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Extracting a Planar Graph with Subgraphs
Forbidding their Turning Over
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Toshimasa Watanabe*

[Abstract] The subject of this paper is the problem of extracting a maximum spanning planar subgraph,
which must be embedded as specified. Heuristic algorithms PLAN-PWB, PLAN-MWW and PLAN-
DIVIDE have been proposed so far for this problem. First, we propose PLAN-PWBZ2 that is an improved
version of PLAN-PWB. Then we propose two heuristic algorithms PLAN-MWW2 and PLAN-DIVIDE?2:
the first one is extended from PLAN-MWW, and the second one is improved from PLAN-DIVIDE by
using PLAN-MWW2 instead of PLAN-PWB. Furthermore, experimental results are given to compare

performance of these algorithms.

1 Introduction

[Problem] The problem of extracting a maxi-
mum spanning planar subgraph is defined as fol-
lows: “Given a graph G = (V, E), find an edge set
FE' C F with the maximum cardinality among all
edge sets E'" C F such that G’ = (V, E") is a span-
ning planar subgraph of G”.

We call an algorithm for extracting such a span-
ning planar subgraph G’ = (V, E') a planarization
algorithm. Consider any planar graph G, = (V, E})
with cycles C; C G,(i = 1,---, k) which must be
embedded as specified (that is, each cycle Cj is for-
bidden to be turned over). Let (E;, denote a plane
embedding of G,. If all C; are embedded as speci-

fied in G, @; is called a plane embedding (of Gp)
under “forbiddance of turning over”. Given a graph
G = (V,E), a turn-forbidden planarization algo-
rithm is an algorithm to extract a spanning planar
subgraph G, = (V, E,), with E, C E, such that G,
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is a plane embedding under forbiddance of turning
over. In order to realize a TFP algorithm, we rep-
resent each specified cycle as a clockwise directed
cycle, and any operation during the algorithm main-
tains clockwise directedness of these cycles.

[Motivation)] For
boards or VLSI, we often represent a given circuit as

designing printed-wiring-

a graph model: for example, a graph model in which
a path or a directed cycle represents how pins of a
given element are located, and a spanning tree does
a connection requirement among pins. Generally
speaking, most elements and some modules have a
side to be faced to a board in actual mounting, and
they cannot be placed upside down. We call such
an element as one-sided element. Designing layout
of each layer of single- or multi-layered boards re-
quires extracting a spanning planar subgraph of a
given graph model, where one-sided elements have

to be handled.

If we represent each one-sided element as a clock-
wise directed cycle and apply a turn-forbidden pla-
narization algorithm, then we can find planar layout
in which all one-sided elements are placed as speci-
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fied. Turn-forbidden planarization algorithms have
great importance practically.

[Known Results] The problem of extracting
a maximum spanning planar subgraph problem is
NP-hard [8] in general. It has been well investi-
gated and many algorithms have ever been pro-
posed [1,3-6,9, 10,14, 15,17, 18].
however, any algorithm in [3-6,9,17] is unlikely to

Unfortunately

be useful in such practical situations, while those
in [1,10,14,15,18] can extract a spanning planar
subgraph under the forbiddance of turning over.
Turn-forbidden planarization algorithms are useful
not only in the field of designing layout of printed-
wiring-boards having one-sided elements but in ex-
tracting a spanning planar subgraph from a given
graph that is too huge to be handled without reduc-
tion of its size. Algorithms for designing printed-
wiring-boards or a VLSI have been proposed in
[10,13,15,18]. The one in [13] is based on a find-
ing maximum-weight face: a linear time algorithm
for finding a maximum-weight face of a given pla-
nar graph G, has been proposed in [11] which also
gives a linear time algorithm for finding a planar
embedding G}, of G} such that the infinite face of
G, is a maximum-weight face of G. An algorithm
for finding a maximum-weight face is also proposed
in [16].

[Purpose]  First, in this paper, we propose
PLAN-PWB2 that is an improved version of the
known algorithm PLAN-PWB [10]. Then we
propose two other algorithms PLAN-MWW2 and
PLAN-DIVIDE?2: the first one is extended from
PLAN-MWW [13], and the second one is improved
from PLAN-DIVIDE [1] by replacing PLAN-PWB
with PLAN-MWW2. All of them are heuristic
turn-forbidden planarization algorithms for extract-
ing a spanning planar subgraph from a given large
graph. We experimentally compare the proposed
algorithms with the known algorithms. Experi-
mental results for 180 randomly generated graphs
G = (V, E) with 2000 < |V] < 10000 and 6000 <
|E| < 100000 show that PLAN-DIVIDE [1] can ex-
tract a spanning planar subgraph quickly while any
other known algorithm cannot, and it is useful for
extracting a spanning planar subgraph under for-
biddance of turning over.

