86— 3
19)

7 dU X A
(2002, 9.

2”%@K%$®ﬁ¢étﬂ)| BB A
A H HER T M BE A 1T b R=T
Taekks wothtgnryy— I ﬁwm—a T#E TREARKE T
FRTH 2 R A T LT AT L VI 7V T X 4% CREW-PRAM TF WV ETIRET 2. £,
AT =y T —HEE AT 2 5ERAROEADB Y BUNEOMEE KD ST L EFI T N T L0 % RE
-m. RETDTVT) AL, Biafen b d5L, On) 704y % %HWT O(logn) B TERT
KiZ, ROZZBYFFIEOEEFALC, BHEBMT 2 M ERROFEH LTI WH 7L T A 8%

?E%‘ié RETBILFI TV T) XL iﬁé%ﬁ@‘/’ﬂ/:")xAkkb’fL7Uk/ﬂ‘iﬁltuﬂl%vﬁi&‘&%) ZAT
BIENTEA.

Parallel Algorithm for constructing an Almost Complete
Balanced Binary Search Tree

MASAHIRO MiGiTaf AKIO TADATT Ryozo NAKAMURAT

fCenter for Multimedia and Information Technologies, Kumamoto University TTDepartment of
Electrical System and Computer Engineering, Faculty of Engineering, Sojo University
of Computer Science, Faculty of Engineering, Kumamoto University

IDepau“tment

In this paper an efficient parallel algorithm for balancing a binary search tree is proposed in CREW-
PRAM model. At first, an efficient parallel algorithm to number the nodes in inorder on a binary search
tree by using the Euler Tour technique is presented. The proposed algorithm can be implemented in
O(logn) time with O(n) processors, where n is the number of nodes in the tree. Next, an alternative
parallel algorithm for constructing an almost complete balanced binary search tree in constant time °
is -proposed, once the inorder number of each node is determined. The proposed parallel algorithm
can reduce both the number of processors and the memory spaces as compared with the traditional

algorithm.

1 Introduction

The binary search tree technique is one of the
most fundamental and important computer algo-
rithms. The search cost on the binary search tree is
quite dependent on the shapes of the trees. In a bi-
nary search tree built from n nodes, the operations
such as INSERT, DELETE and SEARCH require
O(logn) units of time on the average, however, in
the worst case, these operations take linear time as
O(n). In order to eliminate the worst case perfor-
mance of the tree, several parallel balancing algo-
rithms have been proposed and implemented?~?).

In this paper, we propose two parallel algorithm-
s. The first proposed parallel algorithm is to coun-
t the inorder number of nodes of a given binary
search tree. To construct this algorithm first, we
generate the Euler circuit by performing the Euler
tour technique to the given adjacency list of binary
search tree, then generate the traversal list. From
the traversal list, we construct the parallel algorith-
m to get the inorder number of node of the tree. We
have already published this algorithm in the tech-
nical note written in Japanese such as reference 6).
The second proposed parallel algorithm is to con-

struct an almost complete balanced binary search
tree, using the inorder number determined by first
proposed algorithm. Both the proposed parallel al-
gorithms can be executed on CREW-PRAM model
and the first proposed parallel algorithm can be im-
plemented in time O(logn) with O(n) processors,
and the second one can be implemented in time
O(1) and can reduce both the number of proces-
sors and the memory spaces as compared with the
traditional algorithm.

2 Parallel Algorithm for Inorder traversal

on a Binary Search Tree

Proposed parallel algorithm first generates the
traversal list from the Euler circuit of binary search
tree constructed by the Euler tour technique, then
efficiently calculates the inorder traversal number
on the traversal list.

In the parallel algorithm for traversing a tree de-
scribed in reference 5), first get the Euler circuit
by performing the Euler tour technique to the tree
represented in the form of adjacency list (in this
list the edge (4, j) and the edge (j,1) is referable to
each other).

The Euler tour technique is a parallel compu-

tation to construct the Euler circuit of the tree
whose each branch is substituted by two edges of
the mutually reverse direction, then generates the
traversal list in which the root node is the head
of the list from the circuit. Next we calculate the
rank of each element (edge) of the traversal list.
Here, the rank of an element kth of the list is de-
fined as the number of elements from the head of
the list to the element kth. As for the rank, it is
known that we can calculate it on the list consisting
of n elements with time complexity O(logn) using
O(n/logn) processors using doubling technique on
EREW-PRAM model.

