

fpw () if z <1(2) = lefti(t(left; i, next(i))) or
z > r(i) = right;(t(right;i, next(s)).

We define the left-difference between the po-
tential functions of P(z) and P(next(t)) by
Diese(inext()) = fie™® fpinean) (2)2u(z)dz -
iy Py (@) p(z)dz.

Similarly, the right-difference is
Dright(i,newt(i)) = f;é;)t @ FP(ne wt(i))(w)2 p(z)dz ~
Dt (@) 2u(e)ds.

Definition 3.7 If Dy 5.3, next(s))+Dyigns (2, next(s)) >

0, ¢ is called loser; otherwise, next(i) is called
loser.

Lemma 3.8 Ifi is a loser in any sorted list L of
effective indices, P(3) is not the optimal pyramid.

Our basic strategy is the following: Initially,
t.= oo and L is the list of all effective indices. We
decrement ¢, and whenever we find an index 7 satis-
fying ¢ < min{t(left; 7, next(?)), t(right; i, next(s))},
we judge which of ¢ and next(3) is a loser, and re-
move it from L. At last, L becomes a singleton list,
the remaining index gives the peak of the optimal
pyramid.

We need to decide t < t(left; %, next(i)) and
t < t{right;i,next(i)) for each 4, and also find
losers effectively. Indeed, we can show that these
operations can be done in O(1) amortized time.
Our basic tool is the lower conver hull tree (see
eg. [3]). Consider T¢ = U;erC¥(i), which is a
union of chains. Similarly, T" = U;egC"(%). They
can be constructed in linear time.

For each edge e of the trees, we prepare an
interval I'(e) (resp. I"(e)) of indices i such that
e is the convex hull of on C%(3) (resp. C7(3)) for
i € I*(e) (resp. I"(e)). For each slope t, consider
the tangents of slope ¢ to T¢, and consider I‘(e)
for the left incident edge e to each tangent point.
Then, it classify effective indices into groups, which
we call left-grouping at ¢. Similarly, we consider
right-grouping at t. '

The value t(left; 4, ) is the slope of the edge at
the branching point of C¢(i) and C*(j). Similarly,
the value t(right;i,j) is the slope of the edge at
the branching point of C"(i) and C"(j).

In the algorithm, we keep track of edges with
slope t from leaves of the tree, and if we find a
branching point of one of the trees T¢ and T", we
eliminate one of the two chains meeting there. We
keep the value Dicy; (¢, next(:)) (resp. Dyigns(i, next)



) if both ¢ and next(i) are in the same left (resp.
right) grouping. A new value of Djes; (vesp. Dyight)
is computed when we comes to the slope at a branch-
ing point of T (resp. T7). The decision of loser is
done by using the formula in Definition 4.

Theorem 3.9 The one-dimensional olptz'mal pyra-
mid can be computed in O(nlogn) time.

4 Higher-dimensional cases

In a higher dimensional case, the time complexity
highly depends on the family F of regions. Indeed,
it is not difficult to see that the problem is NP-hard
for some families.

4.1 Family with a small number of re-
gions

If F has M different regions, the optimal pyra-
mid can be always computed in polynomial time
in M and N = n? for the d-dimensional case. We
construct a directed acyclic graph H(F) = (F, E)
whose vertex set is . For each pair R and R’ of
we give a direct edge e = (R, R') if and only if R D
R'. We compute t(e) satisfying that p(R\ R') =
t(e)u(R \ R'). The value t(e) is called the height
label of e, and r(e) = t(e)2p(R\ R')/2 is called the
profitof e. A direct path p = eg,e;1,...,¢, is called
admissible if t(e;—1) < t(e;) fori=1,2,...,q. The
profit of an admissible direct path is the sum of
profit values of the edges in it.

Lemma 4.1 The optimal pyramid is associated with
the admissible path with the mazimum profit in
H(F), such that R\ R' is a flat of the pyramid
if and only if (R, R’) is an edge on the path.

