
���
degenerate pattern �����	�
 �� ������������������ ���������! "��#
$&%('&)

∗ *,+&-&.&/ † 02143 ‡

5,6
: 798;:=<(>@?BA2C4D Σ EGF degenerate pattern H=I Σ FKJ@L,MONQP(RTS4U;VXWGY;Z\[^]O_,UQ` Σ EFTa,bdc@edfgFXMdNihKHkjdb@c,edflFBM,NgmKn^oQp\Rrq(sgHXt=u(hvFKwlxdFXcde@fQyXz{C}|&~BudmdFd�,Fc,eOfly4�Bz�C�|�~dSB� Σ EGF degenerate pattern FK�O�l�K�O�d�9U4�B�lI;u NP �,wg],_QUd�(Hvnd�{Rq&xB�\U4`��@�l]@I^uT����F&���gSO[;�d:4�=�lyT�9~=�@�@ @¡gSB¢,£@¤@¥@¦g�B�d�gx^uT§,�lS degenerate

pattern �K¤,¥@�\U,:=<O¨ª©�«4¬d�TO®@�9U4`�¯&~^x^ul�,Fd:B<Q¨2©°«O¬;�K±,²9³B´gFTµ4N@JO¶G�O·T�@�U,�T�ly^�O�(~Tud���¹¸QPQFKº,»O´,M,Nly^�(~;xK¼O½,¾,¿OÀG�TÁ(ÂdsKµ,ÃG�KÄ,Å@�(UO`

Algorithm for finding optimal degenerate patterns with an application to
transcription factor binding sites consensus identification.

Daisuke Shinozaki∗ Tatsuya Akutsu† Osamu Maruyama‡

abstract: A degenerate pattern over a finite alphabet Σ is a sequence of subsets of Σ. For a degenerate pattern
over Σ, it is known that the problem of finding a degenerate pattern consistent with both the sets of positive
strings over Σ and that of negative ones is in general NP-complete. In this work, we have proposed a heuristic
algorithm for finding optimal degenerate patterns with a pruning technique, which works on most all reasonable
score functions. Then we have applied this algorithm to the problem of identifying transcription factor binding
sites in the upstream regions of given genes, and reported the results from the computational experiments on
several gene sets.

1 Introduction

The problem of finding transcription factor binding sites
in the upstream regions of given genes is algorithmically
an interesting and challenging problem in computational
biology. Such a site is an essential factor in the mech-
anism of transcriptional regulation. It is known that the
binding sites of a transcription factor are often approx-
imately conserved across the upstream regions of the
co-regulated genes. Thus, the problem of finding reg-
ulatory signals can be reduced to the search problem for
convincing patterns common to almost all of the given
DNA sequences.

The major types of patterns modeling transcription
factor binding sites can be classified into the follow-
ing three groups: (i) a weight matrix, (ii) a string over

∗ Æ°Ç°È=É=È°É=Ê=Ë=Ì=É°Í
Graduate School of Mathematics, Kyushu University

† Î°Ï È=É=Ð°É=Ñ=Ò=ÓvÔ^ÕkÖXÕ=×TØ=Ù�Ú°ÛOÜ�ÝßÞ�àK×Xá�â
Bioinformatics Center, Institute for Chemical Research,
Kyoto University

‡ Æ°Ç°È=É=È°É=Ê=Ë=Ì=É°Ñ=Ò=Ê
Faculty of Mathematics, Kyushu University

nucleic acids, {A, C, G, T}, possibly with some mis-
matches, and (iii) a string over IUPAC nucleic acid
codes. All of these patterns are often called motifs.

A weight matrix for a motif of length l is a 4 × l ma-
trix, whose rows and columns correspond to the 4 bases
and the positions in the motif, respectively. The weight
in the i-th row and j-th column means the frequency
with which the i-th base is found in the j-th position of
the motif. Thus a weight matrix is a very flexible ex-
pression of motifs. A weight matrix is used in a number
of probabilistic approach algorithms for finding motifs,
including the expectation maximization algorithm [10],
MEME [1], Gibbs sampler [9] and CONSENSUS[7].
These heuristic algorithms are based on local search,
which implies that in general, there is no theoretical
guarantee that the optimal solutions are always found
by these tools. However, local search-based motif find-
ers have seen substantial success in practice.

