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Abstract. Optimized region rules developed by Fukuda et al. [9, 10] are effective tools for data mining in
databases with numeric data. However, there are two drawbacks in the previous methods: (1) each rule can
contain at most two numeric conditional attributes, and (2) the decision is made based only on whether a
given data is inside or outside a region R, but not on the exact position of the data. In this paper, we propose a
new method for removing these drawbacks. Indeed, by applying graph algorithms, we give optimized numeric
association rules with more than two attributes, and give layered-structure numeric association rules. Our
method is also applicable to removal of exceptional data and data clustering.

1 Introduction
Association rules are useful for determining correlations between attributes of a relation. Association rules,
introduced in Agrawal-Imielinski-Swami[l], provide a useful mechanism for discovering correlations among
the underlying data and have applications in business marketing. The form of a general association rule is
Cy — (5. This association rule can be viewed as being defined over attributes of a relation, where C; and
Cy are conjunctions of conditions.
Efficient generation of effective association rules is a major opic in data mining. In this paper, we are
interested in association rules on numeric data. For treating numeric attributes, one possible method is to
discretize each numeric attribute and transform it to a Boolean attribute or a categorical attribute without
numeric information; however, the transformation often causes loss of information of the original data.
We consider a d-tuple data x (x consists of d numeric attributes) as a point in a d-dimensional space
" and construct a distribution in a voxel grid showing confidence/support information as seen in the top-left
picture in Fig. 1. Then, we consider a rule (x € R) — (C = yes) for a suitable region R in the d-dimensional

" space. We call such a rule a region rule. Here, the target attribute C' can be numeric (usually with certain
monotonicity condition), for which the right-hand side is X(C) = f, where X (C) indicates a random variable
associated with C and f is a probabilistic distribution [14].

2 ‘ Problem formulation

Consider a d-tuple with numeric attributes Ay, Aa, ..., Ag. For each k = 1,2,...,d, the domain of A is
divided into my buckets blf , bg, o ,b'fn , such that the Ag-values of data are distributed, into these buckets.

We indeed apply the equi-depth-bucketing algorithm [9] to create buckets such that the number of data whose
Ag-values fall in bf is almost N/my, for each 1 < j < my, where N is the total number of data d-tuples. We
consider the Cartesian product of bucketings, and create a voxel grid I" containing n = mj Xmgx- - - xmg cells,
in which the cell ¢ indexed by I = (1,12, ...,%4) corresponds to the Cartesian product b%1 X bi X o+ X bfd.



Figure 1: Region rules and a layered structure

For simplicity of presentation, we assume from now on that my = m for k = 1,2,...,dand n = md. This
restriction can be easily removed.

We fix a target attribute C, which we assume to be Boolean for simplicity. We can also consider the case
where C is a numeric attribute analogously to [14]. For each cell ¢ € T', let p(c) be the number of data x
satisfying that Ag(z) € bfk for k=1,2,...,d if c is indexed by I = (i1,42,...,iq4). Let p(c) be the number of
data z satisfying that C(z) = yes and A(z) € bfk fork=1,2,...,d.

The generation of such p and p has been discussed by Fukuda et al. in {10]. Hence, we assume that we
have such p and p on the voxel grid I'.

For a region R consisting of cells of T, let u(R) = 3 cgpu(c) and p(R) = Y g p(c). We call p(R) and
conf(R) = p(R)/u(R) the support and confidence of the rule (x € R) — (C = yes), respectively. We also
call u(R) the antecedent support.*

Introducing a nonnegative parameter t,

9(R,p,p) = p(R) — t- 1(R)
is called the parametric gain of p against p within the region R.

We consider a family F of regions in T, and let R°P!(¢) be a region in F maximizing g;(R, p, ). Naturally,
the support p(R°P*(t)) is a nonincreasing function in ¢, while the confidence con f(R°P!(t)) is is a nondecreasing
function in ¢.

In [10], for the family of z-monotone regions in a two-dimensional grid, an algorithm for computing ¢ such
that the confidence conf(R°(t)) is maximized under the condition that the support p(R°P!(t)) is above a
given threshold value 6 is given. Also, we can compute ¢ together with R°P!(t) maximizing the support under
the condition that the confidence is above a given threshold. The corresponding rules are called mazimum
‘confidence rule and mazimum support rule, respectively. The same problem on the family of rectilinear convex
regions in a two-dimensional grid has been considered in [18]. Moreover, it can be shown that the optimal
subdivision maximizing a convex objective function (e.g., entropy or GINI index) is obtained as R°P!(t) for
a suitable ¢, and such a t can be efficiently computed for the above mentioned families of regions. Morimoto
et al. gave a construction of accurate decision trees by using the region rules maximizing GINI index [15].