After we get the rank of each element of the
traversal list, an arbitrary branch (4, j) of the tree
appears in the traversal list as the pair of edges
(4,7) which has smaller rank value and (j, %) which
has the greater rank value. Here, we call the edge
having the smaller rank value as advance edge
and that of greater rank value as retreat edge.

In the proposed parallel algorithm, first, we con-
struct a traversal list from the Euler circuit of a
binary search tree by the Euler tour technique as
described above, then we will get the advance edge
or the retreat edge of each edge of the traversal list.

For example, we represent a binary search tree,
shown in Fig.1 of the data structure shown in Fig.2.
Considering that this tree is ordered tree, we con-
struct the elements of the adjacency list in the or-
der of parent, left child and right child. Here, we
understand that a value zero means the lack of the
element, and the column ‘num’ indicates the inorder
number of each node of the tree and it will be cal-
culated later.

Next, we make the root node of the binary search
tree as the head of the traversal list. Then, cal-
culate the advance edge and retreat edge of the
traversal list using the rank of each element of the
list.

The proposed algorithm uses the following data
structure in the shared memory area, and the bina-
ry search tree is represented by the following array
T. :

type index = 1..N;
node = record
key:keytype; { predefined }
num: index;
parent,left,right:index;
end;
var T = arraylindex] of node;

If the advance and retreat edges of the traversal
list are known in advance, we can easily get the
preorder and postorder traverses by the following

Fig. 1: Example of a binary search tree

left

Armay T key num parent right
1 F 6 0 2 3
2 A 1 1 0 5
3 H 8 1 4 0
4 G 7 3 0 0
5 E 5 2 6 0
6 D 4 5 7 0
7 B 2 6 0 8
8 C 3 7 0 0

Fig. 2: Binary Search tree Representation of Fig.1

procedures®).

(i) preorder
We construct a sublist of the elements of advance
edges from the traversal list as follows.
(ilajl) — (iZV.j?) A (%nvjn)
Head element (i1, j1) of the above sublist is traced
first node i; then node j; and the kth element
(ik, jx) (k > 2) is traced only jx. Therefore, the
preorder traverse of the nodes is as follows.
W——J1—J2——jJs— "~ Jn
(ii) postorder
‘We construct a sublist of elements of retreat edges
from thg traversal list as follows.
(i, 1) — (i2,52) — -+ — (in, Jn)
We take out an item iy of the edge (i, jx) (k =
1,2,...,n—1) from head of the sublist and take out
two items in,j, from the last element of the list. As
a result tracing of the nodes becomes as follows.
i1 — iy — iy — - i — jn
The main points of the above traverse (i) and (ii)
has been shown in reference 5), but the inorder tra-
verse has not been shown. Our proposed algorithm

for inorder traverse is designed in the same manner
as the above mentioned algorithms (i) and (ii).
(iii) inorder

Preorder and postorder traverses are traced easi-
ly using the Euler tour technique as mentioned pre-
viously5). Although the inorder traverse could be
calculated from the Euler tour technique but the
algorithm has not proposed completely. Thus we
propose a new idea to calculate the inorder tra-
verse. By inorder means, we need to trace a node
in the order left branch, a root and right branch.
We conceive that the left branches are traced in
postorder and the right branches in preorder. We
therefore, add the information of the left branch or
the right branch to the information of an advance
edge or a retreat edge on the traversal list. As a
result, we will propose the algorithm to trace the
nodes in inorder as follows.

2.1 Proposed Parallel algorithm for inorder
traversal

First we create the sublist of the elements which
satisfy the conditions from (a) to (e) as given be-
low, next we take out in the order the first node of
the element (pair of nodes) of the sublist to get the
inorder traversal.

We assign a processor to each edge on a traversal
list in order to briefly describe the algorithm. At
first we attach a mark to each element satisfied the
condition of (a), (b) or (¢) as follows.

(a) Retreat edge of the left branch

(b) Advance edge of the right branch

(¢) Retreat edge of the right branch that follows
the advance edge of the right branch, or re-
treat edge of the right branch that follows the
retreat edge of the left branch

We make the sublist consisted of the marked
elements. If the last edge (in, jn) of the sublist
is a retreat edge of the left branch, then we add
dummy edge (jn, jn+1) to the tail of the sublist
If there is an edge which follows a retreat edge
of the right branch on the sublist formed with
the conditions from (a) to (d), the edge (re-
treat edge of the left branch) is removed

Finally, we take up the first node of each edge
from the sublist satisfied the condition (e) and make
the list consisted of only the nodes taken up. Then
we apply the parallel list ranking algorithm to the
list and get the inorder number of each node.