The simplest case of the pattern models (ii) and (iii) is
just l-mers without any mismatches nor mutations. [22]
applied an enumerative approach for finding statistically
significant l-mers. [15] considered ways of finding l-

1

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
2003－AL－91　　(3)

研究会Temp
2003／9／19

研究会Temp
－17－

mer with at most k mismatches common to the given
set of DNA sequences. In their work, they proposed two
novel enumerative algorithms called WINNOWER and
SP-STAR, to find significant patterns over {A, C, G, T}
of length l which are allowed to have at most d mis-
matches, which we call (l, d)-motif pattern. Note that an
(l, d)-motif pattern is not position-specific since at most
d mutations are allowed to occur at every positions of
the occurrences of the patterns. For the same problem,
[4] devised a novel method which combines both ran-
dom projection and local search. Various decision prob-
lems for finding (l, d)-motif patterns, known as Closest
Substring Problem, Max Close String Probelm, Distin-
guishing String Selection Problem, etc, have been dis-
cussed in [8, 6, 5] and references therein from the view-
point of computational complexity. Those problems are
shown to be generally NP-complete.

On the other hand, the patterns over the IUPAC nu-
cleic acid codes, which we call degenerate patterns over
Σ = {A, C, G, T} in this work, are position-specific.
The problem of finding a degenerate pattern consistent
with both all of the positive strings and all of the nega-
tive strings is a special case of the problem of Best Con-
sensus Motif discussed in [21], which is shown to be
NP-complete. In [19] and [18], enumerative algorithms
for finding optimal degenerate patterns over the codes,
A,C,G,T,R,Y,S,W and N have been presented. These
patterns are evaluated by z-score and p-value, respec-
tively. Note that R,Y,S,W mean two symbols of the ba-
sic 4 bases, and N means the 4 bases. Their patterns are
in the form of the strings s over the 9 symbols whose
central part is a spacer consisting of N’s of length up to
about 11.

Our aim in this paper is to devise a heuristic algorithm
to find a degenerate pattern which is optimal for positive
and negative string sets w.r.t. a given score function. We
then propose a branch-and-bound algorithm, called SU-
PERPOSITION, which works for arbitrary score func-
tions which are conic, as defined in [17]. It should be
noted here that most all reasonable score functions, for
example, χ2 values, entropy information gain and gini
index, are conic.

To construct SUPERPOSITION, we have introduced
an operation which generates a new degenerate pat-
tern from existing two patterns p = p1p2 · · · pl and
q = q1q2 · · · ql, called the superposition of p and q, that
is defined as a degenerate pattern r = r1r2 · · · rl with
ri = pi ∪ qi for i = 1, 2, . . . , l. SUPERPOSITION is
a sample-driven approach, that is, it first extracts all of
the substrings of a specified length l from the positive
strings. After this extraction phase, SUPERPOSITION
goes into the superposition phase, in which a superposed
pattern r, generated from existing ones, will be elim-
inated from this phase forever if the possible optimal

score of any superpositions between r and others is less
than the intermediate optimal score of all of the patterns
searched so far in the process.

Finally, we will present the successful results of find-
ing binding sites in the upstream regions of co-regulated
genes of yeast, and report the performance com-
parison between SUPERPOSITION, YMF[19] with
an auxiliary tool FindExplanators[3], MEME[1] and
AlignACE[16]. In our computational experiments, sev-
eral known transcription factor binding sites in a pro-
moter database of the yeast Saccharomyces cerevisiae
(SCPD) [23] have been detected by SUPERPOSITION
more accurately than the others.

This paper is organized as follows. In Section 2, pre-
liminaries are given. Section 3 shows our heuristic al-
gorithm for the problem. In the last section, we review
our computational experiments on real data of yeast.

2 Preliminaries

Let Σ be a finite alphabet, and let Σ∗ be the set of all
strings over Σ. For a non-negative integer l, by Σl we
denote the strings of length l over Σ. A complemen-
tary map over Σ is a mapping c from Σ to Σ such that
c(c(x)) = x for each symbol x ∈ Σ. The complement
of a string s = s1s2 · · · sl over Σ w.r.t. c, denoted by sc,
s = c(sl)c(sl−1) · · · c(s1). In the problem of finding
regulatory signals in DNA sequences, Σ and c can be
set to be Σ = {A, C, G, T} and c(A) = T , c(T) = A,
c(C) = G, and c(G) = T .

Definition 1 A degenerate pattern over a finite alphabet
Σ is defined as a sequence p = p1p2 . . . pl where pi is a
subset of Σ for 1 ≤ i ≤ l. The length of p is defined as
l.

For these degenerate patterns p = p1p2 . . . pl, we
can consider the following distinctive pattern matchers
which are defined as binary functions. Let t be a string
over Σ.

mbasic(p, t) returns true if there is at least one oc-
currence of p in t, i.e., there exists a substring
ti · · · ti+l−1 of t such that ti+k−1 ∈ pk for 1 ≤
k ≤ l, and false otherwise.

mc(p, t) returns true if either mbasic(p, t) or
mbasic(p, tc) is true, and false otherwise, for
a complementary map c.

For a degenerate pattern p, a pattern matcher m, and
a set S of strings, we denote by L(p, S, m) the subset
of S whose elements are matched by p with m, i.e.,
L(p, S, m) = {t ∈ S | m(p, t) = true}. When m

2

研究会Temp
－18－

is clear from the context, we omit m and write L(p, S)
instead.

