| 720 ) I QR
(2002. 11. 8)

FIFREOHER 2. LU/ IILADISH

NE WA RS
FAKE R IR RS REK SR BRI T2 R
HHLR 3y ¥y R

yato@is.s.u-tokyo.ac.jp

seta@is.s.u-tokyo.ac.jp

87— 2

B Z
IR T3 25U (ASP) LV DI, T DA VRS Y R 2 LFRIEHT 2 1 D08 s 255 %
ORI, & @ s UHOBERDLMEDZ L ThH D, GFFLWIEL I AL LTD ASP OBEAIE Ueda
& Nagao 122 %) ARLTIE n WOBHEZLNZHFIZE ) 1 DOOWERD BME (n-ASP) 120w T
BB D, 2, WHIET 2HA~OLHR S ZEABB TITR 2 £ 5 2L HERER parsimonious 25T 3
SEEETH D ASP TL&MICOVTEET S, ‘
TEHE LT, KRXTR 3 DDFERBRNAN, ANVHF=) o2l on (FRAYL) LFrnN—T
L= (#h) 12owTED ASP 54t (NP £t 85T 53) 25771,

Complexity and Completeness of Finding Another
Solution and Its Application to Puzzles
Takayuki YATO Takahiro SETA

Department of Information Science Department of Computer Science

Graduate School of Science
The University of Tokyo

yato@is.s.u-tokyo.ac. jp

The University of Tokyo
seta@is.s.u-tokyo.ac.jp

Abstract
The Another Solution Problem (ASP) of a problem II is the following problem: for a given instance
z of I and a solution s to it, find a solution to = other than s. (The notion of ASP as a new class
of problems was first introduced by Ueda and Nagao.) In this paper we consider n-ASP, the problem
to find another solution when n solutions are given. In particular we consider ASP-completeness, the
completeness with respect to the parsimonious reductions which allow polynomial-time transformation

Graduate School of Information Science and Technology

of solutions.

As an application, we prove the ASP-completeness (which implies NP-completeness) of three popular

puzzles: Slither Link, Cross Sum, and Number Place.

1  Introduction

There are some cases where we want to know
whether a given problem has any solution other
than a given one. In this paper we study the com-
plexity of this sort of problem, called “Another So-
lution Problem (ASP).”

The notion of ASP as a new class of problems,
with its narme, was first introduced by Ueda and
Nagao [8], although the ASP of a few individual
problems had been studied before them, such as
Hamiltonian circuit problems [5]. In addition they
have pointed out that ASP has a close relation to
designing puzzles. For many sorts of puzzles, the
uniqueness of solution is desired, and thus puzzle
designers have to check whether the designed prob-
lem has no solutions other than the intended one.
This work is exactly an instance of ASPs. Besides
puzzles ASP has many applications. For example,
in the restoration of fossils and historical materials,
verifying the uniqueness of solution is necessary to

claim that the true figure is restored.

Note that ASP sometimes has a different com-
plexity from that of the original problem. One in-
teresting example is the Hamiltonian circuit prob-
lem for cubic graphs. Although the problem itself
is NP-complete [4], its ASP'is trivial because a cu-
bic graph with a Hamiltonian circuit always has
another (see {5]).

Ueda and Nagao [8] also pointed out that par-
simonious reductions which allow transformation
of solutions in polynomial time (what we call ASP
reduction in this paper) can be used to derive the
NP-completeness of ASP of a certain problem from
that of ASP of another. Following this approach
they proved the NP-completeness of ASP of Nono-
gram (a kind of puzzle) by showing such a reduc-
tion from 3-dimensional matching (3DM) to Nono-
gram. ‘

In this paper we consider the problem to find
another solution when n solutions are given (we
call such problems n-ASP). Moreover we provide

—0—



a formalization of n-ASP and investigate the char-
acteristics of n-ASPs and ASP reductions. In par-
ticular we consider the completeness with respect
to ASP reduction (we call it ASP-completeness).
As is shown later, ASP-completeness implies NP-
completeness of n-ASP for any n.

