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要旨: Shorの整数因数分解量子アルゴリズムを実現する量子回路のうち, Beauregardによって改良された回路と従
来の回路双方を量子計算シミュレーションシステム (QCSS)上で実装し,分散メモリ型並列計算機上でシミュレー
ションをおこなう. Beauregardの量子回路は,任意の Lビットの数の因数分解回路を 2L + 3量子ビットで構築で
き,量子回路全体をシミュレータ上に実装できる. この環境で 12ビットまでの数の因数分解ができることを確認す
る. また,並列化による時間短縮効果を検証する. 加えて,実装した量子回路のデコヒーレンスエラー・操作エラー
に対する耐性を調べる. さらには,近似フーリエ変換 (AQFT)を Beauregardの量子回路に適用可能かどうか実験の
結果から議論する.

A Large Scale Simulation of the Quantum Factorization Algorithm
with Full Implementation
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Abstract: We implement the quantum order-finding circuit for integer factorizing introduced by Beauregard and the
existing ones on Quantum Computer Simulation System (QCSS), and do simulation on the scalable distributed-memory
parallel computer. The quantum circuit by Beauregard uses 2L + 3 qubits to factorize an arbitrary L-bit number. By
using this circuit we can implement the whole quantum circuit on the simulator. On this environment we confirm that we
can factorize up to 12-bit numbers. In addition, we examine effect of parallelization and investigate the robustness of the
circuits for decoherence and operational errors. Moreover, we discuss from the experimental results the applicability of
approximate QFT (AQFT) to Beauregard’s circuit.

1 Introduction

In 1994, P. W. Shor proposed a polynomial-time quan-
tum algorithm for order-finding [11], which seemed to be
intractable on classical computation, and showed the inte-
ger factorization quantum algorithm by using it. This was
a breakthrough for quantum computation.

The major cost in the quantum order-finding circuit used
in arbitrary L-bit number factorization, is not the QFT
(quantum Fourier transform) but the modular exponentia-
tion, which has O(L3) depth. This modular exponentiation
circuit requires 2L+6 additional working qubits [6]. In this
approach, 5L+6 qubits are totally required to construct the
quantum order-finding circuit.

In order to reduce the number of qubits, there are sev-
eral studies utilizing the information of the numbers to be
factored. Both the circuit that Vandersypen et al. [12] have
realized in the NMR quantum computer and the circuit that
Obenland et al. [8] have implemented in the quantum com-
puter simulator rely on the property of the number to be
factored (for instance, 15). Hence, these circuits cannot be
used for factorization of other numbers.

There is another simulation study to reduce the number
of qubits [7]. Modular exponentiation is executed classi-
cally and only QFT is executed on the simulator. This ap-
proach can deal with much larger numbers. However, it
is impossible to check whether the modular exponentiation
part of the order-finding circuit is robust or not in the pres-
ence of errors.

What we need is the general circuit which does not rely
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on any properties of the number to be factored and requires
as few qubits as possible. Beauregard improved the order-
finding circuit [3]. The number of qubits required to con-
struct the circuit is reduced to 2L + 3 to factorize an arbi-
trary L-bit number whereas the depth of the circuit is still
O(L3).

The following three techniques were used:

1. the quantum adder circuit by QFT introduced by
Draper [4] is applied.

2. “one control quantum bit trick” [9] is applied.
To use this trick, the number of qubits for control-
ling is diminished to only one, whereas 2L controlling
qubits are required in the existing circuit.

3. QFT is replaced with AQFT (approximate QFT) [2].

As a result, it becomes possible to implement the whole
quantum order-finding circuit used in arbitrary number fac-
torization. With current technologies, however, it is still
hard to make actual quantum computers dealing with many
qubits. The quantum computers realized today can treat at
most 7 qubits [12].

