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abstract Given two finite sets of points X', in R™ which can be separated by a nonnegative linear
function, and such that the componentwise minimum of any two distinct points.in A" is dominated by some
point in Y, we show that |X| < n|Y|. As a consequence of this result, we obtain quasi-polynomial time
algorithms for generating all maximal integer feasible solutions for a given monotone system of separa-
ble inequalities, for generating all p-inefficient points of a given discrete probability distribution, and for
generating all maximal hyper-rectangles which contain a specified fraction of points of a given set in R"™.
This provides a substantial improvement over previously known exponential algorithms for these genera-
tion problems related to Integer and Stochastic Programming, and Data Mining. Furthermore, we give an
incremental polynomial time generation algorithm for monotone systems with fixed number of separable
inequalities, which, for the very special case of one inequality, implies that for discrete probability distri-
butions with independent coordinates, both p-efficient and p-inefficient points can be separately generated
in incremental polynomial time.

1 Introduction

Let X and Y be two finite sets of points in R™ such that

(P1) X and Y can be separated by a nonnegative linear function: w(x) >t > w(y) for all z € X and
y € Y, where t € R is a real threshold, and w(z) = > or., wiz;, for some nonnegative weights
Wi, ..., W € Ry : ;

(P2) For any two distinct points x,z’ € X, their componentwise minimum z A z’ is dominated by some
yeV ie, Nz <y.



Given X, C R" satisfying properties (P1) and (P2), one may ask how large the size of X’ can be in
terms of the size of . For instance, if X is the set of the n-dimensional unit vectors, and Y = {0} is the
set containing only the origin, then X and Y satisfy properties (P1), (P2), and the ratio between their
cardinalities is n. We shall show that this actual]y is an extremal case:

Lemma 1 (Intersectlon Lemma) If X andY # 0 are two ﬁnzte sets of points in R™ satzsfymg properties

(P1) and (P2) above, then , ,
1¥) < nlyI: “ 1)

An analogous statement for binary sets X', ) C {0,1}" was shown in [7]. Let us also recall from [7] that
condition (P1) is important, since without that |X| could be exponentially larger than |, already in the
binary case. Let us also remark that the nonnegativity of the weight vector w is also important. Consider
for instance I = {(1,1,...,1)} and an arbitrary number of points in the set X’ such that 0 < z; < 1 for all
ze€ X andi=1,...,n. Then clearly (P2) holds, and (P1) is satisfied with w = (-1,0,...,0) and t = —1.
However, it is impossible to bound the cardinality of X in terms of n and |V| = 1.

Let us further note that, due to the strict separation in (P1), we may assume without loss of generality
that all weights are positive w > 0. In fact, it would be even enough to _prove the lemma with w =
(1,1,...,1), since scaling the ith coordinates of all points in X UY by w; > 0 for i = 1,...,n always
transforms the input into one satisfying (P1) with w = (1,1,...,1). Clearly, such scaling preserves the
relative order with respect to each coordinate of the points, and scales properly their componentwise
minimum, so that the transformed point sets will satisfy (P2) as well.

We sketch Lemma 1 in Section 5. As a consequence of the lemma, we obtain new results on the
complexity of several generation problems, including:

Monotone systems of separable inequalities: Given a system of inequalities on sums of single-variable mono-
tone functions, generate all maximal feasible integer solutions of the system.

p-Efficient and p-inefficient points-of discrete probability distributions: Given a random variable § € Z",
generate all p-inefficient points, i.e., maximal vectors z € Z™ whose cumulative probability Pr[¢ < z]
does not exceed a certain threshold p, and/or generate all p-efficient points, i.e., minimal vectors
z € Z™ for which Pr[¢ < x] > p. This problem has applications in Stochastic Programming [9, 19].

Mazimal k-boxes: Given a set of points in R™ and a nonnegative integer k, generate all maximal n-
dimensional intervals (bozes), each of which contains at most k of the given points in its interior. Such
intervals are called empty boxes or empty rectangles, when k = 0. This problem has applications in
computational geometry, data mining and machine learning (1, 2, 8, 10, 15, 16, 17, 18].

These problems are described in more-details in the following sections. What they have in common is
that each can be modelled by a property 7 over a set of vectors C = C; XCa X - -+ X Cp, where Cj, i =1,...,n
are finite subsets of the reals, and 7 is anti-monotone, i.e., if z,y € C, © > y, and z satisfies property m,
then y also satisfies 7. Each problem in turn can be stated as that of incrementally generating the family
Fr of all mazimal elements of C satisfying m:

GEN(F,,E): Given an anti-monotone property @, and a subfamily £ C Fr of the mazimal elements
satisfying m, either find a new mazimal element x € Fr \ €, or prove that £ = F.