2 Basic Definitions
Because of space limitation, many definitions are

omitted (see [2,8] for example).
G' = (V',E') is a spanning planar subgraph of

G = (V,F) if and only if V! = V, B/ C E and
G’ is planar. A spanning planar subgraph G' =
(VI,E") of G = (V,E) is mazimal if and only if
G" = (V,E'U{e}) is nonplanar for any e € £ — E'.
Suppose that G}, is a planar embedding of G. Let
F(Gy,) denote the set of all faces in G,. For any face
I € F(G}), the summation w(f) of the weights of
vertices and edges on the contour of the face f is
called the weight of f. We call any face f' of G,
with w(f') = maz{w(f) | f € F(G})} a mazimum-
weight face of Gj, and denote it as fiao(G)). We
call G‘;’ with w(fmax(G;,’)) = maa:{w(fmax(G‘;)) |
Gy, is a planar embedding of G } a planar embedding
with marimum-weight face of Gy, and fimae(G})
is called a mazimum-weight face of Gp. For a set
S C V of agraph G = (V, E), let G[S] denote the
graph (S, Eg), where Eg = {e = (u,v) € E |u,v €
S}. G[S] is called the subgraph induced by S of
G. V or E is sometimes represented as V(G) or
E(G), respectively. For any two vertex sets S; C V
(i = 1,2), K(51,55;G) = {(u,u2) € E | uy €
Sy and us € 52}

3 Known Algorithms

3.1 PQR-trees [12]

A PQR-tree is a data structure for turn-forbidden
planarity testing. A PQR-tree, introduced first in
[12], is a directed ordered rooted tree consisting of
four kinds of nodes: P-nodes, Q-nodes, R-nodes and
leaves. Fig. 1 shows an example of a PQR-tree,
where a circle, a rectangle without an arrow and a
rectangle with an arrow denote a P-node, a Q-node,
an R-node, respectively. All nodes except R-nodes
are elements of well-known PQ-trees [2]. Two PQR-
trees T and T" are equivalent (denoted by T'=T")
if and only if 7" is obtained from 1" by repeating any
one the following two transformations: (i) changing
the order of children of a P-node arbitrarily, and (ii)
reversing the order of children of a Q-node. Note
that the order of children of any R-node cannot be
changed. Let F(T) denote the sequence defined by
concatenating leaves of a given PQR-tree T' from
left to right. In Fig. 1, F(T) = abede. F(T) is
called a frontier of T and represents a permutation.
Let con(T) = {F(T") | T" =T}. A set S consisting
of only leaves of T' is called a leaf set of T'. Given a
leaf set S of T', a reduction of T for S is a procedure
to construct a PQR-tree 1" such that

con(T") = {m € con(T) | each element of S appear
in 7 consecutively}.
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Figure 1: An example of a PQR-tree

If no reduction is possible then the current sub-
graph is nonplanar, and we search the present PQR-
tree for a “minimum” set of edges whose deletion re-
cover planarity. A reduction is done by one of tem-
plate matchings. The details of template matchings
are omitted (see [12]).

3.2 PLAN-PWB [10]

In this subsection, we describe a heuristic algorithm
PLAN-PWB [10] for extracting a spanning planar
subgraph using PQR-trees in Section 3.1. PLAN-
PWB finds a spanning planar subgraph of GG, such
that every directed cycle is drawn clockwise, given
a graph G = (V, E) with the clockwise directed
cycles. First, PLAN-PWRB executes the following
(PWB1)-(PWBS6) to extract a spanning planar
subgraph G'[S] = (S, E%) of G[S] for any bicon-
nected component S C V of GG. Let E’ be the union
of EY% for any biconnected component S of G. Then
we obtain a spanning planar subgraph G’ = (V| E').
PLAN-PWB uses PQR-trees for planarity testing.

(PWBL1) G[S] = (S, Es), n — |S|.

(PWB2) Calculate an st-number r(v) for any v €
S. For simplicity, we consider the vertex z € V
is the i-th st-numbered one. Construct a PQR-
tree T consisting of only the vertex 1. v « 1.