Hence, simulation is required to investigate the behav-
ior of the whole quantum order-finding circuit for large
numbers (that is, for many qubits cases). Many qubits
simulation requires more computational power than is usu-
ally available on not only sequential computers but also
symmetric multi-processors. Scalability of processors and
memories must be required for many qubits simulations.
Therefore, we have proposed and developed the QCSS
(Quantum Computation Simulation System) on the scal-
able distributed-memory parallel computers. The current
implementation on SCoreIII [10] enables us to perform up
to 34 qubits simulation and to factorize as many as 15-bit
numbers (2L + 3 ≤ 34 ⇒ L ≤ 15) if we consider nothing
about execution time.

In this paper, we implement the Shor’s factorization al-
gorithm and the four order-finding circuits (by Beauregard
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[3], by Miquel et al. [6], and two more circuits for com-
parison) on QCSS. On this environment we measure sim-
ulation time and confirm that the effects of parallelization
are enough. In addition, through the simulation, we can
analyze performance and robustness of the quantum order-
finding circuits in the presence of decoherence and opera-
tional errors by comparing the success probability among
them. Moreover, we discuss from the experimental results
the applicability of approximate QFT of the order-finding
circuit by Beauregard.

The results will be useful when we build quantum com-
puters with many qubits, since it is still difficult to theoret-
ically analyze the effects of decoherence and operational
errors in the real order-finding circuit. The significance of
our work lies in the full simulation and the analysis of the
whole quantum order-finding circuit for the factorization of
an arbitrary numbers.

2 Quantum Computer Simulation System

For many qubits simulation, we use the scalable simu-
lator, QCSS (Quantum Computer Simulation System) that
runs efficiently on scalable distributed-memory computers.
QCSS has been implemented in the two ways. We adopt
the QCSS programmed by using MPI [1]i. Therefore it
runs on any platforms as long as MPI is implemented.

2.1 Register

A collection of n qubits is called a register of size n. The
general qubit state |Φ〉 of the n-qubit register is

|Φ〉 =
2n−1∑
i=0

αi |i〉 , where αi ∈ C,

2n−1∑
i=0

|αi|2 = 1, (1)

that is, the state of a n-qubit register is represented by a unit
vector in 2n-dimensional Hilbert space H2n .

In a classical computer, an array of 2n complex numbers
is required to have the quantum state. In order to store a
complex number α = x + iy, a pair of real numbers (x, y)
is prepared. Each real number is represented by a double
precision word. The size of it is 8 bytes (64 bits) on many
systems.

Therefore, 2n+4 bytes memory is required to deal with
the state of a n-qubit register in a classical computer. For
example, a classical computer with 1 GB memory can rep-
resent a 26-qubit system.

In addition, if the number of qubits of a quantum reg-
ister increments by one, the memory needed to represent
the register is doubled. It is therefore difficult to simulate
larger quantum systems since current PCs and WSs have at
most several GB memory.

To overwhelm the limit, we choose the distributed-
memory parallel computers as the simulation platform. The
array of amplitudes is distributed to the nodes of the paral-
lel computers.

Here let the number of the nodes be 2p. Fig. 1 shows the
representation of the quantum register on the distributed-
memory paralell computers. Each node has 2n−p continu-
ous elements of the amplitude array.

iAnother QCSS is designed for SMP (Symmetric Multi-Processors).

0α 1−bα bα n2
α… … … ……

)2( pnb −= b

node 0 node 1 node 2p-1

bArray of Amplitudes

Figure 1: Representation of the n-qubit register.

2.2 Evolution

The time evolution of a n-qubit register is determined by
a unitary operator in 2n-dimensional Hilbert space H2n .
This unitary operator is a matrix of size 2n×2n. In general
2n × 2n space is required to represent the matrix.

However, operators which have simple structures are
used when we design quantum circuits. That is, an evo-
lution step is performed by applying a unitary operator of
size 2× 2 to a single qubit or by applying a controlled uni-
tary operator such as a controlled-NOT gate. They require
only 2 × 2 space to simulate such an evolution step.
Single qubit gate: Single qubit gate is represented as
a transformation in which 2 × 2 unitary operator U =[

u11 u12

u21 u22

]
to the i-th qubit of the register of size n

(0 ≤ i < n).
Let the most significant bit (MSB) be the 0-th qubit.