Clearly, the entire family F, can be generated by 1n1tlallzmg & = P .and iteratively solving the above
problem |F,| + 1 times. :

For a subset A C C, denote by T (A) the set of maximal independent elements of A, i.e., the set of those
elements z € C that are maximal with respect to the property that z # a for all a € A. Let Z-1(A) be the
set of elements = € C that are minimal with the property that = £ a for all @ € A. In particular, Z~1(F,)
denotes the family of minimal elements of C which do not satisfy property 7.

Following [7], let us call F, uniformly dual-bounded, if for every non-empty subfamily £ C F we have

IZ74&) NI (Fx)| < p(Irlym, E]) (2)

for some polynomial p(-), where |r| denotes the length of the description of property m. It is known that
for uniformly dual-bounded families F,, of subsets of a discrete box C problem GEN(F,,£) can be reduced
_in polynomial time to the following dualization problem on boxes (see [5] and also [4, 13, 14]):



DUAL(C, A,B): Given an integer box C, a family of vectors A C C and a subset B C I(A) of its mazimal
independent vectors, either find a new mazimal independent vector x € Z(A) \ B, or prove that no
such vector exists, i.e., B =TI(A). '

It is furthermore known that problem DUAL(C, A, B) can be solved in poly(n) + m°U°e™) time, where

= |A|+|B] (see [5, 12]). However, it is still open whether DUAL(C, A, B) has a polynomial time algorithm
(e.g., [4, 11, 12)). : : : :

For each of the problems described above, it will be shown that the families Z “HEYNTI™YFy) and

& C Fr can be related to two sets of points X, ) satisfying the conditions of Lemma 1. Then the Lemma
will imply (2), which in its turn is sufficient for the efficient generation of the family F, (see [5]).

In particular, it will follow that each of the above ‘generation pro‘bleAms’can be solved incrementally in
quasi-polynomial time. Furthermore, we give incremental polynomial-time algorithms for generating

o all maximal feasible, and separately, all minimal infeasible integer vectors for systems with fixed
number of monotone separable inequalities, and

o all p-efficient, and separately, all p-inefficient points of discrete probability distributions with inde-
pendent coordinates ‘ ,

In the last section, we consider some generalizations of the intersection lemma. Namely, we show
that an analogous lemma holds for families of vectors in the product of arbitrary meet semi-lattices. As
an application, we obtain quasi-polynomial time algorithms for generating maximal feasible solutions for
systems of monotone inequalities on sums of separable functions with bounded number of variables, and for
generating maximal k-boxes whose diameter does not exceed a given threshold, for a given set of points.

Due to the space limitation, we skip most proofs of the results, which can be found in [6].

2 Systerﬁs of Monotone Separable Inequalities

For i = 1,2,...,n, let I; and u; be given integers with [; < u;, and let C; def {lili+1,...,u} A
function f : C; — R is called monotone if, for z,y € C;, f(x) > f(y) whenever x > y. Let f;; : C; — R,
i=1,2,...,n; § = 1,...,7 be polynomial-time computable monotone functions, and consider the system
of inequalities

n
Zf“—](‘rl) < t], ] = 11""77”7 (3)
i=1

overtheelements z € C ={x € Z" || < & < u}, wherel = ({1,...,0n), u = (u1,...,un), andt = (t1yeenytr)
is a given r-dimensional real vector.
Let us denote by F; the set of all maximal feasible solutions for (3). Then Z~ YF) represents the set

of all minimal infeasible vectors for (3).

Generalizing results on monotone systems of linear 1nequaht1es from [5], we will now use Lemma 1 to
prove the following:

Theorem 1 If F; is the family of all mazimal feasible solutions of (3), and € C F; is non-empty, then
IZ-1E) NI (F)| < rnl€l. (4)
In particular, |I7Y(F,)| < rn|F|.

Since by (4) the family F; is uniformly dual-bounded, the results of [5], as we cited earlier, directly
imply the following.

Corollary 1 Problem GEN(Fi,X) of incrementally generating maximal feasible solutions for (3) can be
solved in k°U8%) time, where k = max{n; r, |X|} and poly(k)log(|ju — U||oc + 1) feasibility tests for (3).

It should be mentioned that in contrast to (4), the size of F; cannot be bounded by a polynomial in n,
r, and |Z~1(F;)|, even for monotone systems of linear inequalities (see e.g. [5]). However, for systems (3)
with constant r, we shall show that such a bound exists, and further that the generation problem can be
solved in polynomial time:



Theorem 2 If Fy is the family of mazimal feasible solutions of (3), and £ C IT~Y(F,) is non-empty, then
IZ(€) 0 Fel < (nl€])". (5)

In particular, |F;| < (nlf—l(ft)])r~

Theorem 3 If the number of inequalities in (8) is bounded, then both the mazrimal feasible and minimal
infeasible vectors can be generated in incremental time, polynomial in n, r and log(jlu — Ifjo +1).