The above algorithm is shown in below Fig.3. We
assume that the tail element of the sublist points
to itself and we assign the following array to each
element kth of the sublist. We define son(k), for i-
dentification of left branch or right branch; trav(k),

(d)

(e)

for identification of advance edge or retreat edge;
reverse(k), for pointing to edge (j,¢) of reverse or-
der of edge (i,7); mark(k) for marking the indi-
cation to satisfy the condition of (a), (b) or (c¢).
In addition the function head(L) points the head
element of the list L and next(k) shows the pointer.
2.2 Proof of the correctness of the Pro-
posed algorithm

First, it is self-evident that an edge satisfied the
condition of (a) or (b) becomes a candidate of in-
order traverse. In addition, in the condition (¢), we
can trace leaf node v of the right branch by includ-
ing retreat edge (v,u) of the right branch which
follows the advance edge (u,v) of the right branch
in the sublist. We also can trace node v which does
not has the right branch by including retreat edge
(v, w) of the right branch which follows the retreat
edge (u,v) of the left branch.

Next in the condition (d), after we make the sub-
list consisted only of the elements satisfying the
condition of (a), (b) or (¢). If the last edge (in, jn)
of the sublist is a retreat edge in the left branch,
in other word, if root j, does not have the right
branch, we add a dummy edge (jn,jn+1) and we
can trace the root j,.

In the condition (e), if there is the edge which
follows the retreat edge of the right branch in the
sublist consisted of the edge satisfying the condi-
tions from (a) to (d), its edge has to be the retreat
one of the left branch. Because the edges in the
right branch have already been existed on the sub-
list, the edge which follows the retreat edge of the
right branch has to be the retreat edge on the left
branch. Since node v in the retreat edge (v,u) of
the left branch which just follows the retreat edge of
the right branch has been existed in advance edge
(v, w) of the right branch already, node v is traced
twice. Therefore, a retreat edge of the left branch
which follows the retreat edge of the right branch
has to eliminate from the sublist.

For example, the sublist of Fig.4 is shown af-
ter condition (d) is satisfied where the retreat edge
(vs, v2) of the left branch which follows the retreat
edge (vs, v4) of the right branch eliminates from the
sublist, as given below.

ight right right
—»(’U3, 1}4) —_— ('U4, U5) el (1)5, ’04) —_—
advance advance retreat
left left
(v, 12) — (v2,v1) —>
retreat retreat

In what follows we show the performance of pro-
posed algorithm for binary search tree in Fig.1. At

const n = { total number of nodes };
type cell = record start,end: 1..n+1;
' next: list end;
list = Jcell;
procedure Para_Inorder_Traverse(traversal list: 1ist);
var rank: array of integer; k, sublist: 1list;

begin { calculate rank of traversal list }
List Ranking(traversal list, rank);
for all k, k € traversal.list in parallel do
begin { advance edge or retreat edge identification }
if rank(k) < rank(reverse(k)) then
trav(k) — advance
.else
trav(k) « retreat;
mark(k) « 0;
if trav(k) =
mark(k)

retreat and son(k) = left then
{ condition (a) }
else if trav(k) = advance and son(k) =
mark(k) « 2; { condition () }
if mark(k) # 0 and next(k) # k then
if trav(next(k)) = retreat and
son(next(k)) = right then
mark(next(k)) «— & { condition (¢) }

— 1

right then

end;
sublist « traversal.list;
repeat log 2(n — 1) times
{ make a sublist consisted from only marked edges }
for all k, k € sublist in parallel do
if mark(next(k)) = (then
next (k) « next(next(k));
for all k, k € sublist in parallel do begin
if k=head(sublist) then
{ process for the head of the sublist }
if mark(k) = 0 then
head(sublist) « next(head(subllst))
if mark(next(k)) = 0 then
next(k) « k;
if next (k)
begin