A layered structure of the data (we often call it pyramid structure or pyramid) with respect to a region
family F is a series of regions P = Py D P; D -+ D Py, D Ppyy =  together with an increasing series
of nonnegative real numbers tq < t; < --- < 5 called heights satisfying that conf(P; \ Piy1) = t; for
1 =0,1,...,h. The regions P, (i =0,1,...,h) are called flats of the pyramid. The optimal pyramid is the
pyramid structure approximating the data distribution such that the standard squared Ly measurement of
the error (defined later) is minimized.

Since p(R°P(t)) is nonincreasing in ¢, one might expect that RP!(t) C RP{(t') for t > ¢'. If this were
true, we would have proved (in Section 2.1) that the series RP!(tg), RP!(t}), ..., R°P{(t;) and heights to <
t; < --- < tp, for the sorted set of all transition values t; of R%P!(t) give the optimal pyramid structure.

*In [9, 10}, this is called “support”, and p(R) is called “hit”.



Unfortunately, this is not always true for each of the families of z-monotone regions and rectilinear convex
regions.

In this paper, we investigate the conditions under which the optimal pyramid can be efficiently constructed.
Especially, we define the following region families: (1) stabbed-union of orthogonal regions, (2) generalized
base-monotone regions, and (3) digitized star-shaped regions. Surprisingly, for each of these region families,
the optimal pyramid can be computed in polynomial time for any fixed d dimensions, by reducing the problem
to the minimum s-t cut problem in a directed graph. Moreover, we can flexibly control the size of the family
of regions by using a graph associated with the grid.

3 The optimal pyramid problem

For the sake of convenience, we consider an abstract situation that p and p are arbitrary nonnegative dis-
tribution functions on the d-dimensional voxel grid I' of n = m® cells such that u(c) and p(c) are integers
satisfying p(c) > p(c) for every cell ¢ € I' and u(T') < N. We call p(R)/u(R) the confidence of R abusing the
convention when p and u correspond to the support and antecedent support in a database.

We fix a family F of regions in I'. Without loss of generality, we assume that § € F and T € F.

Definition 1 Consider a series P of regions P(t;) (i = 0,1,2,...,h) in F associated with a series of in-
creasing nonnegative numbers (called heights) tg < t1 < ty < --- < t, satisfying that P(to) = ' and
P(t) C P(¢) fort > t'. P is said to be a pyramid (or pyramid structure) approzimating p with respect
to pu if conf(P(t;) — P(tiy1)) = ti, with P(tpy1) = 0.

The approximation error of P is defined by

3
> > (conf(c) = t:)*p(c).

i=0 ce P(t:)~ P(tit1)

This is the squared Lo distance between the confidence p/u and the surface function fp of the pyramid
defined by fp(z) =t; if x € P(t;) — P(ti4+1), considering u as the density function. A pyramid P is optimal
if it has the minimum approximation error among all pyramids.

The problem is very intuitive if p is a constant function. In this case, the optimal pyramid can be
considered as a unimodal reformation of p/u minimizing the loss of positional potential. Although this is
a basic problem in computational geometry and geography (especially for d = 2), this specialized problem
has not been theoretically investigated before. In general, the pyramid can be considered as a unimodal
approximation of p relative to p. In Figure 2, we give an example of reforming a function p to a pyramid
(where u=1) for d = 1.

Constructing an optimal pyramid (in two or higher dimensions) is a natural extension of the problem of
region segmentation, and will be useful in several applications besides data mining (e.g., statistics, geomor-
phology, and computer vision [4]).
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Figure 2: A reformation of p (the left) to a pyramid (the right) for d = 1

3.1 Optimal pyramid and parametric gain
Lemma 3.1 (See [6]) Consider a function P(t) from (0,00) to F satisfying that P(t) C P(t') fort >t/
and mazimizing the objective function

o0
7Py = [ pP(O) -t u(P (O
Then, it has at most n + 1 transition values 0 = t_; < to < t1 < -+ < t, satisfying that P(t) = P(t;)’

fort € (ti—1,t:] and P(t) = @ for t > t,. Moreover, P consisting of P(ty), P(t1),...,P(ty) is the optimal
pyramid. :