In addition we prove the ASP-completeness
of three popular pencil puzzles: Slither Link,
Cross Sum, and Number Place.! Since ASP-
completeness implies NP-completeness these re-
sults also add new items to the list of NP-complete
puzzles. (Note also that ASP-completeness implies
#P-completeness of counting the solutions.)

2 Another Solution Problem
(ASP)

2.1 Preliminaries

In this section we state a theory of Another Solu-
tion Problem (ASP). First of all we use the follow-
ing existing formalization of function problems in
order to facilitate the argument:
Definition 2.1 Let II be a triple (D, S, o) satis-
fying the following:
e D is the set of the instances of a problem.
e S is a set which includes all that can be a
solution.?
e o is a mapping from D to 2%, For an instance
z € D, o(x) (C S) is called the solution set to

z, and an element of o(z) is called an solution
to x.

Then the problem which finds a solution to an in-
stance z € D (or simply II itself) is called a func-
tion problem.

Under this formalization, the class FNP is de-
scribed as follows:

Definition 2.2 FNP is a class consisting of func-
tion problems Il = (D, S, o) such that the following
holds:
e There exists a polynomial p such that |s| <
p(|z|) holds for any z € D and any s € o(x).

e For any z € D and y € S, the proposition
y € o(z) can be decided in polynomial time.

1Pencil puzzles are those offered as some figure on the
paper and solved by drawing on the figure with a pencil.
Nonogram is a pencil puzzle. Although many results are
known about the computational complexity of combinato-
rial games and puzzles (see the survey by Demaine [3]), few
are about pencil puzzles.

28 may include extra things. When we think on the basis
of Turing machines, S may be the set of all the strings.

Definition 2.3 Let II = (D, S,0) be a function
problem. Y = {z € D | o(z) # 0} I = (D,Y)
(that is, the pair consist of the set of all the in-
stances and the set of all the yes-instances) is called
the decision problem induced by II or simply the
decision problem of II.

Note that it follows from the characteristic of
NP that for any decision problem Il € NP there
exists a function problem II € FNP satisfying
Iy = II. (Of course, II € FNP implies Iy € NP.)

2.2 Formalization of ASP

Now we are ready to define ASPs.

Definition 2.4 Let II = (D, S,0) be a function
problem. For I1 and a nonnegative integer n, we
call the function problem ) = (D), S, 0(ny) con-
structed as follows the n-another solution problem
of TI {or shortly n-ASP).

Dy = {(%,82) | 52 C o(2), |5l = m},
T (2, 50) = o(x) — Se

We call the decision problem of an n-another solu-
tion problem n-another solution decision problem.

We use the notation Iy and IIj,) as the meaning
mentioned above throughout this paper.

The next definition is polynomial-time ASP re-
duction. This is parsimonious reduction which al-
lows polynomial-time transformation of solutions
and is introduced by Ueda and Nagao [8]. (Recall
that parsimonious reductions are used for proving
#P-completeness of counting problems.)
Definition 2.5 Let 1} = (Dy,S1,01) and Il =
(D2, S2,02) be function problems. We call the pair
v = (pp, ps) satisfying the following polynomial-
time ASP reduction from I1; to Il:

e ©p is a polynomial-time computable mapping

from Dy to Ds.

e For any = € Dy, g is a polynomial-time com-

putable bijection from oy (z) to o2(¢p(z)).
If there is a polynomial-time ASP reduction from
I1; to Ils, II; is called to be polynomial-time ASP
reducible to Il (denoted by II; <,sp II2).

By definition, all the ASP reductions are par-
simonious. Although the converse does not al-
ways hold, many parsimonious reductions involve
concrete transformation of solutions and thus are
ASP-reductions.

The relation =,sp is transitive, like other re-
ducibility relations. If TI; <,ep I, then 4 is
polynomial-time reducible (as a decision problem)
to Ilag.

The relation of ASP reducibility is invariant with
respect to “taking an ASP” operation.



Proposition 2.1 Let 1y and Iy be function prob-

lems. IfI1; <,sp o, then Hl[n] <asp Hg[n] for any

nonnegative integer n.