= k and mark(k) =7 then
{ case that the tail is a retreat edge of the left branch }
{ add a dummy edge to the tail }
next(next (k)) e next(k) 5
next(k)T.start «— k7.end; next(k)[.end « n+i
end

new (next (k));

end;
for all k, k € sublist in parallel do

if mark(k) = 3 and next(k) # k then

next(k) « next(next(k)); { condition (e) }

{ calculation of inorder number }
List Ranking(sublist, rank);
for all k, k € sublist in parallel do

T(kT.start) .num — rank(k) { storing the value }

end;

Fig. 3: Parallel algorithm for numbering the ver-
tices in inorder using the traversal list

{ from here condition (d) }

{ process for the tail of the sublist }

advance edge

retreat edge

sublist after
condition (d)
is satisfied

Fig. 4: Traversal list and sublist after the condition
(d) is satisfied

first we add marks to distinguish advance and re-
treat edge, right and left branch on the traversal
list as follows.

left right
(FyA) — (AJE) — (E' D) (D B)
advance advance advance advance
right left
B — &8 — &%) — e
adua?ce ret{eat 7etreat retreat
7 lefi
By — 47y ﬁH) 6) —
retreat retrealtﬂ ad uance advance
€
(G7H2 R (7F)
retrea retreat

Sublist to satisfy the conditions from (a) to (d)
as mentioned above on the traversal list becomes
as follow. .

right right
WE) — B — &% — b
ad})afnce a vance Tetreat retreat
eft
D) — (B — ey
Tet/eat retreat retreat advance
left right
(G H) — (H,F)
retreat retreat

Next, applying the condition (e), the edges of
(B,D) and (A, F) are eliminated and the sublist
becomes as follows.

(AE) — (B,C) (C,B) (D,E) —
(E,A) — (FH) — (G,H) — (H, F)

Sublist as mentioned above is shown by the di-
rected arrows in Fig.5, the dotted and solid arrows
are shown with the applied conditions. The result
after the condition (e) is shown by the solid ar-
rows, the inorder fraverse is given if we take out
a head node of each element of this sublist as fol-
lows A - B —-C>D—-FE - F —G— H,
and apply the parallel list ranking to the above i-

Fig. 5: Sublist satisfied the conditions (a)~(e) in
Fig.1

norder traversal list, finally we can get the inorder
number.
2.3 Time complexity of the proposed algo-
rithm

The algorithm to get the Euler circuit on a tree
needs O(logn) time from the adjacency list rep-
resentation of the tree with nodes n, but it can
be calculated with O(1) constant time in case of
binary search tree, because the length of an adja-
cency list is at most 3. In addition, the doubling
technique to calculate the rank on the traversal list
and identify the advance edge or retreat edge, need
O(logn) time. Next when each processor is as-
signed to each element of the list, based on the
informations carried by each edge whether the left
branch or the right branch, an advance edge or a
retreat edge, each processor can distinguish in O(1)
time whether each edge can satisfy the conditions
from (a) to (¢) or not. The condition (d) is able to
be computed in O(logn) time. The condition (e)
can be computed in O(1) time. Furthermore, we
can compute the rank of the final sublist in O(log n)
time. As a result, the proposed parallel algorithm
can calculate the inorder number in O(locr n) time
with O(n) processors.
3 Parallel Algorithm for Constructing An

Almost Complete Balanced Binary Search ()

Tree
Balanced tree, like the AVL tree, improves the
performance of binary search tree by keeping the
tree in which for every node the heights of its t-
wo subtrees differ by at most 1 at all times.- An

almost complete balanced tree is a tree in which
for every node both the left and right subtrees con-
tain an equal or nearly equal amount of nodes. To
describe it in more detail we consider the given bi-
nary search tree with the already determined in-
order number of each node. The conversion of the
given binary search tree into its almost complete
balanced binary search tree is shown in Fig.6.

Fig.6(a) shows the given binary search tree with
F as the root node while Fig.6(b) shows the con-
verted almost complete balanced binary search tree.
The values written on the right of éach node are the
inorder numbers of the given binary search tree.
The values written on the left of each node are the
inorder numbers of the complete balanced binary
search tree added the external nodes shown by the
square in Fig.6(b).

3.1 Preliminary

In what follows we give the method to number
the nodes in inorder of the complete balanced bi-
nary search tree.

If N is the total number of nodes in the complete
balanced binary search tree then we have N = 2% —
1, here L is the maximum number of levels of the
complete balanced binary search tree.