In the next section, we consider an apphcatlon of Theorem 3 for the case of r = 1.

3 p-Efficient and p-Ineflicient Points of Probability Distributions

Let 6 be an n-dimensional random variable on Z®, with a finite support S Q Zr, ie., qu sPrig =
gl = 1, and Prf¢ = ¢] >0 for ¢ € S. Given a threshold probability p € (0,1), a point z € Z" is said to
be p-efficient if it is minimal with the property that Pr[{ < z] > p.. Let us conversely say that z € Z"
is p-inefficient if it is maximal with the property that Pr[§ < z] < p. Denote respectively by Fs, and

I~ Y Fs,p) the sets of all p-inefficient and p-efficient points for £. Clearly, these sets are finite since, in each

dimension i € [n } = {1, ...,n}, we need to consider only the projections C; def {gigi — 1] g€ S} CZ. In
other words, the sets Fs , and Z~1(Fs ) can be regarded as subsets of a finite integral box C = C; x - --xCy,
of size at most 2|S| along each dlmensmn

Theorem 4 Given a partuzl list £ C Fs p of p-inefficient points, problem GE‘N(.T-S p; ) can be solved in
ko8 k) time, where k % max{n, |S],|£[}. ' :

In particular, all p-inefficient points of a discrete probability distribution can be enumerated incremen-
tally in quasi-polynomial time. In general, a result analogous to that for p-efficient points is highly unlikely
to hold, since the problem is NP-hard:

Proposition 1 Given o discrete random variable £ on a finite support set S C R™, a threshold probability
p € (0,1), and a partial list £ C I=Y(Fs,) of p-efficient points for £, it is NP-complete to decide if
EA T YFsp).

Finally we observe that if £ is an integer-valued finite random variable with independent coordinates
&1, ...,&n, then the generation of both Z=1(Fs,) and Fs,, can be done in polynomial time, even if the
number of points S, defining the distribution of £, is exponential in n (but provided that the distribution
function for each component &; is computable in polynomial-time).  Indeed, by independence we have
Pri¢ < z] = [T}, Prl§ < 2;]. Defining f(z) = log Pr[§ < z] = > log Pr(é; < z;], we can write f(x)
as the sum of single-variable monotone functions fi, ..., fn, where f; = logPr|¢; <z, for i = 1,...,n.
Let I; = min{z; € Z | Pr[¢; <] >0} -1, u; =min{z; € Z | Prl§; <z;)=1},and C; = {z € Z | ; <
z < u;}, where we regard log0 as —oco. Then the p-inefficient (p-efficient) points are the maximal feasible
(respectively, mlmmal mfeasxble) solutions of the monotone separable inequality Y7 | fi(z;) < ¢ log P

over the product ¢ C1 X +++ X Cp. Consequently, Theorem 3 immediately gives the following:

Corollary 2 If the coordinates of a random variable £ over Z™ are independent, then both the p-efficient
and the p-inefficient points for £ can be enumerated in incremental polynomial time.

4 Maximal k-Boxes

Let S be a set of points in R”, and k < |S| be a given integer. A maximal k-box is a closed n-dimensional
interval which contains at most k points of S in its interior, and which is maximal with respect to this
property (i.e., cannot be extended in any direction without strictly enclosing more points of S). Let Fs k-
be the set of all maximal k-boxes. The problem of generating all elements of 5o has been studied in
the machine learnmg and computational geometry literatures (see [2, 8, 10, 17, 18}), and is motivated by
the discovery of missing associations or “holes” in data mining applications (see [1, 15, 16]). All known
algorithms that solve this problem have running time complexity exponential in the dimension n of the
given point set. In contrast, we show in this paper that the problem can be solved in quasi-polynomial
time:



Theorem 5 Given a point set S C R™, an integer k, and a partial list of mazimal empty bozes £ C Fs .,
problem GEN(Fs x,€) can be solved in m*U°e™) time, where m max{n,|S|, |€]}.

Theorem 5 should be contrasted with the following negative result:

Proposition 2 Given a set of points S C R", an integer k < ||, and a subfamily X C I=Y(Fsx) of
minimal bozes each of which contains at least k points of S in its interior, it is NP-complete to decide if
X # TN Fsx)- ‘ ' ' '

5 Sketch of the Intersection Lemma

As mentioned in the introduction, we may assume without loss of generality that all the weights are 1’s.
We can further assume that |X| > 1 and that Y is an inclusion-wise minimal family, each vector of which
is a component-wise minimal for properties (P1) and (P2). Fori =1,...,n, let [; def min{z; | z € X}, and
u; 4 max{x; | x € X'}. To prove the lemma, we shall show by induction on |X| that |X| < > uey 1),
where ¢(y) is the number of components y; such that y; < u;. - -