Thus, intuitively, the optimal pyramid P is obtained by piling up horizontal sections P(t) with as large
parametric gains as possible. Consider the region R°P%(t) in F maximizing the parametric gain g:(R, p, u):
Intuitively, if ¢ increases, R°P(t) is shrunk. If {R°P'(t)} (precisely speaking, the transitions of the function
R°PY(t)) forms a pyramid, it is obviously the optimal pyramid. Unfortunately, if we pile up the maximum
gain regions R%(t), they do not always form a pyramid;-since RP*(t) C R°P%(t') does not always hold for
t > t'. This makes it very difficult to compute the optimal pyramid. .

3.2 Closed family
We now consider region families for which the relation R°P!(t) C R°PY(t') holds for ¢ > ¢, and utilize them
for designing layered region rules.

A (discrete) family F of regions in R? is called a closed family if it is closed under the intersection and
union operations, that is, RN R’ .€ F and RU R’ € F for any two regions R, R' in F.

Proposition 3.2 (See [6]) Given a closed family F, let RP!(t) be the region in F mazzmzzmg 9t (R, p, ).
If there are multiple regions in F mazimizing gi(R, p, u), we take any one which is minimal under inclusion.
Then, the series of transitions of R°PL(t) gives the optimal pyramid P for F.

Thus, if a family F is constructed by using closed families as its building blocks, we can hope to design
an efficient algorithm for computing the optimal pyramid for F.

4 Higher-dimensional Problem

In a higher dimensional case (d > 2), the time complexity largely depends on the specific family F of regions.
Indeed, it is not difficult to see that the problem of computing just a single flat of the optimal pyramid is
NP-hard for some families even for d = 2 [3].

4.1 Family with a small number of regions

If F has M different regions, the optimal pyramid can always be computed in polynomial time in M and n
for the d-dimensional case. We construct a directed acyclic graph H(F) = (F, E) whose vertex set is F. For
each pair R and R’ of F, we give a directed edge e = (R, R') if and only if R D R'. We compute t(e) such
that p(R\ R') = t(e) - uW(R\ R'). The value t(e) is called the height label of e, and r(e) = t?(e)p(R\ R')/2 is
called the profit of e. A directed path p =eg,e1,..., e, is called admissible if t(e;_y) < t(e;) fori =1,2,...,q.
The profit of an admissible directed path is the sum of profit values of the edges on it.

Lemma 4.1 The optimal pyramid is associated with the admissible path with the mazimum profit in H(F),
such that R\ R is a flat of the pyramid if and only if (R, R') is an edge on that path.

Thus, we can reduce the optimal pyramid problem to a maximum-weight-path problem in the directed
acyclic graph H(F). Note that each directed path in H(F) has at most n edges. By using a dynamic
programming algorithm, we obtain-the following result:

Theorem 4.2 The optimal pyramid for F of M different regions can be computed in O(M?n) time.

Unfortunately, the above algorithm is seldom practical. For example, the family of rectangular regions has
O(n?) regions, and hence the above time complexity is O(n®). Moreover, for computing accurate layered
region rules, we want to consider families in which M is exponentially large in n.

Thus, we seek more efficient algorithms for some special families of regions.

4.2 Stabbed unions of orthogonal regions

‘We consider a typical closed family of regions in I'. For a fixed cell ¢ of I, a region R in T is called a stabbed
union of orthogonal regions at ¢ (in short, a stabbed union region) if R can be represented as the union of
orthogonal regions each of which contains ¢. The cell ¢ is called the center cell of R. Fig. 3 gives an example
of the two-dimensional case.

Figure 3: A stabbed union of rectangles



It is clear that the family of all stabbed unions at a cell ¢ is a closed family; in fact, it is the closure of the
family of all rectangles containing ¢. The pyramid given in Fig. 1 is based on the family of stabbed unions
at a point. Naturally, the center cell (or point) gives the peak of the pyramid. To design an algorithm for
computing the optimal pyramid, we need an efficient algorithm for computing the maximum parametric gain
region in the family of stabbed unions. For this purpose, we generalize the problem and apply graph-theoretic
methods.