Proof Immediate from the definition. n
The next proposition shows that n-ASP of m-

ASP is (m+n)-ASP (of the original problem).

Proposition 2.2 For any function problem I1 and
nonnegative integers m,n, (Mpn))m) =ase pmin]-

Proof Let I = (D,S,0). An instance Z of
(H{m))ry 1s of the form '

((z, {815+ »Sm})s {t1,--- stn}) »

(z €D; s1,...,8myt1,... ,tn € 0(x)).
For this we set ¢p (Z) to be (z,{s1,... ,Sm,t1,--.,

tn}). Then the solution set of Z is equal to that of
»p(Z), and thus @g can be set to be the identity
function. =

Combining the two propositions, we obtain the
following important result.

Theorem 2.3 Let Il be a function problem. If
IT <asp Iy, then for any nonnegative integer n
in) Zase i1y (Therefore I < usp iy, )

Proof  From II =ssp Iy and Proposition 2.1
we obtain I, <ase (1))}, and from Proposi-
tion 2.2 we obtain (Hyj)f) <ase [jng1- Thus the

theorem holds because of the transitivity of <,sp.
m

3 ASP-completeness

ASP-completeness is completeness with respect to
ASP reductions, and defined as follows:

Definition 3.1 A function problem IT is ASP-
complete if and only if II € FNP, and IT' <,sp II
for any II' € FNP.

Proposition 3.1 Let I and II' be function prob-
lems. If I1 is ASP-complete, II' € FNP and
IT <0 I, then IT' is ASP-complete.

Our first ASP-complete problem is SAT. Here
SAT represents the function problem of satisfiabil-
ity. (The decision problem is denoted by SATq.)

Theorem 3.2 SAT is ASP-complete.

Proof  Cook’s reduction is an ASP reduction. =
An important property of ASP-completeness is

that it implies the NP-completeness of n-ASPs for

any n. We first show this property as to SAT.

Theorem 3.3 1. SAT <, SAT|y.
2. For any nonnegative integer n, SAT(yq s
NP-complete.

Proof 1. We construct a polynomial-time ASP
reduction ¢ = (yp, ps) from SAT to SATy;.

For a given instance of SAT ¢ (a CNF formula),
we construct a CNF formula ¢’ as follows:

o We introduce a new variable w, and for each
clause [; V- - -V, in ¢ make a clause I; V---V
[, Vw and add it to ¢’
o For each variable x we add a clause V@ (CNF
of w= ;) to ¢
Then define ¢p(¥) to be (¢, {g}), where g is the
assignment in which all variables are true. For a
solution h to ¥, let ws(h) be h with assignment
w = false added.

2. From 1 and Theorem 2.3, we obtain SAT < ,¢p
SAT}, for any nonnegative integer n. Thus SATq
is polynomial-time reducible to SAT[,ja and the
theorem holds. L]

Using this result and Proposition 2.1 the prop-
erty is shown for all ASP-complete problems.
Theorem 3.4 For any ASP-complete function
problem II and any nonnegative integer n, I,q
is NP-complete.

Proof  Since II is ASP-complete, SAT <,qp II
holds, thus it follows from Proposition 2.1 that
SAT[n] =<Asp H[n]~ This implies that SAT[n}d =
Mjypa. Thus Ilj,)q is shown to be NP-complete
from Theorem 3.3. =

Here follow the proofs of ASP-completeness of
some logic problems, which are used in the later
sections.

Theorem 3.5 3SAT is ASP-complete.

Proof  We show a polynomial-time ASP reduc-
tion from SAT. Let ¢y be a CNF formula given as
an instance of SAT. We modify 1 as follows:
e Introduce new variables ¢4, t2, t3 and add these
7 clauses: t; Vi Vi3, t1 Vi Vis, t1 Via Vis,
ti Vi Vis, Ty Vg Vi, &) ViEa Vig, £ Via Vis.
(All of tq1,t2,t3 must be true.)
e Add #; to each clause with two literals, and
add #; and t5 to each clause with one literal,
e Divide each clause with 4 or more literals [; V
lpVigV--- Vi, as follows: I ViaVd, I Vd,
Iy v d (these are CNF of (I; Vie) = d), dViz Vv
-+ V1., where d is a new variable. While the
last clause has 4 or more literals, repeat the
division.
Let ¢’ denote the modified formula. Then «’ is sat-
isfiable if and only if ¢ is satisfiable. Moreover, for
each truth assignment h satisfying v, there is only
one assignment that can be obtained by extending
h and satisfy 1. "
1-in-3 SAT is the following problem: given a 3-
CNF formula, find a truth assignment in which
each clause contains exactly one true literal.