We introduce the concept of the ambiguity of degen-
erate patterns. The degeneracy of a degenerate pat-
tern p = p1p2 · · · pl, denoted by degen(p), is de-
fined as the value of

∏l

i=1 |pi|. For example, for p =
A{C, G}{A, G, T}{A, C}CC, we have degen(p) =
12. Note that for a degenerate pattern p of length l,
degen(p) = |L(p, Σl, mbasic)|.

3 Heuristic Approach

We here present a heuristic approach for finding all of
the top K optimal patterns, based on a pruning tech-
nique, for an arbitrary constant K.

For degenerate patterns p and q and a pattern matcher
m, if L(p, Σ∗, m) ⊆ L(q, Σ∗, m) then we say that p

is more specific than q and also that q is more general
than p. Here we define an operation on two degenerate
patterns p and q, which is designed in order to generate
a new degenerate pattern r.

Definition 2 For two degenerate patterns
p = p1p2 · · · pl and q = q1q2 · · · ql with pi, qi ⊆ Σ for
1 ≤ i ≤ l, the superposition of p and q, denoted by
superpose(p, q), is a degenerate pattern r = r1r2 · · · rl

such that ri = pi ∪ qi for 1 ≤ i ≤ l.

Note that vany of the degenerate patterns r =
r1r2 · · · rl obtained by recursively superposing a degen-
erate pattern p = p1p2 · · · pl and arbitrary degenerate
patterns is more general than p w.r.t. appropriate pattern
matchers since ri ⊇ pi for i = 1, 2, . . . , l.

3.1 Pruning Heuristics

[17] gave the definition of a conic function and showed
how to use it for optimal pattern-finding algorithms
enumerating patterns from general to specific, for the
classes of substring patterns, subsequence patterns and
episode patterns.

Definition 3 ([17]) A function f : [0, xmax]× [0, ymax]
to real numbers is said to be conic if

for any 0 ≤ y ≤ ymax, there exists an x0 such that

– f(xl, y) ≥ f(xr, y) for any 0 ≤ xl < xr ≤
x0,

– and f(xl, y) ≤ f(xr, y) for any x0 ≤ xl <

xr ≤ xmax,

and for any 0 ≤ x ≤ xmax, there exists an y0 such
that

– f(x, yl) ≥ f(x, yr) for any 0 ≤ yl < yr ≤
y0,

– and f(x, yl) ≤ f(x, yr) for any y0 ≤ yl <

yr ≤ ymax.

Lemma 1 Let f be a conic function. Let P and Q be
sets of strings. If S and T , sets of strings, satisfy S ⊆ T ,
we have f(|P ∩ T |, |Q ∩ T |) ≤ max{f(|P ∩ S|, |Q ∩
S|), f(|P |, |Q ∩ S|), f(|P ∩ S|, |Q|), f(|P |, |Q|)}.

The proof is not hard because it is almost the same
as the proof of Lemma 2 in [17]. For short, we
denote superpose(· · · superpose(superpose(p, q1), q2),
. . . , qn) by superpose(p, q1, q2, . . . , qn).

Corollary 1 Let f be a conic function, and
let P and Q be sets of strings. For any de-
generate patterns p and q1, q2, . . . , qn, let
r = superpose(p, q1, q2, . . . , qn). For a degener-
ate pattern x, we denote tpx = |L(x, P, mbasic)|
and fpx = |L(x, Q, mbasic)|. Then we have
f(tpr, fpr) ≤ fupper bound(tpp, fpp, P, Q) where
fupper bound(tpp, fpp, P, Q) = max{f(tpp, fpp),
f(|P |, fpp), f(tpp, |Q|), f(|P |, |Q|)} (see Fig. 1).

p

tp
r

fp
r

fp
p

|N |

tp
p

r

|P |

Figure 1: The four small black points correspond to the four values of
fupper bound(tpp, fpp, P, Q), respectively. The degenerate pattern r ob-
tained by recursively superposing p and others is always located within the
square with the four points.

Note that a score function is supposed to be a max-
imization function. Corollary 1 is a key idea of our
heuristic enumerative algorithm, called SUPERPOSI-
TION, for finding optimal degenerate patterns for the
positive and negative set w.r.t. a particular conic score
function.

First, SUPERPOSITION extracts all of the substrings
of a specified length l from the positive strings, and
then goes into the superposition phase, in which new
patterns are generated by superposing existing ones.
Therefore, SUPERPOSITION is a sample-driven ap-
proach, and patterns are enumerated from specific to

3

研究会Temp
－19－

general. In the superposition phase, when a pattern
p is used in superposing with another pattern q, if
fupper bound(tpp, fpp, P, Q) is less than the intermedi-
ate optimal score, p is discarded and the superposition of
p and q is canceled, because from corollary 1, it holds
that all of the patterns obtained by recursively superpos-
ing p and arbitrary patterns mark at most the value of
fupper bound(tpp, fpp, P, Q) as their scores. The details
of SUPERPOSITION are given in Fig. 2.