When the unitary operator U is applied to the i-th qubit,
the overall unitary operator X applied to the n-qubit reg-
ister state is a matrix of size of 2n × 2n and described as
follows:

X =

(
i−1⊗
k=0

I

)
⊗ U ⊗

(
n−1⊗

k=i+1

I

)

=




U11 U12

U21 U22︸ ︷︷ ︸
2n−i

O

. . .
. . .

O

2n−i︷ ︸︸ ︷
U11 U12

U21 U22


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︸ ︷︷ ︸
2n

, (2)
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(3)

X is constructed by 2i submatrices aligned diagonally, and

each submatrix is a 2n−i × 2n−i matrix

[
U11 U12

U21 U22

]
.
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Therefore, each column vector of X has always two non-
zero elements.

When we apply the matrix X to the quantum state |Φ〉,
we require only the four complex numbers u11, u12, u21,
u22 and the two elements of the array of amplitudes. Since
the array of amplitudes is distributed into 2p nodes, the
inter-node communication occurs depending on the size of
the submatrix when the product X |Φ〉 is calculated.

When the size of the submatrix is less than or equal to
the number of elements of the amplitude array which each
node possesses, that is, 2n−i ≤ 2n−p ⇐⇒ p ≤ i,
the computation of the product X |Φ〉 is performed locally
(Figure 2).

U11 U12

U21 U22

U11 U12

U21 U22

…
…

…
..

…
..

2n-p(=b)

kbα

1)1( −+ bkα

…
..

Figure 2: X |φ〉 (the submatrix is small)

When the size of the submatrix is more than the number
of elements of amplitude array, that is p > i, the amplitude
array that another node has is required in order to compute
X |Φ〉, the next state. Therefore, inter-node communica-
tion occurs.

Let (i, i) and (i, j) be the two non-zero elements of i-th
column of X . Then, clearly, (j, i) and (j, j) become the
two non-zero elements of j-th column of X . Thus, if a
node q requires the amplitude array that a node p has, then
the node p requires the amplitude array that the node q has
(Figure 3). Note that the node p communicates with only
the node q and the node q communicates with only the node
p.

…
…

…
…

…

…
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…
..

C
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m
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Figure 3: X |φ〉 (the submatrix is large)

In order to reduce the simulation time, first, communi-
cation overheads must be reduced, and coarse-grained data
transfer is required. As shown in Figure 4, data-transfer
size is not the element-size (16 bytes) but the buffer-size.

This time, we set the optimal buffer-size as 2048 bytes on
the basis of the pilot study results.

Second, communications and computations must be
overlapped. As shown in Figure 4, a node i sends its am-
plitude array data with buffer size and the node i performs
computations using only its own amplitude array data. The
node i waits until it receives the necessary data from a node
j. Then, the node i performs computation using both its
own data and the received data. The node j perform the
same process as the node i performs.

node i

node j
2n-p(=b)

21
U×

11
U×

22
U×

Buffer

sendsend

recv recv

+ +
12

U×

Figure 4: Data transfer diagram

Controlled qubit gate: Suppose that a unitary matrix U =[
u11 u12

u21 u22

]
is applied to the i-th qubit if and only if the

c-th qubit is 1. Let CTX be the overall matrix of size of
2n × 2n.

First, we consider the matrix X mentioned above as if
there are no controlled qubits. Then, for each j (1 ≤ j <
2n − 1), the j-th row of the matrix CTX (CTX [j]) is de-
fined as follows:

CTX [j] =

{
X [j] if the c-th bit of j is 1

I[j] if the c-th bit of j is 0
, (4)

where I is the unit matrix.
In this case, we also do not have to generate CTX or X

explicitly. We only have to have the 2 × 2 matrix U .

2.3 Measurement

The gate for measurement of i-th qubit of n-qubit regis-
ter is designed as follows:

1. In each node i, two values oi and zi are calculated
such that oi =

∑
c∈S |αc|2, zi =

∑
c�∈S |αc|2, where

S = {s|the i-th bit of s is 1.}.