Theorem 3.6 1-in-8 SAT is ASP-complete.

Proof  To prove the ASP-completeness of 1-in-3
SAT, we first show a polynomial-time ASP reduc-
tion from 3SAT to Just-one SAT. Here Just-one
SAT means the same problem as 1-in-3 SAT ex-
~ cept that a CNF formula is given instead of 3-CNF
formula.

Let v be a 3-CNF formula with n variables

V1,V2,... U, given as an instance of 3SAT.

Then we construct a CNF ' which is an instance

of Just-one SAT as follows:

e Introduce new variables v; ;4 for all 1 <14 <
i< k<mn 0<1 <7 (lrepresents the
assignments of v;, v;, vx in binary.)

e For all i < j < k, add following clauses to ¢
Vi k0 V Vigk,tV VijkaVUijk3 Vi,

Ui gk,d V Vigk,s V Vigk,6 V Vigkt VUi,

Vi g k0 V Vigk1 VVijkaVUijks VU5,

Vi k2 V Vigk3 V Vigke V Vigk7 VU5,

Ui 5k,0 V Vigk,2 V Vigk,a V Vijke V Uk

Vi jk,1 V Vi3 V Vigik,s V VigkT V Uk-

(Make the assignment to v;,v;, vy determine
that of v; jk-)

e For each clause in ¥, add to %’ the clause
which rejects unsatisfying assignment to .
For example, for v; V§; Vg in ¢ (v; =0,v; =
1,v; = 1 is the unsatisfying assignment) add
771',]‘,19,3 to w/.

It is easily confirmed that this is.an ASP reduction.

Next, we show a polynomial-time ASP reduction

from Just-one SAT to 1-in-3 SAT and finish the
proof. The reduction is just like that from SAT
to 3SAT. Let v be a CNF formula given as an
instance of Just-one SAT. Then, we modify ¢ to
Y as follows:

e Introduce new variables t1, f1, f2, f3 and add
these 3 clauses: tV f1V fa, tV faV fa, tV faV fi
(t must be true, and all of fi, fa, f3 must be
false.)

e Add f; to each clause with two literals, and
add f1 and f> to each clause with one literal,

s Divide each clause with 4 or more literals [} V
IbVIsV---Vi as follows: [, VIpgVd, dVigV
-V, where d is a new variable. While the
last clause has 4 or more literals, repeat the

division.
Again it is easily confirmed that this is an ASP
reduction. =

4 Some ASP-complete Puz-
zles

Here we prove the ASP-completeness of three mod-
ern pencil puzzles widely played around the world.

Figure 1: A problem of Slither Link.

4.1 Slither Link
The rule of Slither Link is as follows:

e Each problem is given as a rectangular lattice.
The length of sides of the rectangle (as to the
unit length of lattice) is called the size of the
problem.

e A 1 x 1 square surrounded by four points is
called a cell. A cell may have a number out of
0,1,2o0r 3.

e The goal is to make a loop which does not in-
tersect or branch by connecting adjacent dots
with lines, so that a number on the cell is equal
to the number of lines drawn around it.

An example of problems of Slither Link is shown
in Fig. 1.

Here we prove the ASP-completeness of Slither
Link. To construct an ASP reduction, we firstly
prove the following lemma. )

Lemma 4.1 To find a Hamiltonian circuit for a

given planar graph with degree at most 3 is ASP-

complete.

Proof  See [7]. =
We also use the following known fact (see [1]):

Lemma 4.2 Any planar graph with degree at most
3 with n vertices can be embedded in an O(n) x
O(n) grid in polynomial time in n.

