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あらまし: G. Leibon と D. Letscherは, リーマン多様体上で充分密に点をとることで, その多様体上での
デローネ三角形分割やボロノイ図が存在することを示した. また, それらの構造を構築するためのアルゴ
リズムも提案をした.

この論文では, 多様体上でのデローネ三角形分割やボロノイ図を扱うために必要な点の数を曲率を用いて
評価している. さらに, 1つの点の回りにあり, 隣接している点の数の評価も行っている.
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Abstract: G. Leibon and D. Letscher showed that for sufficiently dense point set its Delaunay
triangulation and Voronoi diagram in Riemannian manifold exist. They also proposed an algorithm
to construct them for given set.

In this paper we estimate the number of points which derives the Delaunay triangulation in the

manifold by its curvature. Moreover, we show that how many points exist around a point.

1 Introduction

A Riemannian manifold is a manifold M with
its Riemannian metric g, denoted by (R, g). In
the manifold the canonical distance is induced by
metric g. Voronoi diagram in Riemannian man-
ifold M is defined by using the distance, i.e., for
given set of points the manifold M is divided into
regions such that each region contains a point of
the set, called site, and any points in the region
is the nearest site rather than any other points
of the set. The Voronoi diagram in Euclidean
space has been investigated well and related re-
sults are collected in [3]. The diagram in special
Riemannian manifold is also researched, for ex-
ample, orbifold [2], Hadamard manifold [4]. G.
Leibon and D. Letscher showed that the Voronoi
diagram for sufficiently dense set in general Rie-

mannian manifold exists [1]. In addition, the du-
ality between the Voronoi diagram and the De-
launay triangulation is shown.

Their result indicates that if enough many
points are given in the manifold, then Voronoi
diagram and Delaunay triangulation can be com-
puted. In [1] sufficiently dense point set is de-
fined. In this paper we investigate such set
more precisely and consider the following prob-
lem: How to compute sufficiently dense set for
given manifold? How many points of the set need
for given manifold? When Voronoi diagram for
the set is constructed, how many regions adja-
cent with a region of a point?

In this paper, we define an ε-packing cover-
ing (ε-PC) set (Section 3.1), a similar concept is
considered in [5]. This set is sufficiently dense
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and is easily computed for given positive con-
stant ε. We show that the number is bounded
by upper and lower curvatures of given manifold
and given positive constant ε (Section 3.2). In
addition, consider the Voronoi diagram for the
ε PC set. the number of adjacent region of a
Voronoi region is estimated (Section 3.3).

2 Preliminary

2.1 From computational geometry

In this subsection we describe the results in [1].
Their results are based on a generic and suffi-
ciently dense set of points in a given Riemannian
manifold. These concepts are defined as follows:

A set of points is generic if M is d-
dimensional manifold, then any d+2 points
do not lie on the sphere in M .

A finite set of points X ⊂ M is suf-
ficiently dense if for every y ∈ M and
x ∈ B4rad(y)(y), the ball of radius rad(y)
centered at z contains a point of X in its
interior, where rad(x) is 1

5 the strong con-
vexity radius of M at x.

The former is well-known, the latter is a new
concept and characterized next lemma.

Lemma A If κ is a positive upper bound
on the sectional curvature of M and r =
min

{
inj(M)

10 , π
10

√
κ

}
, then if every ball of

radius r in M contains a point in X then
the points are sufficiently dense.

From this lemma, sufficiently small constant
r is fixed and points are distributed well. They
propose a set of points satisfying these condi-
tions.

Leibon and Letscher showed the following
theorem:

Theorem B If X = {x1, · · · , xn} ⊂ M is
a generic, sufficiently dense set of points,
then there exists a unique Delaunay trian-
gulation with vertices {x1, · · · , xn}.

By this theorem, if a generic, sufficiently
dense set is constructed, then its Delaunay tri-
angulation (Voronoi diagram) exists.

2.2 From Riemannian geometry

In this subsection some results in the Rieman-
nian geometry are described. We state three re-
sults: Bishop’s theorem, Myers’ theorem and the
volume of ball in the manifold with constant cur-
vature.