Let P and Q be sets of strings, and let l be a positive
integer. It would be easy to see that for a conic score
function f , the algorithm SUPERPOSITION(P, Q, l)
returns a length-l degenerate pattern which is optimal
for P and Q w.r.t. f . Notice that for a constant K,
it is easy to modify the algorithm to return the best K

patterns instead of returning one optimal pattern. It can
be realized by using another sorted list for keeping the
current best K patterns.

As mentioned before, [17] have considered the prob-
lems of finding optimal patterns for the classes of sub-
string patterns, subsequence patterns and episode pat-
terns. Their branch-and-bound algorithm enumerates
patterns from general to specific, which is a different
point with SUPERPOSITION. The reason why SUPER-
POSITION enumerates degenerate patterns from spe-
cific to general is the practical reason that the degenera-
cies of many known consensus motifs are nearer to the
lowest degeneracy 0 than to the highest degeneracy 4l.
It should be noted here that [2] have recently dealt with
the problem called string pattern regression, in which,
given a set of pairs of a string and a weight, the task
is to find the best pattern which is conserved in a sub-
set of the given sequences for which the distribution of
weights of the subset is most different from the distribu-
tion of weights of the rest. This problem can be consid-
ered to be a natural generalization of the case where we
are given both a positive and negative string sets, since
the weight of a positive (negative, resp.) string could
be set to 1 (-1, resp.). They have presented a branch-
and-bound algorithm for the problem, based on the al-
gorithm in [17], by devising a way of calculating the up-
per bound of arbitrary patterns derived from a particular
pattern in the situation of string pattern regression.

3.2 Including Complements

In this subsection, we describe how to modify SUPER-
POSITION which takes account of the complements of
P in addition to P .

We then change the pattern matcher mbasic into mc.
Recall that the value of mc(p, t) is the logical sum of
mbasic(p, t) and mbasic(p, tc). In the case of using mc,
when we generate new superpositions from existing de-
generate patterns pat1 and pat2 , we should consider the
4 possible patterns, that is,

(i) superpose(pat1 , pat2),

(ii) superpose(pat1 , pat2 c),

(iii) superpose(pat1 c, pat2),

(iv) superpose(pat1 c, pat2 c).

However, it is clear that (i) is equivalent to (iv) w.r.t.
the pattern matcher mc, and that (ii) is also equivalent
to (iii), because we have mc(p, t) = mc(p, tc) for any
degenerate pattern p and string t.

Thus, the following minor modification of SUPER-
POSITION in Fig. 2 makes it possible that SUPER-
POSITION can deal with P and the complements of P

simultaneously.

• The 4th line of the algorithm in Fig. 2 is
replaced with “D = {min{s, sc} | s ∈
Σl is a substring of t or tc, t ∈ P}.” Note that the
function min returns the smallest one in lexico-
graphical order from the given ones.

• The 17th line is replaced with “for newPat in
{superpose(pat1 , pat2), superpose(pat1 , pat2 c)}”
and the subsequent two lines 18 and 19 are in-
dented.

3.3 Restriction on Degeneracy

It would be reasonable to restrict the values of the de-
generacy of degenerate patterns to be searched within
a specified upper bound in order to reduce the running
time. Because for usual DNA sequence sets in addition
to random sequences, almost all of the degenerate pat-
terns with quite a high degeneracy would be not worth
searching. For example, the most general degenerate
pattern of length l over Σ is Σl, which is meaningless
to be searched. Actually, this observation is valid for
motifs of binding sites in yeast, which do not have high
degeneracies (for example, see [23]).

The next statement is clear from the definition of su-
perposition.

Lemma 2 For degenerate patterns p and q1, . . . , qn, let
r = superpose(p, q1, . . . , qn). We have degen(p) ≤
degen(r).

We therefore modify SUPERPOSITION in the fol-
lowing way. Let B be an upper bound on the degenera-
cies of degenerate patterns to be searched. If the degen-
eracy of the degenerate pattern newPat of the 17th line
in Fig. 2 is less than or equal to B, SUPERPOSITION
does the same thing, i.e., carry out the 18th and 19th
lines. Otherwise it skips the lines, which contributes to-
ward reducing the running time directly.