2. The 0-th node collects oi and zi from each node
i. Then it should have O =

∑2p−1
i=0 oi and Z =∑2p−1

i=0 zi, and the sum of O and Z should be 1.

3. The 0-th node generates a random number r (0 ≤ r <
1). We consider that 0 is observed if r < Z and that 1
is observed if Z ≤ r.

4. The 0-th node sends the result of measurement to
all nodes. Then each node generates the post-
measurement state according to the result which it re-
ceives from 0-th node.

3
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2.4 Error model

The simulator can represent decoherence and opera-
tional errors. By using it we can analyze robustness of
some quantum circuits in the presence of decoherence and
operational errors. Here we explain the error models that
the simulator adopts.
Decoherence error:The simulator implements depolariz-
ing channel as the decoherence error model.

In this channel, when the depth of the circuit increments
by one, with probability 1 − p each qubit is left alone,
and with probability p the error occurs, and there are equal
probabilities that σx, σy or σz (Pauli’s X , Y , Z) are applied
to each qubit independently. The error rate p is determined
by users.

In general, on an actual quantum computer, gates are ap-
plied parallelly as much as possible. Then the depth of a
circuit is not always equal to the number of the gates of the
circuit. The simulator has a function which applies error
gates. It is called only if the depth of the circuit increments.
Operational error: Generally, all of single qubit gates are

described with rotations UR(θ) =

[
cos θ − sin θ

sin θ cos θ

]
,

and phase shifts UP1(ϕ) =

[
1 0
0 eiϕ

]
, UP2(ϕ) =[

eiϕ 0
0 1

]
. For example, NOT gate

[
0 1
1 0

]
is

described as UR(π/2)UP1(π), and Hadamard gate

1√
2

[
1 1
1 −1

]
is described as UR(π/4)UP1(π).

The simulator represents inaccuracies by adding small
deviations to the angles of rotation θ and ϕ. Each error
angle is drawn from Gaussian distribution with the standard
deviation σ, which is also determined by users.

3 Preliminaries for the Algorithm

In this section, we review briefly the quantum algorithm
for factorization proposed by Shor. After that, we introduce
the quantum circuits for order finding. This is an important
part of this algorithm and there are several way for realiza-
tion. We focus on the circuit by Beauregard and explain in
detail the techniques which the circuit uses. Moreover, we
consider approximate QFT. This approximation is helpful
to reduce the number of quantum gates but also effects of
decoherence.

3.1 Shor’s Factorization Algorithm

Suppose a L-bit number N is an odd and non-primal
numberii.

1. [CLASSICAL] Choose a random integer number a so
that 1 < a ≤ N − 1.

2. [CLASSICAL] Using Euclid’s algorithm, determine if
gcd(a, N) > 1, and if so, return the factor gcd(a, N).

iiEven if N is even or primal, there is no problem. It is trivial whether
N is even or odd, and we can determine in polynomial time whether N is
primal or not.

3. [QUANTUM] Use the order-finding quantum algorithm
to find the order r of a modulo N .

4. [CLASSICAL] If r is odd or r is even but ar/2 ≡
−1 (mod N) or ar �≡ 1 (mod N), print “failed” and
terminate this algorithm.

5. [CLASSICAL] Otherwise, compute r± = gcd(ar/2 ±
1, N). Test to see if these are non-trivial factors of N ,
and return the factor r± and terminate this algorithm
if so.

The process to find a order of a mod N (step 3) is known
to be computable in polynomial-time on a quantum com-
puter.

3.2 Order Finding Circuit

We review the quantum circuits for order-finding we
have implemented for the following experiments.

3.2.1 Traditional Circuit

Figure 5 shows the quantum order-finding circuit con-
structed by Miquel et al. [6]. In this figure, H is Hadamard
gate, QFT−1 is inverse QFT gate, and m is measurement
gate. The gate named Ua maps |x〉 to |(ax) mod N〉. It is
used for modular exponentiation (|x〉 → |xa mod N〉).

H

H

H

H

m

m

m

m

QFT-1

Ua20 Ua21 Ua22 Ua22L-1

2L
qubits

3L+6
qubits

Figure 5: Traditional order-finding circuit.