Bishop’s theorem is a kind of comparison the-
orem, which is well-known in the Riemannian ge-
ometry. The volume of ball in different manifolds
is compared by Bishop’s theorem. The state-
ment is as follows:

Corollary C (Bishop’s theorem, [5]
p.155) Let M, M̃ be d-dimensional com-
plete Riemannian manifolds.
(1) Suppose Kσ ≥ K̃σ̃ for arbitrary sec-
tional curvatures Kσ of M and K̃σ̃ of M̃ .
Let p̃ ∈ M̃ . For 0 < r < ip̃(M̃), take a
metric ball Br(p̃) in M̃ and a metric ball
Br(p) in M . Then volBr(p) ≤ volBr(p̃),
and equality holds if and only if Br(p) is
isometric to Br(p̃).
(2) Suppose the Ricci curvatures of M sat-
isfy ρ(u) ≥ (d − 1)δ for any u ∈ M . Then
for any 0 < r(≤ π/

√
δ), where π/

√
δ is

assumed to be +∞ if δ ≤ 0, we have
volBr(p) ≤ vr(δ). Here vr(δ) denotes
the volume of a ball of radius r in the
m-dimensional complete simple connected
Riemannian manifold M̃ = Md

δ and is in-
dependent of the center. If equality holds,
then Br(p) is also of constant curvature.
In particular, if δ > 0, then volM ≤ volSd

δ ,
where equality holds if and only if M is
isometric to the sphere Sd

δ of constant cur-
vature δ.

In the case (1) of above theorem, there is a
relation about sectional curvature between two
manifolds, then the volumes can be compared for
small r less than injective radius ip̃(M̃).

In the case (2), when Ricci curvature satisfies
ρ(u) ≥ (d − 1)δ, the volume can be compared.
The definition of Ricci curvature is ρ(u) :=∑d

j=2 K(u, ej) where K(u, ej) is sectional cur-
vature. If K(u, ej) ≥ δ, the condition of Ricci
curvature is satisfied. So, we use sectional cur-
vature instead of Ricci. If sectional curvature
δ > 0, then the volume is computed by the corol-
lary below.
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Corollary D ([5] p.66) Let M be a Rie-
mannian manifold and p ∈ M . Suppose
that expp |Br(op) is diffeomorphism. Then

volBr(p) = intBr(op)

√
det gij ◦ expp

·dx1 · · · dxm

=
∫

Sd−1
dSd−1

∫ r

0

θ(t, u)dt

In particular, ωd = αd−1/d for (Rd, g0).

In the corollary above, d is the dimension of
M and ωd = πd/2/Γ ((d/2) + 1) is the volume of
the unit ball of (Rd, g0) by Γ function.

Moreover, consider the manifold of constant
curvature δ. Since a direction u is independent
in the manifold, θ(t, u) is written by

sd−1
δ (t) =




{
(sin

√
δt)/

√
δ
}d−1

δ > 0
td−1 δ = 0{
(sinh

√|δ|t)/√|δ|
}d−1

δ < 0

.

In addition, the diameter of manifold M
d(M) := sup{d(p, q); p, q ∈ M} is bounded by
lowest curvature δ of M .

Corollary E (Myers’ theorem, [5]
p.102) Let M be a complete Riemannian
manifold, and suppose that the sectional
curvatures Kσ satisfy Kσ ≥ σ(> 0) every-
where. Then M is compact, and d(M) ≤
π/

√
δ.

3 Estimation of the number
of points

3.1 ε-packing-covering set

Firstly, the packing-covering set is described.

Definition 1 A finite set P := {p1, · · · , pn} of
points in a compact Riemannian manifold M is
ε-packing-covering for positive constant ε, de-
noted by ε-PC, if intersection of any two ε-balls
with center pi and pj is empty and the union of
2ε-balls with center pi is covering of M .

The condition of ε-PC set is the following:

1. Bε(pi) ∩ Bε(pj) = ∅ for any i, j.

2. ∪n
i=1B2ε(pi) = M .

Similar set is familiar with in Riemannian geom-
etry.

We show that ε-PC set always exists for given
ε.

Lemma 1 For any positive constant ε and for
any compact Riemannian manifold, there is an
ε-PC set.

Proof: Let M be compact Riemannian man-
ifold. It is trivial that there is a finite set of
points such that all neighborhoods is covering of
M because of compactness of M .

So, we show the finite set P satisfies the con-
ditions above. Suppose there exist a point p in
M and not in the union of 2ε neighborhoods of
points in P . The distance between p and any
point in P is greater than 2ε. If ε-ball with cen-
ter p is considered, this ε-ball does not intersect
with any other ε-balls. We can add p to P . Then
we can repeat above step if such a point exists
in M . Otherwise, the set is ε-PC. �

An construction algorithm is considered from
above lemma.

Since the manifold is compact 1, P becomes
finite. When this algorithm is performed, sup-
pose two oracles such that 1) a point is selected
from given manifold M ; 2) for any point p in M
and positive number r, the ball Br(p) is com-
puted.