(PWB3) Add a vertex v into a PQR-tree as fol-
lows:

(1) Construct a PQR-tree T, for the vertex
v, where directed edges are handled care-
fully to avoid edges to be placed inside
directed cycles. (Leaves of T, correspond
to vertices adjacent to v in G.)

Delete all copies of the vertex v appearing
as leaves of T', and add T, into 7' by mak-
ing the root of T;, as a child of the node to
which those deleted copies were adjacent.
Let T" denote the resulting PQR-tree.

(3) v—v+1

(PWBA4) Let S be the set of those leaves of T" cor-
responding to the vertex v of G. If a reduction
of T for S is executable then go to (PWB6)

(PWB5) Find a minimum set of leaves of 7" such
that, after edges that are incident upon those
leaves are deleted from T, we can resume a re-
duction of the resulting PQR-tree for S.

(PWBS6) In the PQR-tree obtained after reduc-
tion of (PWB5), merge all elements of S,
which appears consecutively, into one leaf (this
leaf corresponds to the vertex v), and let 7" de-
note the resulting PQR-tree. If v = n then halt
else goto (PWB3).

Definition 3.1 [7] Let G = (V| E) be a bicon-

nected graph. An st-numbering is a bijection r :

V. — {L,...,|V|} satisfying (1) and (u). (r(v) of

each v € V is called an st-number.)

(i) (s,t) € E;r(s) =1 and r(t) = |V].

(ii) For any v € V — {s,t}, there are two adjacent
vertices v/ € V and v € V satisfying r(v') <
r(v) < r(v").

Theorem 3.1 [7] Given a biconnected graph, an
st-numbering is obtained in linear time. O

PLAN-PWRB gives a plane embedding under for-
biddance of turning over by satisfying the following
conditions (i)—(iii):

(i) Maintaining clockwise directedness of speci-
fied directed cycles.

(i1) Forbiddance of embedding any vertices or
edges in the inside of directed cycles.

(ii1) Forbiddance of deleting any edge in any spec-
ified directed cycles.

3.3 Hierarchical Planarization Algo-

rithm PLAN-DIVIDE [1]

In this section, we describe a heuristic turn-
forbidden planarization algorithm PLAN-DIVIDE
[1] which extracts a spanning planar subgraph hi-
erarchically. The purpose of PLAN-DIVIDFE is to
find a spanning planar subgraph of a given huge
graph G = (V, E) containing a family of directed
cycles K = {C1,...,Cy} (k> 1). Let maz_edge be
the maximum cardinality accordingly of an edge set
that can be handled simultaneously by any exist-
ing planarization algorithm. First, PLAN-DIVIDE
divides G with |E| > maz_edge into some small
graphs G; = (V;, E;) with | E;| < maz_edge for some
i > 1. Then PLAN-DIVIDE extracts a spanning
planar subgraph of each G;, and finds planar edges
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from those edges connecting any pairs of subgraphs
Gi and Gj (Z # _})

First, we extract subgraphs G; = (V;, E;) (i =
1,...,d) of G with |E;| < maz_edge if |E| >
max_edge, and set d = 1 otherwise, such that each
vertex set V(C;) is a subset of some V;. Let K; be a
family of directed cycles included in each G;. Then
K is partitioned as £ U - Kgy.

Forany i =1,...,d, each spanning plane embed-
ding G(;y of G in which every directed cycles are
drawn clockwise, is obtained by PLAN-PWB. Let
Ec C F be a set of edges connecting any pair of
graphs G; and G; with 4,5 € {1,...,d} (i # j).
And then we extract the planar edges from F¢ as
follows. First represent the contour of the outer
face of each G; as a clockwise directed cycle C;. Let
Veea = Ujzy V(Ci), Erea = BcU (Ufﬂ E(Ci)) and
Greda = (Veed, Ered). If |Ereq| < max_edge, extract
planar edges among F¢ by applying PLAN-PWB
t0 Greq. If |Ered| > mawx_edge, put G «— Gpeq, and
repeat above hierarchical planarization steps recur-
sively. This is called a recursive step replacement
with cycles. After some iteration, we can find G,.4
with |E,.q4| < maz_edge and extract planar edges

from F..
The description of PLAN-DIVIDE is as follows.

PLAN-DIVIDE

Input: A graph G = (V, E) with K = {C4, ..., Cy}
(k > 1), the maximum number of an edge set
max_edge.