Thus, we can reduce the problem into a maximum-

weight-path problem in the directed acyclic graph
H(F). Note that each path has at most N edges.
By considering a dynamic programming algorithm,
we obtain the following:

Theorem 4.2 The optimal pyramid for F can be
computed in O(M?2N) time.

However, we note that the above algorithm is sel-
dom practical: for example, the family of rectangu-
lar regions has O(N?) = O(n?) regions, and hence
the above time complexity is O(N®) = O(n'®).
Moreover, M is often very large compared to N.

4.2 Two-dimensional closed families in
a pixel grid

The method in the previous section is inefficient

if M is large. Thus, we consider more efficient

algorithms for some special families of regions.

Lemma 4.3 Given a closed family F, if the op-
timal pyramid has k flats and it takes O(T) time
for computing Pt"”t for any given t, we can com-
pute the optimal pyramid in O(kT) time.

Proof: We can apply hand-probing method [1]
to solve the problem. ‘ ]

Although there are some families for which the
computation of PP is NP-hard [1], there are sev-
eral families with an exponential number of regions
while the computation time T is polynomial in N.
The number k of flats is at most N, and hence the
time complexity for constructing the optimal pyra-
mid is O(NT); moreover, for particular cases, we
can further improve the time complexity. We list
such closed families in the two-dimensional pixel
grid.

4.2.1 Connected lower half regions

A subregion R of the n x n pixel plane G is called
a rectilinear lower half region (lower half region, in
short) if there is a function fr(z) such that R is
the union of pixels satisfying y < fr(z) holds in
each of them. Unfortunately, a lower half region
need not be connected, although connectedness of
regions is essential in several applications. The
family of connected lower half regions is one of re-
gion families adopted in SONAR data mining sys-
tem [4, 7] in order to represent two-dimensional as-
sociation rules The family of connected lower half
regions is not a closed family, since the union of
two nonintersecting connected lower half regions
is not connected. However, given any index ¢, the



family of connected lower half regions having (7,0)
on their boundaries is a closed family, which we
call connected ¢-lower half regions. Each column
of a horizontal section of an optimal pyramid at
t is an optimal nonempty prefix that mazimizes
the parametric gain (it may be negative). There
are O(N) critical values of ¢ at which the optimal
prefix changes. We can compute the sorted set S

of these critical values and preprocess the columns

in O(Nlog N) time, so that the nonempty opti-
mal prefix of each coloumn at ¢ can be queried in
O(logn) time. The optimal pyramid for the fam-
ily of connected i-lower half regions for a fixed i
can be computed in O(N) time, assuming we have
the sorted set S. Since there are n = v/N candi-
dates of ¢, we can compute the optimal pyramid
for the family of all connected lower half regions in
O(N3/2) time. Furthermore, we can improve the
time complexity as follows:

Theorem 4.4 The optimal pyramid for the family
of all connected lower half regions can be computed
in O(Nlog? N) time.

4.2.2 Downstep regions and stabbed unions

In many applications, we want to consider a family
of regions whose boundary curves have nice shapes.
A subregion R of G is called a downstep region if
there is a nonincreasing function fg(z) such that
R is the union of pixels satisfying y < fr(z) in
each of them. There are exactly 2" members in
the family. ‘ ‘

Lemma 4.5 . The optimal region P™* for the fam-
ily of downstep regions can be computed in O(N)
time for each t.

Proof: . We first compute v(3,5) = St_; p((s,5))—
¢~ u((s, 7)), which is the gain in the first ¢ pixels
in the j-th column. This can be done in O(N) =
O(n?) total time for all (4,j). We sweep the pixel
grid G from left to right, and compute a(%, §) which
is the maximum gain of a downstep region up to
the j-th column such that the region contains (3, j)-
th pixel as the top pixel at the j-th column. Then
it is easy to see that a(z,j) = max{a(i,j — 1) +