3.2 For a manifold

In this subsection we consider estimation of the
number of necessary points of Voronoi diagram
in a given Riemannian manifold.

Let M be a complete compact Riemannian
manifold. Consider an ε-PC set on M where ε is
a positive constant less than or equal to r

2 .

Lemma 2 If ε ≤ r
2 , called ε is sufficiently

small, then any ε-PC set is sufficiently dense.
1a manifold is compact if the manifold are covered by neighborhoods of finite set
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Proof: We show that every ball of radius r
in M contains a point of an ε-PC set. Then we
show that the ε-PC set is sufficiently dense.

Above statement is shown. Because the set
is ε-PC, the manifold M is covered by 2ε-balls.
In other words, for every point in M there exists
a point in the ε-PC set such that the distance
between two points is less than 2ε. Since r ≥ 2ε,
any ball of radius r contains one or more points
in ε-PC set. �

Consider ε-PC set P on M . From the result
of [1], there exist a Delaunay triangulation and
a Voronoi diagram for P .

Corollary 1 If a set of points P is a generic, ε-
PC and ε is sufficiently small, then there exists
a unique Delaunay triangulation (Voronoi dia-
gram) for P.

So, we get an ε-PC set and its Delaunay
triangulation (Voronoi diagram) exist for suffi-
ciently small positive constant ε. Since ε gives a
measure of mesh, the more ε decrease, the more
the number of points increases. We prove the
relation between ε and the number of points in
ε-PC set by Bishop’s volume comparison theo-
rem.

Theorem 1 Let P be a generic ε-PC set for suf-
ficiently small ε on a given manifold M . Let n
be the number of points in P. The number n
satisfies an inequality below:

volM
V2ε

< n <
volM

vε
,

where V2ε(vε) is upper(lower) bound of the vol-
ume of 2ε-ball (ε-ball) among balls with center in
P, respectively.

Proof: Suppose an ε-PC set on M . From the
property of ε-PC set, all ε-balls with center point
in P do not intersect each other. This inequality
is settled:

volM ≥
∑
p∈P

volBε(p) ≥ n · vε,

Conversely, the union of all 2ε-balls cover M .
This inequality is shown.

volM ≤
∑
p∈P

volB2ε(p) ≤ n · V2ε,

�
When the sectional curvature k of M is

bounded we can describe the result above.

Corollary 2 Consider the situation in Theorem
1. If the sectional curvature k of M is bounded
by (0 ≤)κ ≤ k ≤ K, then,

n ≤ vπ/
√

κ(κ)
vε(K)

,

where vr(k) is the volume of r-ball on a manifold
with constant sectional curvature k.

Proof: Let d(M) be the diameter of the given
manifold M . This diameter is estimated by My-
ers’s theorem:

d(M) ≤ π√
κ

.

Since the diameter is the largest distance be-
tween two points in M , consider d(M)-ball with
any point p in M . Then this ball contains M .
So, the volume of M is bounded by

volM ≤ Bd(M)(p) ≤ Bπ/
√

κ(p)

Apply Bishop’s theorem to the volume of the
ball. Suppose r = π/

√
κ and a complete simple

manifold M̃ with constant sectional curvature κ.
Since for any point in M sectional curvature k
is grater than or equal to κ, we can use Bishop’s
theorem. The volume of the ball is less than or
equal to vπ/

√
κ(κ). Then, we get the following

inequality:

volM ≤ vπ/
√

κ(κ).

The volume of vε is also evaluated by
Bishop’s theorem. In this case, a complete sim-
ple manifold M̄ with constant sectional curva-
ture K. In any point of M , k is less than or
equal to K. ε is smaller than π/

√
κ. So, we get

the following inequality vε ≥ vε(K).
Finally, the number of points is bounded by

vπ/
√

κ(κ)
vε(K)

.

�
In addition, this number is evaluated by com-

putation of the volume in appendix A.
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Corollary 3 Suppose the situation in Corollary
2. The number of points n is evaluated:

n ≤
{

(d−2)!!
(d−1)!! · π(d+1)

2κd/2K1/2εd+1 d is odd
(d−2)!!
(d−1)!! · 2(d+1)

κd/2K1/2εd+1 d is even.

3.3 For a point

In previous section, the number of points for Rie-
mannian Delaunay triangulation in manifold M
is described. In this section we show that the
number of points around a points in the ε-PC
set.

Take ε-PC set of point in M for sufficiently
small ε. The following lemma is shown about the
distance between two adjacent points in Delau-
nay triangulation.