Output: An edge set £/ C F such that G’
(V, E') is planar.

step1l. Ky — 0, F' — 0, H—G.

step 2. Repeat the follows wuntil |E(H)| <
max_edge;
step 2-1. Applying procedure

Find_Vertez_Set to H, find a vertex
set S C V(H) with |Fg| < maz_edge,

where H[S] = (S,Es). (Note that
V(C') € Sor V(C)YNS = 0 for any
c'ek.)

step 2-2. For the vertex set S C V(H), apply
the follows (1)—(6).

(1) Hs — HI[S].

(2) Extract a spanning planar subgraph
Hy = (S,FE%) of Hg by applying
PLAN-PWBto Hg. E' — E'U E%.

(3) Calculate a vertex weight w(v) (v €
S) defined by w(v) = |K({v}, V(H)—
S; H)|.

(4) Find a maximum weight face fnqr of
H{ with the vertex weight and let évs
be a plane embedding such that f, .
is an outer face.
(5) Exchange the outer face frqe of
Gs for a cycle C4 by applying Re-
place_Cycle.
E(H) «— (E(H) — Es — K(S —
V(Cs),V(H) — S;H)) U E(Cg),
V(H) — (V(H) = S)UV(Cs),
K —Ku{C4}, Kv — Kv U{C§}.
step 3. Extract a spanning planar subgraph H' of
H by applying PLAN-PWB to H.
step 4. E' — E'UE(H')— | ] E(C").
C'eKy

(6)

Procedure Replace_Cycle replaces each E}'; with a
directed cycle C! consisting of vertices in the con-
tour of the outer face fimqz of G[S]”. And procedure
Find_Vertez_Set finds a vertex set S C V, satisfy-
ing the following (i) and (ii) for any given graph
G = (V,E) and a given family of directed cycles K:
(1) |Es| £ maz_edge for G[S] = (S, Es); (ii) For
any C' € K, V(C") C Sor V(C')NS = 0. (The
details of these procedure are omitted: see [1].)

Turn-forbidden planarization algorithms can be
used in extracting a spanning planar subgraph with
fixed embeddings of some specified subgraphs. Let
us call any subgraph H; = (V;, E;) which must be
embedded as specified as a fixed embedding sub-
graph. Given a graph G = (V, E) with a family of
fixed embedding subgraphs K = {H;,..., Ha}, re-
place each H; (j =1,---,d) by a clockwise directed
cycle C; as follows. Let N; € Hj be a set of vertices
adjacent to some vertices v € V — V(H;). For any
Hj, construct directed cycle C; with length |N;| by
the follows: (i) deleting E(H;) from G, (ii) deleting
all vertices v € V(H;) — Nj, and (iii) connecting
vertices of N; by directed edges so that a clockwise
directed cycle C; may be formed.

Clearly maintaining clockwise directedness corre-
sponds handling fixed embedding subgraphs.

4 Improving or Extending
Known Algorithms

In this section, we describe improvement and ex-
tension of some known turn-forbidden algorithms.
In Section 4.1, we point that PLAN-PWB includes
some logical error, and propose an improved version
PLAN-PWB2 by correcting it. In Section 4.2, we
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Figure 2: An example of an st-numbered graph G
such that PLAN-DIVIDE can not planarize cor-
rectly

Figure 3: A PQR-tree Ty cannot be reduced with-
out deleting leaves corresponding to directed edges

of a directed cycles such that their deletion is for-
bidden

propose a turn-forbidden planarization algorithm
PLAN-MWW2 by extending the algorithm PLAN-
MWW.

4.1 Improving PLAN-PWB

In this subsection, we point that PLAN-PWB in-
cludes a logical error, and show how to correct it.

4.1.1 Conventional st-numbering in PLA N-

PWB

Consider applying PLAN-PWB to the st-numbered
graph shown in Fig. 2. Fig. 3 shows a PQR-tree
T in reduction step for the vertex 5. In order to
continue reduction of T, leaves corresponding to di-
rected edges must be deleted, which is a contradic-
tion. The reason why such deletion occurs is that
two leaves corresponding to edges of the same di-
rected cycle are placed separately in the PQR-tree.
The existing st-numbering cannot avoid such a sit-
uation.

4.1.2 An inproved st-numbering

The proofs of the correctness of the modification is
omitted due to shortage of space.

Figure 4: An example of an sc-st-numbered graph
G such that turn-forbidden planarization can be ex-
ecuted

The improvement that we popose is to add the
following condition to leaves included in a minimum
set T found in (PWBS5): “leaves that do not cor-
respond to edges of any directed cycle.”