Now we are ready to state the proof.

Theorem 4.3 To-find a solution to a given in-
stance of Slither Link is ASP-complete.

Proof The membership in FNP is immediate.
We construct a polynomial-time ASP reduction
from the restricted Hamiltonian circuit problem to
the Slither Link problem.

Using Lemma 4.2, we can transform a given in-
stance (graph) G of the restricted Hamiltonian cir-
cuit problem into a graph G’ on the grid. Note that
G’ has lattice points which do not correspond to
any vertex of G and thus need not be visited when
considering Hamiltonian circuits of G’. The degree
of such points is two. _

First, the gadget for a lattice point which need
not be visited is the 6 x 6 board A shown in Fig. 2.
Here we assume that no lines are drawn around
this gadget. (This assumption will be satisfied
later.) Then there are only four points, n, s, w



A - AL ) A2.

s oxc s xBaxexe e poexox e
X|

20,0, . :.00% $0,0x 1 %0,0x %0.9
X0, .., .0,0% X0y 0 50,05 %05
0,0 X X 56 b
We + e%eYe o e R SOOI T
00 X X X0 0x X X
T e eVeYe o @ SxdaXeXe exe »x
S X0 4550 X0
2010000095 9.0 ] 00 X0
A3. Ad.

Xe

XO OX:

" .

%0 0% . X8 ox

eXeXexexexeXs

X Xexox e

[=> O O

X Xe o

X XOX

X X X

OX X
)

OX X

eXexox'e

XS OX

“ e s

XO OX

eXeX 4X e

AXOX SXPX eX 8N ®

X0 OX
eX e

Figure 2: The gadget for a point in G’ which does not
correspond to a vertex of G, and local solutions to it.

. " Bl B2

X008." 7 010% B T N N IS
¥0,0,1, ,0,0% Q.91 50,0%
Wi Yo x0T

Xk sal o lx o x50

%0l0] [1l0l0 XB0:7113000% 1000
Qe 0.0% 05005 X000

Figure 3: The gadget for a vertex of G’ which corresponds
to a vertex of G, and local solutions to it.

and e, through which a line goes out of the gad-
get. Thus, the local solution is either (i) that no
lines are drawn, or (ii) that a path connecting two
points out of n, s, w and e is drawn as shown in
Al, A2 and A3. (In fact two paths can be drawn
as in A4. But this case will be prohibited later.)
Note that for any two points there is a unique way
to connect them.

Next, the gadget for a lattice point which must
be visited is the board B shown in Fig. 3. Again
we assume no lines around the gadget. This time a
path connecting two points on the boundary must
be drawn, as in B1, B2 and B3, because this gadget
has some 1’s inside. Note that for any two points
there is a unique way to connect them.

Last, we arrange these two sorts of gadgets in
accordance with the grid graph G’: we join two
gadgets as in C of Fig. 4 where' G’ has a corre-
sponding edge, and as in D where not. Only D
allows a path connecting two gadgets. Moreover,
both arrangements forbid lines on the boundary of
the gadgets. Because all vertices of G’ have a de-
gree at most three, not all of n, s, w and e of a
gadget A can have a passing line. This restriction
prevents two paths passing through a gadget A.

In this way, we obtain the problem of Slither
Link corresponding to G’ (that is, G), (Drawing
lines on the boundary of the entire board is also

D)
XOXO;
XX

o o e

XOXOXOXOXOXOX

..

OXOX

OXOX
.

.
HOXOX
XOXOX
« e

HOXT;

.

.

.
KOXOX
XOXOX

OXOX

Figure 4: How to join gadgets.