(a) If M is the inorder number of a node of jth
from the left side at level 7 in the complete binary
search tree, then it can be represented as follows.

M = 2L—i + (] - 1)2L—i+1 (1)

(b) Let M be the inorder number of a node that
has children at level ¢ in the complete binary search
tree, then we define M, and M, that are the inorder
number of the left and the right child respectively.

Thus, we get the formula for M, and M as fol-
lows

My= M —2k=-1 (2)
My = M 491 : (3)

(c) * Next task is to find the height H(M) of

a node with inorder number M on the complete

height
3

Fig. 6: Conversion of binary search tree into its
complete balancing tree

balanced binary search tree. Here provided that
h =L —1in Eq.(1). H(M) is given below where
the height of the leaf node is 0.

/M =2"%(2j-1), h=0,1,- ~,L—1;

j = 1727' : ':2L‘h~1
HM)=nh (4)

In what follows we assume N < 2L — 1, that
is, a binary search tree may be an almost complete
balanced binary search tree. In this case, from level
1 to L — 1, the tree is complete tree, at level L the
nodes are located from left to right orderly.

(d) We define a new variable N L which denotes
the number of existing nodes at level L, while an-
other new variable S is introduced to denote the
number of empty nodes at level L. NL and S can
be calculated as follows.

NL =N-2F141 (5)
s =2-1-nN (6)

(e) If J is the inorder number in the given binary
search tree, we give the following relationships for
the inorder number M of each node of the complete
balanced binary search tree.

J , if J<2xNL
M=o inr | i 7>2«nL (D

In the traditional approach the formulations from
(1) to (7) have been discussed.

By the way, we already have been studied how
to represent a binary search tree in form of da-
ta structure. Along with the data structure we
define a new variable LINK given by LINK =
arraylinorderindex] of index, where inorderindex
and index denote the inorder number and index of
array T respectively.

3.2 Traditional Algorithm

The traditional parallel algorithm?® for balancing
binary search tree according to the above formula-
tions has been given in Fig.7, where in the process
of conversion of the given binary search tree into it-
s complete balanced binary search tree, first of all
the inorder number of each node is calculated by
Eq.(7), provided that its tree is the complete bina-
ry search tree. Further, the nodes at level L of the
complete balanced binary search tree contain the
odd value of inorder number M, while the nodes of
levels from 1 to L — 1, namely the internal nodes
contain the even number. The internal nodes have
the left and right child in according to the Eq.(2)
and Eq.(3) respectively. .

One of the major drawback of the traditional al-
gorithm is that if the given binary search tree is not
the complete tree, namely N < 2% — 1, on the level
L of the converted binary search tree, several emp-
ty nodes are attached (see Fig.6(b)), and the algo-

procedure Para Balance;
begin
for each processor in parallel do begin
{ processors P1,Ps,---, Py in parallel do }
k « T7.num;
if k < 2+NL then
M« k
else)
M 2%(k-NL);
if 0odd(M) then begin {leaves}
T(LINK[k])T.left « nil;
T(LINK(k])T.right « nil
end
else begin
I « L-H[M]; J « 2L-1-1,
T(LINK[M])T.left « LINK[M-J];
T(LINK(M])T.right « LINK[M+J]
end
end

end;

Fig. 7: The traditional parallel balancing algorithm

rithm has assigned the processors to these empty
nodes also which needlessly occupied the memory s-
paces. The traditional algorithm thus, has required
O(N + S) number of processors, where N stands
for existing nodes and S stands for empty nodes of
the complete balanced binary search tree.

Thus the data structure representation for the
almost complete balanced binary search tree of the
given Fig.6(a) is shown in Fig.8. In Fig.8 we can
see that there are the needless memory spaces from
indexes 9 to 15 of array T'.

3.3 Proposed Algorithm

In this section, as shown in Fig.8 the array T
and LINK contain a lot of spaces for the emp-
ty nodes. Therefore, a new algorithm is proposed,
which excludes the spaces for the empty nodes from
the array T' and LINK and also reduces the num-
ber of processors assigning. Assuming the com-
plete balanced binary search tree, inorder number
M; (left child of M) and Mx (right child of M) are
calculated by the Eq.(2) and Eq.(3). But in an al-
most complete balanced binary search tree, that is,
N < 2L — 1, we need some modifications of those
formulas. We modify Eq.(2) and Eq.(3) to get the
Eq.(8) and Eq.(9) as follows, where J; and J; are
the inorder number of the left and right children of
the parent with inorder number J respectively.