In oder to obtain desirable numbering of vertices,
we propose the sc-st-numbering by modifying the
conventional st-numbering as follows.

Definition 4.1 Let G = (V,E) be a bicon-
nected graph with a family of directed cycles K =
{C1,...,Cx} (k> 1). An sc-st-numbering is the bi-
jection sc 1 V. — {1,... |V|}. (sc(v) of each v € V
is called an sc-st-number.)

(i) (s,1) € E sc(s) =1 and sc(t) = |V|.

(ii) For any v € V — {s,t}, there are two adjacent
vertices v' € V and v" € V satisfying sc(v') <
se(v) < se(v').

Let vye,,..(C;) be the largest sc-st-number of
V(C;) and let v, ;, (C;) be the smallest sc-
st-number of V(Cj) respectively. For each
C; with 1 < i < k, the following condition
is satisfied : For any v € V(C;) such that
v # {Vsepa. (C ) Vsenin (Ci)}, sc(v ) < se(v) <
sc(v") or se(v") < sc(v) < se(v').

(iii)

Theorem 4.1 Given a biconnected graph, an sc-
st-numbering is obtained in linear time. |

Let PLAN-PWB2 denote PLAN-PWB with an
sc-st-numbering incorporated.

Theorem 4.2 The PLAN-PWB2 is an O(|V|? )
turn-forbidden planarization algorithm.

4.2 PLAN-MWW2

We propose a turn-forbidden planarization algo-
rithm PLAN-MWW2 by extending PLAN-MWW.
An algorithm PLAN-MWW for designing layout
of printed wiring boards with few jumpes has been
proposed in [13]. An input graph of PLAN-MWW
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is limited to only the special graph model of a given
circuit. We propose a turn-forbidden planariza-
tion algorithm PLAN-MWW2 by extending PLA N-
MWW so that general graphs can be handled.

Any input graph of PLAN-MWWZ2 is a gen-
eral graph with a family of directed cycles K =
{Cr,. G (k> 1),

PLAN-MWW2

Input: A graph G = with K
(Cr,.. G} (k> 1).

Output: A planar graph G' = (V, E’).

step 1. Set B/ — E(K). Sort the v € V by the de-
crease order of the number of edges incident to
v, let {vi,v2,...,vv|=1,7v|} be a such sorted
vertex sequence. Then for any i = 1,...,|V]|,
repeat the following step 2—4.

step 2: Let Adj(v;) be a set of vertices which are
connected to v; by F — E’. Give a weight |V|
to v;, and give a weight 1 to every v € Adj(v;).
Then, give a weight 0 to every v € V—Adj(v; )—
{ui}.

step 3: Find a maximum-weight face of G' =
(V, E") (with the exception of an inner face con-
structed by directed closed path). Let Vp be a
set of vertices constructing a maximum-weight

(V) E),

face.

step 4: Let Adj(v;)’ denote Adj(v;) N Vp. If
|Adj(v;)'| > 1, find the edge set E” C E — FE'
between v; and every v’ € Adj(v;)', add F” to
E.

5 PLAN-DIVIDEZ2

In PLAN-DIVIDE, we use PLAN-PWB for extract-
ing a spanning planar subgraph G[S]’ of each G[S].
Let PLAN-DIVIDE?2 denote PLAN-DIVIDE with
PLAN-PWB replaced by PLAN-MWW2 . We can
expect that this replacement improves capability of
the algorithm.

6 Experimental Results

[Implementation] We have implemented
PLAN-PWB2, ~ PLAN-MWW2 and PLAN-
DIVIDE?2 on a personal computer (CPU: Pentium
IV/1.7GHz, OS: Free BSD 4.5-R) with the C
programming code.

[Input data] Let K be a set of directed cycles

{C1,Cy,...,Cn}, and |V(K)| denotes |J |[V(C3)|.
i=1

Graphs G = (V,F) with K satisfying the fol-
lowing are provided: |V| € {2000,5000,10000},
|£] = {3V],5]V],10[V],30]V], 50|V, 100[V]} and
) < B3 < viey < M8 (1 < i <)
(generated by means of random numbers). The
number of graphs is 10 for each pair |V| and |E]:
180 input graphs in total.
[Comparison] We applied four turn-forbidden
planarization algorithms PLAN-DIVIDE (DIV) [1],
PLAN-PWB2 (PWB2), PLAN-MWW2 (MWW2)
and PLAN-DIVIDE2 (DIV2) for large graphs
with K, and compared the results. We has set
maz_edge = 2000 for PLAN-DIVIDE and PLAN-
DIVIDEZ2.