Lemma 3 Consider the ε-PC set P for suffi-
ciently small ε. Take two adjacent points in
Voronoi diagram of P. Then, the distance be-
tween the points is grater than or equal to 2ε and
less than or equal to 4ε.

Proof: Let p, p′ be two adjacent points above.
Suppose the distance d(p, p′) > 4ε. The center
point q between p, p′ is not included in B2ε(p)
nor B2ε(p′). From the condition of P , there ex-
ists a point p′′ in P such that B2ε(p′′) contains q.
So, q is not shared point between Voronoi regions
of p and of p′. Consider another point q′ which
is equidistant from p, p′ and is not included in
B2ε(p′′). Since the center point q is nearest to
p(p′) than any q′, d(p, q′) > 2ε and d(p′, q′) > 2ε.
Similar, there exists a point p′′′ such that Bε(p′′′)
includes q′. Therefore, there is no shared point
in M . This is contradiction with that p, p′ are
adjacent points.

Suppose the distance between p, p′ is less
than 2ε. Bε(p) and Bε(p′) has intersection. This
contradiction with the property of ε-PC set. �

We estimate the number of adjacent point
around a point by this lemma.

Theorem 2 Consider an ε-PC set P for suffi-
ciently small ε on a complete compact Rieman-
nian manifold M . Let κ and K be the lower and
upper bound of sectional curvature of M . Let N
be the number of adjacent region of a point p in

the Voronoi diagram for P. The following rela-
tion is settled.

v2ε(K)
v2ε(κ)

− 1 ≤ N ≤ v5ε(κ)
vε(K)

− 1,

where vr(k) is the volume of r-ball in the Rie-
mannian manifold with constant curvature k.

Proof: Let Q be a set of point whose Voronoi
region is adjacent with the region of p. Since the
ε-balls with a point in Q are disjoint, the sum of
volume is

∑
q∈Q volBε(q). Each ε-ball satisfies

volBε(q) ≥ vε(K)

from Bishop’s theorem. By ‖Q‖ = N ,∑
q∈Q

volBε(q) ≥ N · vε(K).

Let B5ε(p) be the 5ε-ball with center point
p. Since the distance between generators is less
than 4ε from above lemma, this ε-ball contains
all point in Q and all ε-balls with center point
q in Q. So, B5ε(p) contains ‖Q ∪ q‖ = N + 1
ε-balls.

(N + 1)vε(K) ≤ volB5ε(p) ≤ v5ε(κ).

The last inequality is also shown by Bishop’s the-
orem. From these inequalities we get the follow-
ing evaluation:

N ≤ v5ε(κ)
vε(K)

− 1.

In the case of lower bound, take the union
of 2ε-ball with center q in Q ∪ {p}, denoted by
M̃ . Consider a ball with center p such that the
r-ball is included in M̃ . If r = 2ε, then this ball
is always included in M̃ . The following relation
is settled:

v2ε(K) ≤ volM̃ ≤ (N + 1) · v2ε(κ).

The lower bound is proved by this inequality. �
[Remark] Since κ ≤ K, then v2ε(κ) ≥

v2ε(K) is settled from the volume of 2ε-ball. So,
the lower bound of the above theorem is always
negative number. It gives trivial bound.

In addition, if κ > 0 then a bound by d and
curvature is shown.
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Corollary 4 Suppose the situation in Theorem
2. If the lower bound κ of curvature is positive,
then the number N of adjacent region is evalu-
ated:

(
K

κ

)1/2

− 1 ≤ N ≤ 5d+1
( κ

K

)1/2

− 1.

4 Conclusion

We show some results about ε-PC set in a com-
plete compact Riemannian manifold. In this sec-
tion these results are adapted to a manifold with
constant curvature. Consider K = κ > 0 and d is
odd in Corollary 3 and Corollary 4, respectively.

n <
(d − 2)!!
(d − 1)!!

· π(d + 1)
2κ(d+1)/2εd+1

0 ≤ N ≤ 5d+1 − 1

If r = π/(10
√

κ) in Lemma A, it is possible that
ε = π/(20

√
κ) by Lemma 2. Suppose d = 3, then

above inequalities can be computed:

n <
204

π3
∼ 5160.2455, N ≤ 624.

This number is not so good, but it is possible
that the evaluation is more better. Suppose ε-
packing and kε-covering set, called (ε, kε)-PC
set (k > 1). For given manifold, if (ε, kε)-PC
set exists, then the distance between adjacent
points in the set is from 2ε to 2kε. This relation
is applied to Theorem 2. All the points around
a point are contained in (2k + 1)ε-ball. So, the
coefficient in Corollary 4 is improved:

N ≤ (2k + 1)d+1
( κ

K

)1/2

− 1.