Here, we derive the Eq.(8) and Eq.(9) to calcu-

Array T Array
index|| key | num | left | right LINK
1 E 8 2 3 8
2 C 4 4 5 4
3 G 12 6 7 9
4 B 2 8 9 2
5 D 6 10 11 10 .
6 F 10 12 13 5
7 H 14 14 15 11
8 A 1 0 1] 1
9 - 3 0 0 12
10 - 5 0 0 6
11 - 7 0 0 13
12 - 9 0 0 3
13 - 11 0 0 14
14 - 13 0 0 7
15 - 15 0 0 15

Fig. 8: Data structure representation for almost
complete balanced binary search tree of the tradi-
tional algorithm

late J; and Jy from J as mentioned below. Note
that the inorder values of J,J; and J; are the in-
order number of existing nodes. The level of J in
the almost complete balanced binary search tree is
represented by ¢, which also denotes a level in the

complete binary search tree.
J —2k-i-1 ,J<2%NL

J1={ 2(J ~ NL) - 2L==1 2« NL < J < 2% NL + 2L-i-2
J —ob-i=2 ,J > 2% NL 4 2L=i-2

8
J 4 2L-i1 ,J<2x NL—2E—i-1 ©
Jo={ J/2+ NL+2L-%=2 24 NL - 2L-1-1 <« J <2« NL
{J+2L—f-2 ,J>2%NL
(9
Proof In what follows we prove the correctness
of the above formulas given by Eq.(8) and Eq.(9),
where N L is the number of nodes at the maximum
level L as mentioned previously.

At first we argue the correctness of Eq.(8) which
is divided into three possible cases depending upon
the value of inorder number J of a parent node.
In first case we see that if the inorder number J
of parent is smaller than or equal to 2 NL then,
from binary search tree property, the inorder num-
ber J; of left child also will be smaller than 2x N L.
Therefore, inorder number of left child is given as
similar to Eq.(2), J; = J — 2L7~1. Mathematical-
ly, if J <2+« NL and J; < 2% NL then from Eq.(7)
we have M = J and M, = Jj respectively. There-
fore from Eq.(2) the inorder number J; of the left
child is given by J; = J — 28—+1,

In the second case if the inorder number J of -

parent is greater than 2% N L, but the inorder num-
ber Jy of its left child is smaller than or equal

to 2 x NL, mathematically, if 2+ NL < J and
2(J — NL) — 2L=1 < 2% NL from Eq.(2) and
Eq.(7), that is, if 2% NL < J < 2% NL + 207172
thus we get J; = 2(J — NL) — 21,

In the third case if both the inorder number J of
parent and the inorder number J; of its left child
are greater than 2 = NL, namely, the conditions of
J > 2% NL and 2(J — NL) - 2L==1 > 2% NL
become J > 2x NL + 2572, Hence we get J; =
J~2E=2 from 2(J, - NL) = 2(J ~ NL) - 2F 1
using of Eq.(2) and Eq.(7). As a result if J >
2% NL+27%2 then J; = J — 2L7¢-2,

Secondly we prove the correctness of Eq.(9) as
similar to do Eq.(8).

In the first case that if the inorder number J; of
the right child is smaller than or equal to 2+ NL, in
this condition the inorder number J of its parent
also will be smaller than 2% N L. Deriving the result
from Eq.(3) and Eq.(7) we get that if J < 2« NL—
2L="1 then J, = J + 2L~ 1,

In the second case that if the inorder number J of
parent is smaller than or equal to 2+ N L, but the in-
order number Js of its right child is greater than 2x
NL, in this case we have M = J, My = M +2L-#-1
and My = 2(Jy — NL), thus we get J» = J/2 +
NL + 2F="-2_ Mathematically, if J < 2+ NL and
Jz > 2x NL, in these conditions Jo > 2+ NL which
is equal to J/24+ 2024+ NI > 2% NL, hence this
inequality becomes J > 2% NL—2L~*=1, Therefore
these conditions become 2 x NL — 2L-i-1 <« J <
2+« NL. Asaresult if 2x NL—-2L~-1 « J < 9xNL
then Jy = J/2 + NL + 2L—1-2,

In the third case if the inorder number J of par-
ent is greater then 2 % NL, that is, the condition
contains Jy > 2% NL. As a result, from Eq.(3)
and Eq.(7) we get that if J > 2 x NL then Jp =
J 4 2k-i-2, o

From the above arguments, we have proved the
correctness of both Eq.(8) and Eq.(9). Finally,
we propose an efficient parallel algorithm for con-
structing an almost complete balanced binary search
tree, which is performed in two steps as below.