4.3 Domination-closures in a grid graph )
In the voxel grid T, we fix a center cell ¢ = (c1,c2,..., ¢4), and define a directed graph G(c), whose vertex
set consists of all voxels in I". For voxels p = (p1,p2, ...,pq) and ¢ = (q1,42, - - - ,qq), the L; distance between
p and ¢ is dist(p,q) = Zle [pi — @|. The neighboring cells of p are the cells whose distance from p is
one. For a cell p and its neighbor ¢, a directed edge is defined: its direction is (p,q) (i.e., from p to q) if
dist(p, c) = dist(g,c) + 1 and otherwise (g,p). The graph G(c) is a weakly-connected directed graph with
d(m — 1) x m®1 = O(n) edges (we assume d is a constant), and c is its unique sink vertex (i.e., a vertex
without outgoing edges).

A subgraph H = (V, E) of G(c) is called a rooted subgraph if there exists a directed path in H from each
vertex v of V to c.

Given a rooted subgraph H = (V, E) of G(c), we say that a vertex u is H-dominated by another vertex
v if there exists a directed path from v to w in H. An H-domination closure W is a subset of V satisfying
the condition that every Clearly, each H-domination closure defines a connected region containing the cell ¢
in I, and we like to identify such regions. Given a rooted subgraph H of G(c), we consider the family Fg
that is the set of all H-domination closures. Since the domination closure property is closed under union and
intersection, we have the following proposition:

Proposition 4.3 For a rooted subgraph H of G(c), Fu-is a closed family of regions. -

The following lemmas are straightforward from the definitions of G(c) and Fy.
Lemmia 4.4 A region R in T is a stabbed union at ¢ if and only if it is a G(c)-domination closure.

Lemma 4.5 Let H and H' be two spanning rooted subgraphs of G(c). Then, if H is a subgraph of H',

4.3.1 Algorithms for computing the optimal pyramid with respect to Fy

Let us fix a rooted subgraph H of G(c). We consider a parameter value ¢ defining the height of a flat of the
optimal pyramid with respect to Fr, and we give a weight p(p) —¢t-11(p) to each voxel p (and its corresponding
vertex in H). Due to the following léemma, we can assume that ¢ is a rational number with small denommator
and numerator.

Lemma 4.6 If t is a height defining o flat of the optimal pyramid for a certain region family, then t is a
rational number represented by a quotient of two integers less than or equal to N.

Proof: Suppose that ¢ defines a flat P;. Then, p(P;\ Piy1) =t - p(F; \R+1) Since p and u take integer
values at most N, we have the lemma. m]

By definition, the maximum (parametric) gain region P°P!(t) € Fg is the H-domination closure max-
imizing the sum of weights of voxels in the region. In graph-theoretic terminology, this is. the mazimum
domination closure of the weighted directed graph H, and is obtained as the connected component of H con-
taining ¢ by removing a set of edges (the cut set).. See Fig. 4 for a region P°P!(t) in Fg (here, H = G(c) and
d = 2) and the corresponding cut set; the number in each pixel p of the left picture is the weight p(p) —t- u(p).

"The following theorem is due to Hochbaum [12}, and it was applied by Wu and Chen [17] to a geometric

segmentation problem in a setting different from this paper.
Theorem 4.7 (Hochbaum [12], See [6]) Given a directed graph G with n vertices having real-valued ver-
tex weights and m edges, its mazimum domination closure can be computed in O(T(n,m)) time, where T'(n, m)
is the time for computing a minimum s-t cut in an n-vertezr, m-edge directed graph with nonnegative edge
weights.

Theorem 4.8 (See [6]) The optimal pyramid for the family Fy can be computed in O(n'®lognlog? N)
time. : P L ~
Corollary 4.9 The optimal pyramid for the family of stabbed unions of orthogonal regions at a given cell ¢
can be computed in O(n!®lognlog? N) time.
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Figure 4: An optimal region and its corresponding cut set (dashed arrows) in G(c)

We note that we have a more efficient O(nlogn) time algorithm for the family of stabbed unions of
rectangles at a grid point p for the two-dimensional case [6]; we omit it in this paper, since it does not work
for a higher-dimensional case. We have a more efficient algorithm if H is a tree.

Theorem 4.10 (See [6]) If H is a tree, the optimal pyramid for the family Fr can be computed in O(nlog N)
time.