Ua gate is constructed by combination of (controlled) ad-
dition gates, (controlled) subtraction gates, and so on. Be-
cause the design of them is a straightforward application of
the classical carry gates and summation gates, many work-
ing qubits are required and 3L + 6 qubits are wasted for
modular exponentiation [13].

Therefore, totally 5L + 6 qubits are required. We call
this order-finding circuit the traditional circuit.

3.2.2 Improvements by Beauregard

Last year, Beauregard improved the order-finding circuit
(see Figure 6 and [3]). We review the following three tech-
niques that Beauregard adopted.

Ua2L-1

RL-1H

Ua21

H|0> + |1> |0> + |1>

|1>

R L

Ua20

H|0> + |1>mL-2 mL-1’ ’1
qubit

2L+2
qubits

Figure 6: Improved order-finding circuit.

4

研究会Temp 
－20－



Addition by QFT [4]: This uses QFT and reduces the
number of qubits necessary for addition by removing tem-
porary carry bits. This addition takes two values a and b,
computes F (a) (QFT of a) and then uses b to evolve F (a)
into F (a + b). Inverse QFT may then be applied and the
sum recovered.
One control quantum bit trick [9]: It is shown that the
(inverse) Fourier transform preceding the final measure-
ment can be calculated in a semiclassical way [5]. That is,
instead of performing the entire transform and then making
measurements on all control qubits afterwards, we can ap-
ply Hadamard transform to the first qubit and then measure
it. The controlled phase shifts by this first qubits are then
replaced by single qubit operations given the result of the
measurement on the first.
QFT is replaced with AQFT [2]: In physical implemen-
tations, we cannot perform rotation gates below a certain
tolerance. Therefore, AQFT is adopted. Details are given
in the next subsection.

Eventually 2L + 3 qubits are needed to construct this
circuit. We call it improved order-finding circuit.

3.3 Approximate QFT

The order-finding circuit by Beauregard (improved cir-
cuit) contains O(L2) QFT gates. In this section we try to
approximate the QFT gates. This means that the quantum
state after QFT is applied is approximated. However, we
obtain the result by measurement. Note that this approx-
imation affects not the result itself but the probability the
correct one is obtained.

The QFT circuit (Figure 7) contains of L Hadamard
gates and L(L + 1)/2 controlled phase shift gates.

|α  >0

|α  >1

|α  >2

|α  >3 H R1 R2 R3

H R1 R2

H R1

H

|φ  (α)>0

|φ  (α)>3

|φ  (α)>2

|φ  (α)>1

Figure 7: QFT circuit with 4 qubits.

Similarly, the AQFT of degree m (see [2]) is represented
by Hadamard gates and the phase shift gates in which the
target qubit and the controlling qubit are far apart (in the
register) are neglected, that is, those operations Rk for
which the phase shift 2π/2k ≤ 2π/2m for some m such
that 1 ≤ m ≤ L are droppediii. In that case, we need
L gates of Hadamard transform, and (2L − m)(m − 1)/2
gates of phase shift, which is less than those on the QFT
case since m < L.

Figure 8 shows the m = 2 AQFT circuit.

4 Experiments

4.1 Environment

As an experimental environment, we adopted SCoreIII
[10], a PC cluster system, built by Real World Computing

iiiIf m = 1, the circuit is equivalent to the Hadamard circuit, and if
m = L, it is equivalent to the QFT circuit.

|α  >0

|α  >1

|α  >2

|α  >3 H R1

H R1

H R1

H

|φ  (α)>0

|φ  (α)>3

|φ  (α)>2

|φ  (α)>1

Figure 8: Approximate QFT (AQFT) circuit (m = 2) with
4 qubits. The circles drawn with dotted lines mean dropped
gates according to the definition.

Partnership (RWCP). By running the SCore cluster system
software on it, SCoreIII realizes a parallel computer with
high scalability, high cost-performance, and high usability.

SCoreIII has 512 computation hosts. Each node has two
Pentium III processors (933 MHz) and 512 MB memory.
The nodes are connected each other with Myrinet-2000 and
ethernet.