1. Assign a processor to each node of the array
T and the inorder traversing number of each
node of the binary search tree (T[j].num) is
sorted by array LINK as LINK|[T'[j].num] :=
3.

2. Assign a processor to each element of array
LINK and by using the LINK information,
create an almost complete balanced binary search
tree on array T in parallel.

In the proposed parallel algorithm the each size

of array T and array LINK is N (number of ex-

isting nodes). Therefore the proposed parallel al-
gorithm can reduce the number of processors and
the memory spaces from O(N + S5) to O(N). Fi-
nally we propose an efficient parallel algorithm for
constructing an almost complete balanced binary
search tree in Fig.9. In the proposed algorithm,
the computational time complexity of the proposed
parallel algorithm is in O(1) time with O(n) pro-
Cessors. : :
4 Conclusion

Two efficient parallel algorithms have been pro-
posed in CREW-PRAM model, one is to number
the node in inorder on a binary search tree in O(logn)
time and O(n) processors by using the Euler tour
technique, the other can construct an almost com-

procedure PAR_BALANCING(T,N);
var i, j, NL, L, M: integer;
begin :
L « [log(N+1)]; .
{ maximum level of complete binary search tree }
NL «— N-2L~1+1; { number of nodes on level L }
{ Phasel !} ’
for i := 1 to N in parallel do
{ Processor F; }
LINK[T(i] .num] « i;
{ Phase2 . }
for j := 1 to N in parallel do
{ Processor Pj; }
begin
if j <= 2#NL then { calculation of indeces }
M j
else
M — 2+(j-NL);
{ change pointers to its children }
if odd(M) then begin
TILINK(j]].1left « O;
TILINK[j]].right «— 0
end .
else if even(M) then begin
K 2HM-1,
{ calculation of left child }
if odd(M-K) and (M-K) > 2+NL then
TILINK(j]] .left — O
else if j <= 2+NL then
TILINK(j1].left — LINK[j-K)
else if j <= 2«NL+K/2 then
TILINK{j]].left « LINK[2%(j-NL)-K]
else
T(LINK(j]].left « LINK({j-K/2);
{ calculation of right child }
if odd(M+K) and (M+K) > 2+NL then
T[LINK[j]].right «— O
else if j < 2+NL-K then
TILINK[j]).right « LINK[j+K}
else if j <= 2+NL then
TILINK[3]].vight « LINK[(j+K)/2+NL}
else
TILINK[j]].right « LINK[j+K/2]
end
end
* end.

Fig. 9: Proposed parallel algorithm for construct- .
ing an almost complete binary search tree

plete balanced binary search tree in constant time
using the inorder number and can reduce both the
number of processors and memory spaces, as com-
pared with the traditional algorithm.
References

1) Chang, H. and Iyengar, S. S. : Efficient Algo-
rithm to globally balance a binary search tree,
Comm. of the ACM, Vol.27, No.7, pp.695-702
(1984). ~
Moitra, A. and Iyengar, S. S. : Derivation of
a parallel algorithm for balancing binary tree,
IEEE Trans. on Software Engineering, Vol.SE-
12, No.3, pp.442-449 (1986). ; ‘
Haq, E. and Cheng, Y. and Iyengar, S. S. :
New algorithms for balancing binary search
trees, IEEE SOUTHEASTCON, pp.378-382
(1988).
Gerasch, T. E. An insertion algorithm
for a minimal internal path length binary
search tree, Comm. of the ACM, Vol.31, No.5,
pp.579-585 (1988).
Gibbons, A. and Rytter, W. : Efficient par-
allel algorithms, Cambridge University Press,
pp.21-24 (1988).
Migita, M. and Nakamura, R. : Parallel Algo-
rithm for Inorder Traversal of a Binary Search
Tree, (in Japanese) IPSJ Journal, Vol.4l,
No.10, pp. 2941-2944 (2000).

4)

5)

6)