Problem Solution
NNNNANN NNNNNIN
sﬂ ; 2\4125
N\17| 1 8 5
N | AN T MG [oME7]9
NN NNHEIEE
NS N NREEED

Figure 5: A problem of Cross Sum. The number in black
cells represents the sum of integers in the string of cells
below (or to the right of) it.

forbidden.) This transformation can be done in
polynomial time in the input size, and the solution
of Slither Link corresponding to a Hamiltonian cir-
cuit of G is unique and also computable in polyno-
mial time. Thus a polynomial time ASP reduction
from the restricted Hamiltonian circuit problem to
Slither Link is constructed. n

4.2 Cross Sum

The rule of Cross Sum is as follows:

e A problem is given as a rectangular grid with
white (blank) and black cells. The length of
sides of the rectangle is called the size of the
problem. (Usually all the white cells are con-
nected.)

e For each string of two or more (horizontally or
vertically) consecutive cells, a sum is specified.

e The goal is to fill each blank cell with a integer
from 1 through 9 so that for each string of cells
(i) the sum of integers filling the cells is equal
to the specified value and (ii) no integer occurs
more than once.

An example of Cross Sum problems is shown in
Fig. 5.

We construct an ASP reduction from the prob-.
lem of partition into Hamiltonian subgraphs for
planar mixed graphs with degree at most 3. (Mized
graphs are graphs containing both undirected and
directed edges.) As shown in the appendix, this
problem is ASP-complete.



T I I
i

L
H

Figure 6: Gadgets needed for the reduction and their illus-
tration.

4l [47!

~Figure 7: Oyerall construction of the reduction:

Lemma 4.4 To find a partition into Hamiltonian
subgraphs (and show a Hamiltonian circuit for each
subgraph) for a given planar mized gmph with de-
gree at most 3 is ASP-complete.

Proof  See [7] or [6]. ]
The ASP-completeness of Cross Sum results
from this lemma.

Theorem 4.5 To find a solution to a given in-
stance of Cross Sum is ASP-complete.

Proof The membership in FNP is immediate.
We construct ‘an ASP reduction from the problem
of partition into Hamiltonian subgraphs for planar
mixed graphs with degree at most 3.

First, using Lemma 4.2 we embed a given in-
stance (graph) G of this partition problem into a
grid of size polynomial in the number of the ver-
tices of G.

Next, we make gadgets for lattice points and
edges. . There are three kinds of points: a T-
intersection (T), a corner (L), and in a straight
way (I). They each have two categories: a point
without corresponding vertex in G (denoted by a
letter shown above) and a point corresponding to
a vertex in G (denoted by a dotted letter), except
that T-intersection has T only. The edge has two
categories: directed (—) and undirected (). (See
Fig. 6) We will realize gadgets for each category as
2 19 x 19 board later. Once these gadgets are real-
ized, we can perform the whole reduction as shown
in Fig. 7.

Next we relate choice of edges in the graph and
assignment of numbers to the gadgets as follows:

o In point gadgets, 1 and 3 at a joint cell (a
white cell on the boundary) mean that the cor-
responding edge is chosen, and 2 means not.

e Strings involving joint cells have the specified
sum 10. As a result, edge gadgets have 9 or 7
at joint cells if it is chosen, and 8 if not.

]
L
]
o
i
3]
12]

il

EEEEERCcoNEENN
DDDDDDHEDDDDD%

[
[
[
N
7]

Nl
=
% AEEEEENc- o REN

]
u

%E]DDDDEHDDD

[l
i
N
Ll
L L 30 AR
EEEEEREC /N
DDDDEDDEEDDDDDD
T e
DDDDDDDDLIIDDDDUUDD

Figure 8: The gadget T (lower part). The numbers in the
white cells describe one of the local solutions, and actually
these cells are all blank. Although the specified sums were
not shown, they can be guessed easily. This local solution
represents a path going from left to right. (Downward edge
is not chosen. See the digits 1, 2 and 3 at the joint cells.
Rearranging 1, 2 and 3 in the center gives other solutions.

DDDDDEDENUDDDD

[l
i
L
]
[

Figure 9: The gadget 1 (upper part). The local solution in
this figure represents a path going from left to right. The
specified sum 4 of the two strings involving the 1 written
in bold face forces a cycle to pass this gadget, since using
4 = 2+ 2 is forbidden. By changing this 1 to 2 (and the
sum to 5) we obtain the gadget L.

e As to horizontal direction, a cycle is oriented
from 3 to 1 (7 to 9). As to vertical direction a
cycle is oriented from 1 to 3 (9 to 7).