4

研究会Temp
－20－

1 Input: a pattern length l, string sets P and Q.
2 Output: the optimal pattern w.r.t. a specified conic score function f .
3 Procedure: SUPERPOSITION(P,Q, l)
4 D = {s | s is a substring of t, t ∈ P, |s| = l};
5 maxVal = −∞;
6 maxPat = ε; /* ε is the empty string */
7 SortedList S;
8 Hash G; /* Keep all of the enumerated patterns */
9 for s ∈ D do (maxVal , maxPat , S) = subroutine(s, P,Q,maxVal ,maxPat , S);
10 while (S is not empty) do
11 (upperBound1 , pat1) = S[1]; /* pop the pattern with the maximum upper bound in S */
12 if upperBound < maxVal then break;
13 SortedList S′;
14 for j = 2, . . . , |S| do
15 (upperBound2 , pat2) = S[j];
16 if upperBound2 < maxVal then S = S[1..j − 1]; break;
17 newPat = superpose(pat1 , pat2);
18 if newPat 6∈ G then
19 (maxVal ,maxPat , S′) = subroutine(newPat , P,Q,maxVal ,maxPat , S′);
20 S = S[2..|L|] + S′; /* sorted list concatenation */
21 return maxPat ;

1 Procedure: subroutine(Pat, P,Q,maxVal ,maxPat , S)
2 tp = |L(Pat, P,mbasic)|; fp = |L(Pat,Q,mbasic)|;
3 val = f(tp, fp);
4 if val > maxVal then maxVal = val ; maxPat = Pat;
5 upperBound = fupper bound(tp, fp, P,Q);
6 if upperBound ≥ maxVal then push (upperBound , Pat) into S;
7 return (maxVal ,maxPat , S);

Figure 2: Algorithm SUPERPOSITION. SortedList, a type of data structure, is a list whose items are kept sorted in decreasing order. The i-th item of a
SortedList S can be referred as S[i]. The consecutive items of S from the i-th item to the j-th item is referred as S[i..j]. The length of S is denoted by |S|.

4 Computational Experiments

In this section, we will report our preliminary compu-
tational experiments using the algorithm SUPERPOSI-
TION on regulons of yeast, which are sets of genes co-
regulated by a common transcription factor. We use the
regulons reported in the database SCPD [23], in which
for each regulon, the known binding sites are accumu-
lated and compiled.

We here describe the score for measuring the perfor-
mance of a motif-finder, which was proposed by [15]
and also used by [20]. Let S = {S1, S2, . . . , Sn} be a
set of positive DNA sequences, and let mk and mr be
the “known” motif and the reported motif by an algo-
rithm, respectively. The performance score Φ is defined
as follows:

Φ(S, mk, mr) =

∑n

i=1 |Imk
i

⋂

Imr
i
|

∑n

i=1 |Imk
i

⋃

Imr
i
|

where for a motif m, Imi
is the set of positions in Si

occupied by an occurrence of the motif m. Note that in
our experiments, Imk

i
means the positions of sites in Si

reported as binding sites in SCPD.
We compare the performance score of SUPERPOSI-

TION with that of quite a different type of algorithms,
MEME [1] and AlignACE [16], and that of an algorithm

similar to SUPERPOSITION, YMF [19]. MEME[1]
and AlignACE[16] use local search techniques, based
on an expectation maximization algorithm and a Gibbs
sampling algorithm, respectively. The motif model that
both use is a weight matrix. YMF[19] is an enumera-
tive algorithm evaluating degenerate patterns with high
z-scores. As conducted by [20], we also combine YMF
with FindExplanators[3], which is a tool for selecting
distinctive motifs from many motifs output by YMF.
For short, we denote this combination by YMF. For
the details of the differences between the three motif-
finders, see Sinha and Tompa’s work [20] of perfor-
mance comparison of them. A feature common to the
three algorithms and SUPERPOSITION is that their
motif models are all position-specific. We wanted to
include WINNOWER and SP-STAR, which find motif
patterns whose mutations are not position-specific, but
it does not seem to be available for downloading.

The versions of these tools are as follows: MEME is
the version 3.0.4 available at ftp://ftp.sdsc.edu/pub/sdsc/
biology/meme/. AlignACE is the linux version, which
is the current and preferred version, at http://atlas.med.
harvard.edu/download/. YMF can be downloaded from
http://bio.cs.washington.edu/software.html. The current
version of SUPERPOSITION, which is available at http:
//www.math.kyushu-u.ac.jp/∼om/softwares.html, is the
one without the options for optimizing lengths of de-

5

研究会Temp
－21－

generate patterns and the lower bounds on the number
of occurrences of patterns. Note that all source code of
the current version of SUPERPOSITION is written in
the script language “python” (http://www.python.org),
which might be an disadvantage of SUPERPOSITION
in the comparison of the running times of the algo-
rithms. On a dual Intel Xeon machine with 2G RAM
in the default setting of Turbolinux workstation 8 (ker-
nel version 2.4.18), all of the computational experiments
were carried out on a single processor.

The 800 bp long upstream regions of genes in the
regulon are extracted and given to each algorithm. The
number of motifs finally reported by an algorithm was
set to be two.