By running QCSS on SCoreIII, we can deal with up to
34 qubits and factorize 15-bit numbers with Beauregard’s
order-finding circuit if we consider nothing about execution
time.

4.2 Implementation

We have implemented on QCSS the two order-finding
circuits, traditional and improved ones. Besides, two more
circuits have been implemented for comparison.

Table 1 shows the features of these circuits.

Table 1: Features of the order-finding circuits.

one control addition

#qubits qubit trick by QFT

A (improved) 2L + 3 W W

B 4L + 2 W/O W

C 3L + 7 W W/O

D (traditional) 5L + 6 W/O W/O

4.3 Execution time for order-finding

First of all the experiments, we measured execution time
for simulation.

With circuit A, some L-bit numbers which satisfy the
condition as input are chosen (4 ≤ L ≤ 15) and factorized
on QCSS with changing the number of working processors
P = 2p (0 ≤ p ≤ 8). We assume that there are no deco-
herence and operational errors during computation.

Then, we have confirmed that factorization of up to 12-
bit numbers succeeded on the environment. Figure 9 shows
the result as a double-logarithm chart. The points con-
nected with bold lines mean that an enough effect of par-
allelization is gained. The execution time becomes almost
half if the number of processors doubles. The points con-
nected with broken lines mean that we did not measure the
time because we expect it will take much time for simula-
tion but that we can forecast the time. We can see that it
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will take 3.7 million seconds, about 43 days, to try a fac-
torization of a 15-bit number.
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p = log P (number of processors)

N =    15 (L =  4)
N =    21 (L =  5)
N =    35 (L =  6)
N =    65 (L =  7)

N =   221 (L =  8)
N =   437 (L =  9)

N =   889 (L = 10)
N =  1189 (L = 11)
N =  2491 (L = 12)
N =  4757 (L = 13)
N =  9797 (L = 14)

N = 23129 (L = 15)

Figure 9: Relation between number of processors and exe-
cution time.

As for other circuits, we confirmed that simulation to
factorize 21 (5 bits) finished within a minute with 128 pro-
cessors by using circuit B and C, but that on the same en-
vironment it took 1003 seconds per trial to factorize 35 (6
bits). With circuit D it took 318 seconds per trial to factor-
ize 15 (4 bits).

Note that it will take much more time for simulation in
the presence of especially decoherence error as mentioned
in the previous section.

4.4 Robustness for decoherence error

To investigate the robustness of the circuits for decoher-
ence and operational errors, an appropriate number of trials
are needed for analyses. Therefore it is better that time for
simulation is short.

We factorized 21 by using circuit A, B and C on QCSS,
with changing decoherence error rate d from 0 to 10−2.
With each d 200 trials were done. The number of qubits,
the depth of each circuit, the product of this two values, and
the number of Hadamard gates, (controlled) NOT gates, ro-
tate gates are shown in Table 2. As circuit A and B adopt

Table 2: Quantum circuits to factorize 21.

#qu- #qubits # gates

bits depth ×depth Had. (c-)NOT Rot.

A 13 15384 2.0×105 2660 4510 9610

B 22 12399 2.7×105 2660 4525 9645

C 22 28771 6.3×105 20 30250 10

D 31 26084 8.1×105 18 26040 36

the adder by QFT, there are much more Hadamard gates
and rotate gates than circuit C and D, whereas circuit C

and D have much more NOT gates because the existing ad-
dition circuit is realized as a combination of (controlled)
NOT gates.

How many times the error gates are applied totally de-
pends on the size of the circuit (the product of the number
of qubits and the depth) because they are applied indepen-
dently to each qubit in our implementation. For example,
in circuit A, if the decoherence error rate is 10−6, some 0.2
error gates is applied to the circuit in each trial.

We calculated the success probability, the probability
with which a trial for factorization succeeded by using the
quantum part of the algorithm and the order-finding circuit
(step 3 in section 3).

Table 3 shows the result.