In actual, consider regular triangle lattice, which
is the set of vertex of regular triangle and the dis-
tance between any adjacent points is 2ε in Eu-
clidean plane. Such set of points is (ε, 2√

3
)-PC.

The coefficient of above inequality becomes

(
2 · 2√

3
+ 1

)3

∼ (3.3094011)3 ∼ 36.245009.

Finally, the number of points around a points is
less than or equal to 35. This number is better
rather than 53 − 1 = 124 in case of (ε, 2ε)-PC
set. If small positive number k is found for given
manifold, this bound can be improved.
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A Estimation of Volume of r-ball with constant curvature

In this section we show computation of volume of r-ball with positive constant curvature.

vr(δ) =
∫

Sd−1
dSd−1

∫ r

0

{
sin

√
δt/

√
δ
}d−1

dt

=
∫

Sd−1
dSd−1

∫ √
δr

0

sind−1 xdx · δ−d/2

Using this formulation, the volume is bounded.∫
sin2p xdx = − cosx

[
sin2p−1 x

2p
+

(2p − 1) sin2p−3 x

2p(2p − 2)
+ · · · + (2p − 1)!!

(2p)!!
sin x

]
+

(2p − 1)!!
(2p)!!

x

∫
sin2p+1 xdx = − cosx

[
sin2p x

2p + 1
+

2p sin2p−2 x

(2p + 1)(2p − 1)
+ · · · + (2p)!!

(2p + 1)!!2
sin2 x +

(2p)!!
(2p + 1)!!

]
Firstly, d = 2p + 1 case is considered.

∫ √
δr

0

sind−1 xdx =
[
− cosx

{
sin2p−1 x

2p
+

(2p − 1) sin2p−3 x

2p(2p− 2)
+ · · · + (2p − 1)!!

(2p)!!
sinx

}
+

(2p − 1)!!
(2p)!!

x

]√
δr

0

= − cos
√

δr

{
sin2p−1

√
δr

2p
+

(2p − 1) sin2p−3
√

δr

2p(2p− 2)
+ · · · + (2p − 1)!!

(2p)!!
sin

√
δr

}
+

(2p − 1)!!
(2p)!!

√
δr

(1)

The first term of (1) is non-positive when 0 < r ≤ π√
δ
. So, the volume is bounded by the second

term of (1). The following bound is shown:

∫ √
δr

0

sind−1 xdx ≤ (d − 2)!!
(d − 1)!!

√
δr

Secondly, d = 2p + 2 is considered.

∫ √
δr

0

sind−1 dx =
[
− cosx

{
sin2p x

2p + 1
+

2p sin2p−2 x

(2p + 1)(2p − 1)
+ · · · + (2p)!!

(2p + 1)!! · 2 sin2 x +
(2p)!!

(2p + 1)!!

}]√
δr

0

= − cos
√

δr

{
sin2p

√
δr

2p + 1
+

2p sin2p−2
√

δr

(2p + 1)(2p − 1)
+ · · · + (2p)!!

(2p + 1)!! · 2 sin2
√

δr +
(2p)!!

(2p + 1)!!

}
+

(2p)!!
(2p + 1)!!

The upper bound of the volume is shown:

∫ √
δr

0

sind−1 dx <
(d − 2)!!
(d − 1)!!

(
1 − cos

√
δr

)

So, the volume is bounded by

vr(δ) <

∫
Sd−1

dSd−1 · (d − 2)!!
(d − 1)!!

· r
√

δ

2
· δ−d/2

vr(δ) <

∫
Sd−1

dSd−1 · (d − 2)!!
(d − 1)!!

·
(
1 − cos r

√
δ
)
· δ−d/2
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For sufficiently small radius r, the evaluation of the volume of r-ball is possible.

sin x = x − x3

6
+ O(x5)

sind x =
(

x − x3

6
+ O(x5)

)d

= xd − d

6
xd+2 + O(xd+4)

Then above equation is integrated, the following is settled.

∫ √
δr

0

sind xdx =
[

xd+1

d + 1
− dxd+3

6(d + 3)
+ O(xd+5)

]√
δr

0

=
rd+1

d + 1
δ(d+1)/2 − drd+3

6(d + 3)
δ(d+3)/2 + O(rd+5)

vr(δ) ∼
∫

Sd−1
dSd−1 · δ−d/2

(
rd+1

d + 1
δ(d+1)/2 − drd+3

6(d + 3)
δ(d+3)/2 + O(rd+5)

)
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