SUPERPOSITION can be parameterized with
(l, d, n, s), where l is the non-spacer length, d is the
upper bound on the degeneracy of the non-spacer, n

is the number of negative strings, and s is the length
of the spacer. The negative strings are generated
using the 3rd order Markov model trained on all yeast
upstream regions. To evaluate SUPERPOSITION, it is
executed with various parameter values, for examples,
(l, d, n, s) = (8, 8, 800, 0), etc. The conic function f

we use in this experiment is

f(tp, fp) =

(

tp

|P |

)α (

1 −
fp

|Q|

)β

,

where P and Q are the sets of positive and negative
strings, and tp = |L(p, P, mc)| and fp = |L(p, Q, mc)|
for a degenerate pattern p. We set α = 0.5 and β = 2 in
this work.

To see how many patterns are pruned, we have intro-
duced the pruning ratio, which is defined as 1−ε where
ε is the ratio of the number of the enumerated patterns
by SUPERPOSITION to the number of degenerate pat-
terns in the search space. Note that the enumerated pat-
terns are the union of D defined in Fig. 2, that is, the
substrings extracted from the positive strings, and the
generated patterns by superposing existing ones.

The parameter settings of the other algorithms are
the same as Sinha and Tompa’s performance compari-
son work [20]. YMF is executed with three parameter
sets: (l, λ, δ, t) = (6, 11, 2, 1000), (7, 0, 2, 1000) and
(8, 0, 2, 1000), where l is the total length of the non-
spacer parts, λ is the upper bound on the length of the
spacer, δ is the maximum number of degenerate sym-
bols, and t is the number of motifs output. MEME is run
with the parameters minw = 6 and maxw = 17 which
specify the range of lengths of motifs to be search. The
parameter mod = tcm, which means multiple occur-
rences are allowed. AlignACE is run with numcols = 6
and oversample = 2.

The experiments were carried out for all 34 regulons
in SCPD that have at least three genes. The results are

presented in Table 1, in which for each regulon and each
algorithm, the best performance score is written.

5 Discussion

Comparing the performance scores of the four algo-
rithms, SUPERPOSITION outperforms any of YMF,
MEME and AlignACE on 7 of the 34 regulons, as shown
in the row labeled by “Wins” of Table 1. YMF, MEME
and AlignACE win 9, 10 and 4, respectively. From this
result, YMF and MEME look better than the others.

On the other hand, the last three rows of Table 1 show
the number of the performance scores greater than or
equal to thresholds 0.25, 0.5, and 0.75, respectively.
From these data, it seems that SUPERPOSITION and
YMF have a potential for identification of highly accu-
rate motifs.

A drawback of SUPERPOSITION would be the run-
ning time. Compared with the time of the other tools,
the time of SUPERPOSITION is definitely long. How-
ever, they all seem to be still practical and there is a
guarantee that the found degenerate patterns are optimal
in the search space w.r.t. the specified score function.

As an additional information on the performance of
SUPERPOSITION, the pruning ratio for each regulon
is also provided in Table 1. We can see that about 90%
of the search space is pruned in most of the executions
of SUPERPOSITION.

A future work is to devise a pruning algorithm for
finding composite patterns, that is a combination of sin-
gle motif patterns with additional attributes, for exam-
ple, a constraint on the gap between the running occur-
rences of the single patterns and an order condition of
occurrences of the patterns, etc. We can expect such an
algorithm to find more accurate motifs since a compos-
ite motif is more discriminative in classifying the given
strings (see for example, [14, 12, 11, 13]).

Acknowledgments

The authors would like to thank Ayumi Shinohara and
Hideo Bannai for fruitful discussions. The authors
would also like to thank anonymous referees for valu-
able comments. This work was supported in part by Re-
search for the Future Program of JSPS and Grant-in-Aid
for Scientific Research on Priority Areas (C) of MEXT.

References

[1] T. L. Bailey and C. Elkan. Unsupervised learning
of multiple motifs in biopolymers using expecta-
tion maximization. Machine Learning, 21:51–80,
1995.

6

研究会Temp
－22－

Table 1: Performance score and time. The column “size” shows the number of genes in each regulon. The columns labeled Φs, Φy , Φm and Φa show the
performance scores of SUPERPOSITION, YMF, MEME and AlignACE, respectively. For each regulon, the highest performance score is underlined if it is above
0.10. The columns “time” give the running time of one execution of the algorithms, in seconds. The columns (l, d, n, s), “ratio” and “optimal” are the parameter
values of SUPERPOSITION, the pruning ratios and the optimal pattern, respectively.