Table 3: Success probability (%) in the presence of deco-
herence error.

decoherence error rate d

circuit 0 10−6 10−5 10−4 10−3 10−2

A 12.0 8.5 3.5 3.0 2.5 4.0

B 11.5 11.5 3.0 2.5 1.5 1.0

C 17.0 5.5 3.0 1.5 1.0 0.5

D N/A

As for success probability of the factorization algorithm
Probsucc(N), if we assume that there are no decoherence
and operational errors, it is known that the lower bound is
given as the following inequality:

Probsucc(N) ≥ φ(N)
N − 1

·
(

1
2
· 4
π2

· e−γ

log log N

)
,

where φ(N) is the Euler number of N , and γ is the Euler
constant. If we substitute 21 to N , then the right hand of
above inequality is about 11.6%.

From the result we find some tendencies: As for circuit
A and B, the circuits are robust for decoherence error if d
is less than 10−5, whereas as for circuit C it seems not to
be useful for factorization when there is decoherence.

However, it is strange that the success probabilities dif-
fers among the circuits when d = 0. These should converge
to constant. There are too few trials to see the differences
among the circuits from this experimental result. Then we
are now planning that the probability we measure correct
answers is computed accurately from the amplitude of the
final state. We expect that the result will appear in the near
future.

Next, in order to make the effects of error gates to the
circuits clearer, we investigate the relation between the er-
ror gates applied and the success probability with circuit A
and C. We did 2000 and 1000 trials with circuit A and C,
respectively.

Table 4 shows the relation between the number of error
gates applied to circuit A the success probability.

As for circuit C, Table 5 shows the relation between the
number of error gates applied to the circuit and the success
probability.

From the results we can see that on the both circuit A and
C, the more error gates are applied, the less trials succeeds
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Table 4: Relation between the number of error gates
applied and success probability (circuit A).

#error #succeed #trial #succeed/#trial

0 20 126 15.87%

1 29 301 9.63%

2 20 444 4.50%

3 12 349 3.44%

4 9 284 3.17%

5 2 186 1.08%

6 2 80 2.50%

7 1 47 2.13%

Table 5: Relation between the number of error gates
applied and success probability (circuit C).

#error #succeed #trial #succeed/#trial

0 18 106 16.98%

1 18 153 11.76%

2 16 172 9.30%

3 8 122 6.56%

4 5 46 10.87%

5 1 23 4.35%

6 0 13 0.00%

7 0 3 0.00%

and that the success probability seems to be diminished ex-
ponentially as the number of the error gates increases. The
size of a circuit seems to be more serious than the other as-
pects of it (for instance, the ratio of Hadamard gates, NOT
gates and rotate gates in the circuit). Perhaps the decoher-
ence error model we adopt has lead such a result. More ex-
periments and analyses are needed to examine the results.

4.5 Robustness for operational errors

We factorized 21 by using circuit A, B and C on QCSS,
with changing standard deviation of operational error σ
from 0 to 10−2. With each σ 200 trials were done. Then
we calculated the success probability.

Table 6 shows the result.

Table 6: Success probability (%) in the presence of opera-
tional errors.

standard deviation σ

circuit 0 10−6 10−5 10−4 10−3 10−2

A 12.0 13.0 8.5 11.5 6.5 7.5

B 11.5 10.0 12.5 12.5 9.0 8.5

C 17.0 15.0 12.5 8.5 11.5 12.5

D N/A

As for the circuit A, if the standard deviation of opera-
tional errors σ is less than 10−3, we find that the circuit
is not affected by the operational error, whereas circuit C
is robust for operational errors. We consider that this is
because circuit A has much more rotate gates, which it is
considered is fragile for operational errors, than circuit C.

However, circuit B seemed to be more robust for circuit
A, though there are almost the same number of rotate gates
in circuit B. In circuit A, “one controlling qubit trick” is
used. The operational error may affect the only one con-
trol qubit directly and may make the result we can measure
incorrect.

4.6 Effect of Approximate QFT (AQFT)

Beauregard’s order-finding circuit consists of many QFT
gates and quantum adder gates similar to QFT gates: If a
L-bit number is factorized, O(L2) QFT gates and O(L2)
quantum adder gates by QFT are required to construct the
circuit.