4.3.2 Further remarks -

In the association rule generation, m is usually small (up to 100 and typically about 20 in demonstrations
of the SONAR system [8]) and d is seldom larger than 4, since very fine mesh is not necessary for learning
a rule from a database. Thus, n = m® is not very large (typically, in the range of 400 — 160,000), while
the database size N may be huge. Fortunately, the database size only affects the time complexity by some
log N factors. Moreover, each log N factor can be replaced by log~y + logn if we discretize the values y and
p into integers in [0,7] for a suitable v < N to compute an approximation solution in a computation time
independent of the database size N (assuming p and p are given).

The algorithm given in Theorem 4.8 assumes that we know the peak c of the optimal pyramid. If we do
not know the peak, a naive method is to examine all possible n cells of T' as the candidates of the peak of
the optimal pyramid, and report the one with the maximum objective function value. This method takes
O(n?3lognlog? N ) time. However, we can practically guess the peak by using some method to reduce the
number of candidates of the peak to n’ < n. This improves the running time to O(n}5+ lognlog? N). We
give a typical trick in [5].

4.4 - Based monotone regions
In the two dimensional case, the family of based monotone regions is one of the region families adopted in
the SONAR data mining system [10, 15] in order to represent two-dimensional association rules.

A based monotone region is a connected region R in I" such that the intersection of R with each column
of T is either empty or a continuous subcolumn whose lowest edge lies on the lower boundary of T'; i.e., R is
a connected region such that for each fixed i, {(¢,7) € R} = {(i,7) : j < f(i)} for some f(i) € [0,n], where i
is the column index and j is the row index (counting from bottom to the top). In other words, the connected
region is defined by a function y < f(z) in the digital (x,y)-plane.

Consider the family of based monotone regions containing a fixed cell ¢ = (c;,1) on the bottom row. It
is easy to see that this family is a closed family.

We generalize this family as follows. We fix a cell ¢ € I" in the d-dimensional voxel grid, and consider
the graph G(c) (defined in Section 4.3). For each vertex p = (p1,p2,...,pq) # ¢, we find the largest index %
such that p; # c;, and select the outgoing edge of p corresponding to its i-th coordinate. Thus, we obtain a
spanning tree Ty(c) of G(c), which we call lezicographic minimum bend spanning tree. In the voxel grid, the
path from p to ¢ in Ty(c) consists of at most d segments.

It is easy to see that a region R is a based monotone region containing ¢ = (¢;,1) in a two-dimensional
pixel grid if and only if it is a domination closure in Ty(c). This gives a d-dimensional analogue of the family
of based monotone regions. The following theorem is obvious from Theorem 4.10.

Theorem 4.11 The optimal pyramid with respect to the family of domination closures of Ty(c) can be com-
puted in O(nlog N) time.

If the peak c is not given, we can apply the strategy for guessing the peak discussed in Section 4.3.2.

It is possible to consider other ways of extending the family of based monotone regions to higher dimen-
sions. For example, suppose that we add all adjacent edges of G(c) for each vertex p satisfying that pg = ¢4 to
To(c) to obtain a new graph H. Then every region R corresponding to a domination closure of H is monotone
with respect to each coordinate axis except z4. In other words, the projection of R to the plane Z defined



by z4 = cq is a stabbed union in the d — 1 dimensional grid, and the intersection of R with a vertical column
defined by z; =p; (1 =1,2,...,d — 1) is either empty or a segment penetrating Z.

4.5 Digitized star-shaped regions
In Section 4.3, we presented an algorithm for the optimal pyramid in the region family Fy, and, especially,
showed that the graph G(c) itself defines the family of stabbed unions of orthogonal regions.

In BEuclidean geometry spaces (i.e., not the voxel grid settings), a popular closed family of regions is the
family of star-shaped regions centered at a given point gq. Recall that a region R is said to be star-shaped
centered at q if for any point v € R, the line segment g is entirely contained in R [13]. For example, a convex
region containing g is a star-shaped region centered at ¢; more precisely, the family of star-shaped regions is
the closure (with respect to the union and intersection operations) of the family of convex regions containing
g. Thus the family of star-shaped regions is a quite rich family.

Hence, we would like to define a digital analogue of the star-shaped regions. However, this is not a
well-defined problem in general, since it depends on the definition of the digital line segment between two
voxels. Unfortunately, it does not form a closed family if we adopt one of the popular definitions of digital
line segments. A typical definition is to let the set of all voxels intersecting a (true) line segment form the
corresponding digital line segment; however, the intersection of two such digital line segments through a fixed
cell ¢ (c contains the center point ¢) is not always connected, and thus cannot be represented as the union of
suitable digital line segments through c.