Regulon SUPERPOSITION YMF MEME AlignACE
size (l, d, n, s) ratio optimal Φs time Φy time Φm time Φa time

ABF1 19 6,2,400,6 0.764 TCAN6ACG 0.31 2459 0.31 19 0.25 968 0.04 189
BAS1 6 6,4,400,0 0.906 GGTACC 0.00 1355 0.17 18 0.04 113 0.02 12
CAR1 12 6,2,400,0 0.856 CCGCSG 0.23 1444 0.29 6 0.46 476 0.01 54
CPF1 3 7,8,800,0 0.999 CACGTGM 0.91 259 0.62 16 0.62 37 0.00 6
CSRE 4 6,8,400,0 0.987 CGGN6GGA 0.28 719 0.28 19 0.32 68 0.24 9
GAL4 6 6,8,400,11 0.992 CGSN11SCG 0.71 473 0.61 24 0.66 105 0.64 32
GATA 4 6,8,400,0 0.956 CGCTTA 0.18 1262 0.40 20 0.13 90 0.39 13
GCN4 9 6,4,400,0 0.883 GAGTCA 0.31 2332 0.33 15 0.02 291 0.28 33
GCR1 6 6,4,400,0 0.998 CGGGAY 0.02 941 0.04 22 0.29 113 0.02 29
GLN3 3 6,8,400,0 0.997 CCGACG 0.00 92 0.00 8 0.00 38 0.00 10
HAP1 5 6,4,800,6 0.901 CCGN6CYC 0.31 487 0.15 17 0.03 91 0.03 10
HAP2 4 6,4,400,0 0.961 ATGGCC 0.00 527 0.00 20 0.07 66 0.03 10
HSE 6 6,4,400,2 0.937 ACCNNGCS 0.00 1373 0.26 10 0.18 88 0.27 13
MATA1 3 8,4,400,0 0.998 AATTAGGA 0.17 1453 0.19 21 0.20 34 0.11 9
MATA2 7 6,4,400,0 0.907 CCATGT 0.08 1336 0.32 23 0.36 164 0.03 22
MCB 6 6,4,400,0 0,974 ACGCGT 0.67 216 0.67 24 0.09 23 0.48 19
MCM1 23 6,2,400,6 0.778 RCCN6GGA 0.26 4290 0.26 23 0.43 1044 0.42 156
MIG1 9 6,2,800,0 0.892 CCGN6GSG 0.03 951 0.28 28 0.00 300 0.02 114
PDR3 7 8,2,400,0 0.993 TCCGYGGA 0.78 1821 0.78 31 0.41 208 0.49 16
PHO2 3 6,8,800,0 0.989 CCGGAG 0.06 844 0.00 9 0.00 45 0.00 5
PHO4 5 7,4,400,0 0.997 CACGTGS 0.20 73 0.26 22 0.16 70 0.15 14
RAP1 16 6,2,400,0 0.784 CCCSCC 0.01 2063 0.17 13 0.23 661 0.19 87
REB1 14 6,4,400,0 0.841 CGGGTA 0.31 3231 0.32 12 0.26 520 0.00 66
ROX1 3 8,2,400,0 0.997 ATCGKCCG 0.00 746 0.07 20 0.03 47 0.16 8
RPA 3 6,8,400,6 0.998 CGGN6GCC 0.20 67 0.12 23 0.00 47 0.00 8
SCB 3 7,8,400,0 0.998 TCGCGAA 0.08 124 0.35 9 0.28 45 0.44 5
SFF 3 6,8,400,0 0.994 GCCCGK 0.04 158 0.06 27 0.04 45 0.09 13
STE12 4 6,4,400,0 0.959 CCGAGA 0.00 332 0.33 9 0.00 82 0.37 12
TBP 17 6,2,400,0 0.773 CCGGRG 0.00 3743 0.00 11 0.00 750 0.00 106
UASCAR 3 8,4,400,0 0.999 CGCCGSTM 0.00 386 0.02 10 0.13 46 0.04 12
UASH 18 6,4,400,0 0.908 GCCGCC 0.00 1605 0.01 15 0.00 860 0.00 111
UASPHR 17 6,2,400,0 0.782 GGCAAC 0.01 2399 0.04 13 0.02 836 0.05 108
UIS 3 6,8,400,0 0.995 CACCGC 0.08 190 0.24 23 0.35 47 0.20 8
URS1H 13 7,4,400,0 0.981 TAGCCGC 0.59 1828 0.55 27 0.67 496 0.40 67
Wins 7 9 10 4
Φ ≥ 0.25 11 18 13 10
Φ ≥ 0.50 5 5 3 1
Φ ≥ 0.75 2 1 0 0

[2] H. Bannai, S. Inenaga, A. Shinohara, M. Takeda,
and S. Miyano. A string pattern regression al-
gorithm and its application to pattern discovery
in long introns. In Genome Informatics 2002
(GIW2002), pages 3–11, 2002.

[3] M. Blanchette and S. Sinha. Separating real motifs
from their artifacts. Bioinformatics, 17:S30–S38,
2001.