7(i7j)7a(i + 17.7) - 7(2 + 1’.7) + ’7(2.7)} Since
this computation is done in constant time for each
(2,7), we can compute all of a(i,j) in O(N) time
by dynamic programming. The gain of the opti-
mal region is maxj_go(i,n), and the region can be
computed by backtracking the dynamic program-
ming process. : m}

Thus, we can compute the optimal pyramid in
O(N?) time by naively applying Lemma 4.3. We
can improve the time complexity as follows:

Lemma 4.6 Suppose we have the optimal region
Pt‘?l’t) and Pt‘zgt) for a parameter value t(1) < t(2),

and Pt‘?;t) \P;('gt) has Y pizels. Then, for any t
satisfying t(1) < t < t(2), P can be computed in
O(Y) time. Here, we output the boundary curve of
P by using that of P’t‘z’;t) and indicating how to
update it.

Proof: It suffices to consider each connected com-
ponent of Pt‘zzﬁ \Pt‘zg; in the pixel grid G separately.
We can modify the dynamic programming algo-
rithm given in the previous lemma for processing
within each component in linear time with respect
to the number of pixels in it. o 0

Theorem 4.7. Suppose that the values of p and p
are quotient numbers of integers less than I'. The
optimal pyramid for the family of downstep regions
can be computed in

O(min{N log N log(NT), N3/21og? N'}) time.

Proof: For a pair t(1) < t(2) of parameter val-
ues such that IP:E’f) \ Pt‘z’;gl =Y, a critical separa-
tor ¢ is the parameter value satisfying that #(1) <
t < t(2), |PP\ P&’?ﬂ < 3Y/4 and for any t' > ¢t
Y/4 < [P\ R?;t)l Note that if we can find ¢
satisfying thatY/4 < |BP\ P;gt)l < 8Y/4, it is
a critical separator, although such a ¢ may not al-
ways exist. It is easy to see that if we can compute
the critical separator in f(Y) time satisfying that
F{Y) = Q(n), then we attain O(f(N)log N) time
to compute the optimal pyramid.

Indeed, we can compute a critical separator
by using binary search in O(Y log(NT)). If we



want to design an algorithm independent of ', we
can apply parametric searching to replace log(/NT)
with NY/21log N in the time complexity by using a
parallel-structured algorithm with O(NY/2log N)
steps for its guide algorithm (we omit routine de-
tails). O

We fix a grid point p = (2p,yp) of G. A region
R is called stabbed union (of rectangles) at p if it
is a union of rectangles each of which contains p
in its closure. This is two-dimensional analogue
of the family of intervals including a given index
i discussed in Section 3.1, and it is easy to see
that the family is closed. It is a restricted class
of rectilinear convex regions, such that if we cut a
stabbed union with lines z = z, and y = y,, we
have four (veflected) downstep regions, indeed, the
family of stabbed union at p is the closure (under
union and intersection) of the family of rectangles
containing p. ‘

A discretized rhombus (whose diagonals are axis-
parallel) is a stabbed union, thus a horizontal sec-
tion of a real pyramid (rotated by 45 degrees) is a
stabbed union. Moreover, discretization of an axis
parallel elliptic region is a stabbed union. The
pyramid Figure 2 is optimal with respect to the
family of all stabbed unions We have the following
theorem as a corollary of Theorem 4.7:

Theorem 4.8 The optimal pyramid for the family
of stabbed unions at p can be computed in
O(min{N lognlogT', N%/2logn}) time.

5 Concluding Remarks

We have given an O(nlogn) algorithm for one-
dimensional pyramid construction; however, we hope

that a linear time algorithm exists. For two-dimensional

cases, we have strong restriction for the families of
regions in order to design efficient algorithms. It
is open whether it is NP hard or not if we consider
the family of rectilinear convex regions or that of
r-monotone regions. Moreover, it is interesting
question to improve the time complexity for the
family of rectangles. We plan to implement some

of algorithms to apply them to construct a flexi-
ble (but optimized) data mining system by using
pyramids for giving decision rules that can auto-
matically avoid unnecessary classification. .
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