Here, we give a probabilistic construction of the digital star-shaped regions by using a modified spanning
tree of G(c). Let ¢ be the center of the digital star-shaped regions. The first idea is to construct a spanning
tree T of G(c) rooted at ¢ such that for each vertex v (i.e., a voxel of I') of 7, the unique directed path
pathy(v,¢) in T from v to ¢ simulates a (true) line segment v¢ in the digital space.

Each vertex of G{c) has at most d outgoing edges. We obtain a spanning tree of G{(c) by selecting exactly
one outgoing edge for each vertex (except ¢). Consider a vertex corresponding to the voxel p = (p1,p2, ..., p4)-
Let dist(p) = Zz——] Ip; — ci| be the Ly distance from p to ¢. Note that dist(p) is also the distance from p to
¢ in T'. Our strategy for constructing T is to select the edge corresponding to the i-th coordinate with the
probability |p; — ¢;|/dist(p).

Let x;(k,p) be the number of edges corresponding to the i-th coordinate encountered during walking on
the path pathp(p,c) from p by k steps. Since T is constructed in a randomized fashion, z;(k,p) is a random
variable.

Lemma 4.12 The ezpectation E = E(x;(k,p)) is klp; — c;|/dist(p). Moreover, the probability that |z;(k,p) -
E| > +/2ak is smaller than 2e™® for any positive number a, where e is the natural logarithm base.

Proof: . Since the process is Martingale, the expectation can be obtained by an induction on k. The deviation
bound is obtained from Azuma’s inequality [16]. o

This implies that pathr(p, ¢) approximates the line segment p¢ for each vertex p. Since T is a tree, the op-
timal pyramid for the family of 7-domination closures can be computed in O(nlog N) time by Theorem 4.10.
However, the set of T-domination closures thus defined has some serious defects in simulating the star-shaped
regions, even in the two dimensional case. Note that, geometrically, a T-domination closure is not always a
simply connected region in I'. This is because there are some leaf vertices in T' that do not correspond to any
boundary cells (i.e., cells touching the grid boundary) of T. ‘

For this purpose, for any leaf vertex v of T' corresponding to. an internal cell of I", we need to add an
incoming edge to v in order to obtain a new graph 7. Again, we choose one of the incoming edges for v in
a probabilistic fashion.” A simple calculation shows that the expected number of additional edges needed is
n/6 4 o(n) if d =2 and bounded by n/3 for d > 3. We then have a graph T as constructed above, and treat
the set of domination closures in the graph T as the family of randomized digitized star-shaped regions with
the center c¢. See Fig. 5 for an example, and compare it with Fig. 4.

Corollary 4.13 The optimal pyramid for the family of a randomized digitized star-shaped regions with the
center ¢ can be computed in O(n'®lognlog? N) time.

5 Concluding remarks

The pyramid structure is useful in several ways. First, it gives a nice visualization of the tendency of the:
distribution of confidence. Second, by selecting the part of the pyramid above a threshold height ¢ (we
call this operation clipping), we can generate a region giving an association rule together with information
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Figure 5: An optimal region and its corresponding cut set in T (only a part near c is displayed)

on the strength of influence of the rule on each data depending on its actual geometric position inside the
region. The height t is determined by using a support threshold or some optimization criteria such as the
GINI maximization [15]. Third, once we obtain a region rule, we can easily remove the influence of this rule
by subtracting the pyramid from the original data distribution and refilling the same antecedent support
with an average confidence. Then, we can further search for a weaker rule, or can consider pyramids with
different peaks simultaneously to extract more than one layered rule from the data. This automatically gives
a clustering that covers.a.majority of data by clipping a high part from each of such pyramids. Fourth, it
potentially can be used to clean data since a data item which is an outlier in the pyramid approximation for
every. possible peak can be considered as an “exceptional data” (possibly some input error) or a “confused
data”.

The selection of a suitable region family is a very important problem. The digitized star-shaped regions
seem to be a reasonable family for d = 2. For d > 3, a family corresponding to a graph with more edges
may be useful. We will do experiments in the future research to identify good parameters for the numbers
of outgoing and incoming edges of each vertex for d > 3 (especially, d = 3) that help define a nice family for
our data mining applications.
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