Figures 8-11 show the realization of each gadget.
Note that all the gadgets have the size 19 x 19, al-
though in the figures some parts consisting of only
black cells are omitted.

Now the polynomial-time ASP reduction from
the restricted partition into Hamiltonian sub-
graphs is completed and therefore the ASP-
completeness of Cross Sum is proven. n

The standard CROSS SUM rule allows to use
numbers from 1 through 9. However it can be
proven that CROSS SUM where numbers are lim-
ited to 7 is still ASP-complete. (See [7] for detail.)
Whether changing the upper limit to less than 7
preserves ASP-completeness is not known.

4.3 Number Place

The rule of Number Place (also known as Sudoku
in Japan) is as follows:

o A problem is given as a n? x n? grid, which is
divided into n x n squares with thick border
lines. The value n is called order.



RN UDDEIDIIH
ENEEEEENENO /|

HEEE RS O
L L] el

Figure 10: The gadget L (lower-left part). The path goes
from left (3 of horizontal position) to down (3 of vertical po-
sition). By changing the bold-face 1 to 2 (and incrementing
the corresponding sums) we obtain the gadget L.

T
DDDDUDDDSDIIDDDD
DDDDDEIIIEDD
DDDDDD 6O MET6]
EEEEEERO O RG]
EERNERCCNENENNR
DDDDDEEDDDDDDDD
EEEES O NN
%QEE AENEENNENEE
L

DDHE%
T
o

9l
[6/9]
o]
[ ]

[~

120NN
Bl EnEEEREE NN

Figure 11: The gadget — (upper part). The digits 9 and 7
at the joint cells indicate that this edge is chosen. Swapping
these two digits gives no local solution because of the 8 in
bold face. By changing this 8 to 6 we obtain the gadget «.

e Some cells are filled with an integer from 1
through n?.

e The goal is to fill in all the blank cells so that
each row, column and n X n square has each
of integers from 1 through n? exactly once.

An example of Number Place problems is shown
in Fig. 12. ,

To show the ASP-completeness of this puzzle, we
use the result about Latin squares. A Latin square
of order n is a matrix such that each row and col-
umn contains each of integers from 1 through n ex-
actly once. (Similar to Number Place, but lacking
of the “small square” condition.) A partial Latin
square is a matrix with some blank entries such
that each row and column contains each of integers
from 1 through n at most once. The problem of
partial Latin square completion is as follows: Given
a partial Latin square, make a Latin square by fill-
ing in the blanks. The ASP-completeness of this
problem is immediate from known results.

Theorem 4.6 The problem of partial Latin square
completion is ASP-complete.

Proof  Colbourn [2] has proved the NP-complete-
ness of ASP of partial Latin square completion by
showing a reduction from 1-in-4 SAT to this prob-
lem. The reduction he used is what we call ASP
reduction here. The ASP-completeness of 1-in-4
SAT is proven in an analogous way to that of 1-in-
3 SAT. n

More we show the next lemma which shows a re-
lation between the two problems. In the argument

Problem Solution
41 112{3]4

3 2 — 314}2}1
1 3 2111413

4 4131112

Figure 12: A problem of Number Place

a0j01[02|B0[11|12]C0[21]|22
Do|11{12]|€0[21|22]F0[01 02
Go[21]22]H0jo1{02]i0[11]12
0102[10]11]12]20f21]22}00
11[12{20]21|22}00j01]02{10
21{22{00]01}02]10]11[12]20
02|10]11[12{20]21}22]00]01]{ TA[B|C
12/20{21]22[00{01j02[10{11] |D|E|F
2200{01{02]10{11]12[20{21} |G|H]]

Figure 13: Relation between Number Place and Latin
square {(in the case n = 3): Integers in Number Place are
represented in base n. Although the cells with AO; ..., I0
are in actual problems blank, the lower digit of the numbers .
filling these cells must be 0 from the rule of Number Place.
Moreover, the square on the right forms a Latin square.

below, we use integers ranged from 0 (instead of 1)
as row and column numbers and contents of cells,
and write S(i, ) for the entry at position (4, 7) of
a square S (L means a blank).