We prepared the circuit in which the QFT gates and the
quantum adder gates are replaced by the AQFT gates and
the A-ADD gates, respectively. A-ADD gate is an approx-
imated addition gate like AQFT.

There are two reasons why we use these approximated
gates: First, the time taken to finish the algorithm on not
only the simulator but only actual quantum computers in
the near future becomes short. Second, the circuit becomes
more robust for decoherence errors because the depth of
the circuit is reduced in our implementationiv.

We tried to factorize 187 (8 bits, 11 × 17) on circuit A
with changing decoherence error rate d from 0 to 10−2 and
the degree of AQFT m (see section 3.3) from 1 to 9. Here
we suppose that operational errors do not occur. In this
circuit, there are 544 QFT gates, 544 inverse QFT gates,
640 adder gates and 640 inverse adder gates.

Table 7 shows the properties of the circuit to factorize
187.

Table 7: Properties of circuit A (N = 187).

#qubits depth #qubit×depth

A 19 70080 1.3×107

In each m and d, the trials were repeated 100 times.
From the results obtained from the experiment, we com-
puted the success probability.

Figure10 shows the success probability of the quantum
part of the algorithm (step 3 in section 3). The horizontal
axe and the vertical axe represent the degree of AQFT (m)
and the number of success trials, respectively.

From the figure we can see that the success probability
is almost zero if the decoherence error rate d is greater than
10−6. This means that the quantum circuit is not helpful
due to the decoherence errors.

ivIn general, the depth does not change.
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Figure 10: Success probability (%) of the circuit with
AQFT and A-ADD.

When d = 0 and d = 10−6, the factorization succeeds
by the quantum circuit. There appears to be a gap of the
success probability at the point between m = 4 and 5.

Barenco et al. have pointed out in Ref. [2] that if we
assume that there is no decoherence, (the decoherence error
rate d equals to zero), the ability of AQFT gates is almost
the same as QFT gates as far as the degree of AQFT m
satisfies the following lower bound condition,

m > log L + 2, (5)

where L is the size of the quantum register applied the
AQFT, and that when d > 0 the optimum m is found near
this lower bound.

As stated above, we estimate that if there is no decoher-
ence and m ≥ 5, the success probability is slightly less
than that of the circuit without AQFT and A-ADD.

If we substitute L = 9 to Equation (5), we obtain the
following inequality:

m > 5.17. (6)

We can find that the simulation results corresponds to the
theoretical condition as in Equation (6).

Therefore, we consider that AQFT is useful for the order-
finding circuit. We expect that AQFT gates are applicable
to the circuit if the number to factorize becomes larger as
far as the condition (Equation (5)) is satisfied.

Furthermore, in the order-finding circuit, AQFT may be
rather more useful than QFT in the presence of decoher-
ence. This is because to use AQFT gates means that the
number of gates affected by decoherence diminishes.

In fact, the experimental results indicate it. When the
decoherence error rate is 10−6, more number of trials in
which the factorization finishes to succeed in the case of
m = 5, 6, 7, 8 (using AQFT) than in the case of m = 9
(using QFT) as shown in Figure 10.

5 Conclusion

We have developed QCSS (Quantum Computer Simula-
tion System) on the scalable distributed-memory computer.

Under QCSS on SCoreIII, we have implemented the en-
tire order-finding circuit proposed by Beauregard. We con-
firmed the effect of parallelization. Time to simulate the
factorization almost halved if the number of nodes doubled.

By using the circuit, we have confirmed that Shor’s fac-
torization algorithm is really effective. Suppose that there
are no errors, the success probability calculated theoreti-
cally is almost the same as that gained in the simulation.

We have analyzed robustness of the whole quantum
order-finding circuits in the presence of decoherence and
operational errors. If the decoherence rate d is greater than
10−5 or if the standard deviation of the operational errors
σ is greater than 10−4, it seems to be hard to use the order-
finding circuit in practice. We also have found that AQFT is
more useful than QFT for decoherence rate 10−6 ∼ 10−5.
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