We show several results in Table 1 and Table 2.
The terms “|E,,|” and “CPU(s)” show the num-
ber of nonplanar edges |E — E’| and the CPU time

” in these ta-

(in second), respectively. And “—
bles shows that the algorithm could not extract a
spanning planar subgraph of the data because of
memory overflow. Also in the case that each algo-
rithm could not extract a spanning planar subgraph
within 24 hours, “—” is marked.
[Observation about experiment]
these results are summarized as follows.
(i) PLAN-PWB could not extract spanning planar
subgraphs of graphs with over 200000 edges because
of memory overflow.

(ii) PLAN-DIVIDE and PLAN-DIVIDE2 could ex-
tract spanning planar subgraphs of graphs with over
200000 edges. CPU time of PLAN-DIVIDE2 does
not with the increase of |E|.

(iii) PLAN-DIVIDE2 requires dividing an input
graph into many small graphs in order to decrease
computational time. And |Epp| of PLAN-DIVIDE2
increases as input graph is divided into more sub-
graphs. |Ep,| of PLAN-DIVIDE2 is 97.06% of that
by PLAN-DIVIDE in average. But CPU time
of PLAN-DIVIDE?2 is much longer than PLAN-
DIVIDE.

(iv) It is concluded from our experimental results
that PLAN-DIVIDF is the most useful for extract-
ing a spanning planar subgraphs of a large graph.

Points of

7 Concluding Remarks

In this paper, we have proposed two heuristic pla-
narization algorithms PLAN-DIVIDE2 and PLAN-
MWW?2 under forbiddance of turning over. It
is pointed out that many algorithms, including
PLAN-PWB, assume that connectedness of st-
numbering is kept after deletion of nonplanar edges:
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Table 1: Comparison of average |Ey,|

| V| | |E| | (DIV) | (MWW2) | (DIV2) | (PWB2) |

2000 6000 3824.0 2925.0 3276.0 3824.0
10000 7714.8 7699.0 7248.0 7714.8

20000 17451.2 — 17283.0 17451.2

60000 56897.6 — 56211.8 56772.8

100000 96683.6 — 96079.8 96464.0
200000 | 196144.0 — | 195870.0 | 196017.0

5000 15000 9768.8 — — 9768.8
25000 19609.6 — — 19578.8

50000 44376.4 — — | 44233.2
150000 | 143414.0 — | 140693.0 | 142886.0
250000 | 242797.0 — | 240571.0 —
500000 | 492029.0 — | 490484.0 —

10000 | 30000 19715.5 — — 19696.6
50000 39567.5 — — 39513.0

100000 — — — 88941.8
300000 | 288014.0 — — —
500000 | 487364.0 — — —

Table 2: Comparison of CPU time (s)

| V] | | E] | (DIV) | (MWW2) | (DIV2) | (PWB2) |
2000 6000 44.6266 31365.1 | 29600.7 | 43.3312
10000 | 88.3891 19132.2 | 26648.8 81.6547

20000 | 217.564 — 27164 197.867

60000 | 242.495 — | 212454 | 941.112

100000 | 301.914 — 18934 1995.02

200000 | 320.144 — 11987 6047.73

5000 15000 | 275.639 — — | 242.598
25000 | 1333.11 — — | 567.895

50000 | 696.833 — — 1467

150000 | 1015.36 — | 109750 7272.91

250000 741.52 — 72579 —

500000 | 940.547 — | 51927.9 —

10000 | 30000 8031.6 — 1116.07
50000 3604.4 — — | 2746.01

100000 — — — | 7576.21

300000 | 1201.94 — — —

500000 | 1212.19 — — —

which is not always the case, causing some malfunc-
tion of algorithms. We have succeeded in correcting
this error by proposing the sc-st-numbering. More-
over we have evaluated performance of two pro-
posed algorithms and known algorithms experimen-
tally. Tt is concluded that PLAN-DIVIDE [1] can
quickly extract a spanning planar subgraph under
forbiddance of turning over, showing usefulness in
extracting a spanning planar subgraph from a given

graph such that it is too large to be handled without
reduction of its size.

Some problems left for future research are as fol-
lows: (i) proposing better graph partitioning algo-
rithm such that the resulting planar subgraph has
more edges. (ii) proposing better planarization al-
gorithms under forbiddance of turning over.
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