Lemma 4.7 Let S be a Number Place problem of
order n- such that

1 (when (i,7) € B)
S(i,7) = { ((i mod n)n + |i/n] + 7) mod n?
(otherwise)

where B = {(¢,7) | |i/n] =0 and (j mod n) = 0}.
Then a square S’ obtained by filling in the blanks
of S is a solution to S if and only if
e For any (i,5) € B, S'(i,7) mod n equals 0.
e A square L defined by L(i,5/n) = S(i,j)/n
for all (i, 7) € B is a Latin square.
(as shown in Fig. 13)

Proof  Derived from the rule of Number Place. »
Now we are ready to state the proof.

Theorem 4.8 To find a solution to a given in-
stance of Number Place is ASP-complete.

Proof The membership in FNP is immediate.
We show a polynomial time ASP reduction from
the problem of partial Latin square completion to
Number Place.

For a given partial Latin square L of order n, we
construct a Number Place problem S as follows:

1 ((3,5)€B, L(i,j/n)=1)
((i mod n)n + [i/n] + j) mod n?
(otherwise)

S(lu?) =

This construction can be done in polynomial time
in the input size. Moreover, from Lemma 4.7, each



solution to L has a corresponding solution to .S,
which is also polynomial-time computable. Thus
the desired polynomial-time ASP reduction is ob-
tained. =

5 Concluding Remarks

We formalized n-ASP, the problem to find another
solution when n solutions are given, to facilitate
investigations on its complexity. In particular, we
introduced ASP-completeness, the completeness
with respect to ASP reductions, and proved that
ASP-completeness implies the NP-completeness of
n-ASP for any nonnegative integer n.

It should be noted that in order to show the
NP-completeness of n-ASP for all n showing ASP-
completeness is not a unique way. Let Il be a func-
tion problem satisfying the following: (i) I14 is NP-
complete, and (i) II <,sp Iy, Then from Theo-
rem 2.3 I <,sp ) holds for all n. It implies the
NP-completeness of IIj,jq follows, but the ASP-
completeness of II is not shown directly. Neverthe-
less we conjecture that such IT is ASP-complete.

Conjecture 5.1 Let Il be a function problem such
that iy a is NP-complete for any nonnegative in-
teger n. Then I is ASP-complete. (The converse
of Theorem 3.4.)

Moreover, as an application, we proved the ASP-
completeness of three popular puzzles. We hope
that more ASP-completeness results will appear.

References

[1] G. Di Battista, P. Eades, R. Tamassia, and
I. G. Tollis. Algorithms for drawing graphs:
an annotated bibliography. Computational Ge-
ometry, 4(5):235-284, 1994.

[2] C.J. Colbourn, M. J. Colbourn, and D. R. Stin-
son. The computational complexity of recog-
nizing critical sets. In Graph theory, Singapore
1983, number 1073 in Lecture Notes in Math.,
pages 248-253. Springer, 1984.

(3] E. D. Demaine. Playing games with al-
gorithms:  Algorithmic combinatorial game
theory. Computing Research Repository,
arXiv:cs.CC/0106009, 2002.  (available at
http://arXiv.org/).

[4] M. R. Garey, D. S. Johnson, and R. Endre Tar-
jan. The planar Hamiltonian circuit problem is
NP-complete. SIAM J. Computing, 5(4), 1976.

[5] C. H. Papadimitriou. Computational Complez-
ity. Addison-Wesley, 1994.

[6] T. Seta. The complexities of CROSS SUM.
IPSJ SIG Notes AL-84, 2002.

[7] T. Seta. The complexities of puzzles, CROSS
SUM and their another solution problems
(ASP). Senior Thesis, Department of Infoma-
tion Science, the Faculty of Science, the Uni-
versity of Tokyo, 2002. .

[8] N. Ueda and T. Nagao. NP-completeness re-
sults for NONOGRAM via parsimonious reduc-
tions. Technical Report TR96-0008, Depart-
ment of Computer Science, Tokyo Institute of
Technology, 1996.