[4] J. Buhler and M. Tompa. Finding motifs using ran-
dom projections. Journal of computational biol-
ogy, 9:225–242, 2002.

[5] M. R. Fellows, J. Gramm, and R. Niedermeier.
On the parameterized intractability of closest sub-
string and related problems. In Proceedings of the

19th International Symposium on Theoretical As-
pects of Computer Science (STACS 2002), volume
2285 of Lecture Notes in Computer Science, pages
262–273, 2002.

[6] J. Gramm, R. Niedermeier, and P. Rossmanith. Ex-
act solutions for Closest String and related prob-
lems. In Proceedings of the 12th Annual Interna-
tional Symposium on Algorithms and Computation
(ISAAC 2001), volume 2223 of Lecture Notes in
Computer Science, pages 441–452, 2001.

[7] G. Z. Hertz and G. D. Stormo. Identifying DNA
and protein patterns with statistically significant
alignments of multiple sequences. Bioinformatics,
15:563–577, 1999.

7

研究会Temp
－23－

[8] K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang.
Distinguishing string selection problems. In Pro-
ceedings of the Tenth Annual ACM-SIAM Sympo-
sium on Discrete algorithms (SODA), pages 633–
642, 1999.

[9] C. Lawrence, S. Altschul, M. Boguski, J. Liu,
F. Neuwald, and J. Wootton. Detecting subtle se-
quence signals: a Gibbs sampling strategy for mul-
tiple alignment. Science, 262:208–214, 1993.

[10] C. Lawrence and A. Reilly. An expectation max-
imization (EM) algorithm for the identification
and characterization of common sites in unaligned
biopolymer sequences. Proteins, 7:41–51, 1990.

[11] X. Liu, D. Brutlag, and J. Liu. BioProspector:
discovering conserved DNA motifs in upstream
regulatory regions of co-expressed genes. In Pa-
cific Symposium on Biocomputing, pages 127–138,
2001.

[12] L. Marsan and M.-F. Sagot. Algorithms for ex-
tracting structured motifs using a suffix tree with
an application to promoter and regulatory site con-
sensus identification. J. Computational Biology,
7:345–362, 2000.

[13] O. Maruyama, H. Bannai, Y. Tamada, S. Kuhara,
and S. Miyano. Fast algorithm for extracting mul-
tiple unordered short motifs using bit operations.
Information Sciences, 146:115–126, 2002.

[14] P. Pavlidis, T. Furey, M. Liberto, D. Haussler, and
W. Grundy. Promoter region-based classification
of genes. In Pacific Symposium on Biocomputing,
pages 151–163, 2001.

[15] P. A. Pevzner and S.-H. Sze. Combinatorial ap-
proaches to finding subtle signals in DNA se-
quences. In Proceedings of the 8th International
Conference on Intelligent Systems for Molecular
Biology, pages 269–278, 2000.

[16] F. Roth, J. Hughes, P. Estep, and G. Church.
Finding DNA regulatory motifs within unaligned
noncoding sequences clustered by whole-genome
mRNA quantitation. Nature Biotechnology,
16:939–945, 1998.

[17] A. Shinohara, M. Takeda, S. Arikawa, M. Hi-
rano, H. Hoshino, and S. Inenaga. Finding best
patterns practically. In S. Arikawa and A. Shi-
nohara, editors, Progress in Discovery Science
2001, pages 307–317. Springer-Verlag Berlin Hei-
delberg, 2002.

[18] S. Sinha. Discriminative motifs. In Proceedings of
the 6th Annual International Conference on Com-
putational Biology, pages 291–298, 2002.

[19] S. Sinha and M. Tompa. A statistical method for
finding transcription factor binding sites. In Pro-
ceedings of the 8th International Conference on
Intelligent Systems for Molecular Biology, pages
344–354, 2000.

[20] S. Sinha and M. Tompa. Performance comparison
of algorithms for finding transcription factor bind-
ing sites. In Proceedings of the 3rd IEEE Sympo-
sium on Bioinformatics and Bioengineering (BIBE
2003), pages 214–220, 2003.

[21] E. Tateishi, O. Maruyama, and S. Miyano. Ex-
tracting best consensus motifs from positive and
negative examples. In Proceedings of the 13th An-
nual Symposium on Theoretical Aspects of Com-
puter Science, volume 1046 of Lecture Notes in
Computer Science, pages 219–230, 1996.

[22] J. van Helden, B. André, and J. Collado-Vides.
Extracting regulatory sites from the upstream re-
gion of yeast genes by computational analysis of
oligonucleotide frequencies. Journal of Molecular
Biology, 281:827–842, 1998.

[23] J. Zhu and M. Q. Zhang. SCPD: a promoter
database of the yeast Saccharomyces cerevisiae.
Bioinformatics, 15(7/8):607–611, 1999.

E8

研究会Temp
－24－