For |X| = 1 the statement is true since ) is non-empty and ¢(y) = 0 for y € Y implies by (P1) that
X = . Let us assume therefore that |X| > 2, and define for every i = 1,...,n and z € R the families
X(i,z) ={z e X|x; >z}, Y(i,2) = {y € Y|y > z}. Clearly, these families satisfy conditions (P1) and
(P2). Furthermore, we may assume without loss of generality that Y (3, z) = 0 implies X(i,2) = § for all
i € [n] and z € R. Indeed, by (P2), if |Y(4, z)| = O then |X(i,z)| € {0,1}. If there is an i € [n] and z € R,
such that X(i,2) = {z} and Y(i, z) = 0, then deleting the element z from X reduces |X| by 1 and reduces
the sum > ., ¢(y) by at least 1.

Thus, we can assume by induction on the number of elements in X that |X(i,2)] < Zye)}(i,z) a(y)
whenever |X(i, z)| < |X|. Since the latter condition is satisfied for z > [;, we can sum up the inequalities, for
all values z > l;, and for all indices i € [n], toobtain 3317, [, [X(6,2)ldz < 320, [0 3 ey 9(v)dz It
is easily seen that the left hand side is equal to L = 3, Y7, (s —1;), while the right hand side is equal to
R=3,cya(y) > i—  (yi—l:). Thus, we get by (P1) that (t—>7" | 1;)|X| < L< R < (¢=Y"0, 1) > ey 4(y)-
Since t — E:;l l; > 0 can be assumed, the proof is completed. [}

6 Generalizations

In this section, we give some generalizations of the intersection lemma and discuss some further appli-
cations. .

6.1 Intersection Lemma for Meet Semi-lattices
Let P;, i = 1,...,n be given finite partial orders such that for any index i and any two elements x,y € P;,

elements x and y have a unique minimum, i.e., the meet z Ay def min(z, y) € P; exists and is well defined.
Denote by =" the precedence relation on P, and for £ C P, let £+ = {y € P | y = = for some z € £}
and £~ = {y € P | y X z for some z € £}. For simplicity, we write 2+ and 2~ instead of {x}T and {z}~,
respectively. For ¢ € [n] and © € P;, define .

qi(z) =[{z € Pi : z¢z~ and z has an immediate predecessor z’ < x}|;
and let q(y) % S aily) forye P P X X Py

Lemma 2 Let P;, i = 1,...,n, be given finite meet-semi lattices, let w : U, P; — Ry be a function
assigning a non-negative weight to each element in U, P;, and let t € Ry be a given positive threshold.
Assume that X and Y # 0 are subsets of P = Py x -+ X Pp such that

(i) for allx € X and y € Y we have 3, w(z7) >t > Y7 w(y;), where w(Q) def > seo w(z), for
QCP; and i € [n];
(1) For every z’ # "' € X there exists ay € Y such that y = x' Az

Then we have
1A <Y ) (6)

. yey
In particular, |X| < (30, [Pl — n)[V|.



Note that the bound of Lemma 2 is best possible, and Lemma 1 can be derived as a special case of
Lemma 2.

6.2 r-Intersection Lemma

Lemma 2 can be further generalized as follows. Given two finite sets of elements X and Y in the product

p &t Py x - -+ x Pr, of n meet semi-lattices, and an integer r > 2, consider the following property :

ii’) For any r distinct elements z1, aiz, ...,x" € X, their componentwise meet £ Az2A. . . Az" is dominated
p :
by somey € Y, i.e, 2t Az2 AL AZT <y.

Lemma 3 If X and Y # 0 are two finite sets of points in P satzsfymg properties (i) of Lemma 2 and (i)
above, then
X< (r-1) }:4(2! .

yey

6.3 Systems of Monotone Inequalities on Sums of Separable Functlons with Bounded
Number of Variables ,

We can generalize Theorem 1 as follows. Let Hi,...., Hy C 2" be r multi—hypergraphs on n vertices,

andlet C=Cy x - xCp ={z € R" |l <z < u}, where [,u € R™. Forj =1,. ..,ryHeH;, andic H, let

fH,i,j : Ci — Ry be a single-variable (polynomial-time computable) monotone functlon Consider a system

of r inequalities .
Z HfH,i,j(xi)Stja .j:lv""rv (7)
HeM; ieH
over x € C, where ty,...,t, are gwen real thresholds For a hypergraph H, define dim(H) = max{|H] :
‘H}. Function f(zl,xz,:rg) = £3x9 + 22,22 + 25 is an example with r = 1 and dim(H) = 2.

Theorem 6 If dim(H;) < const for all j = 1,...,7, then all mazimal feasible solutions of a system (7)
can be generated in incremental quasi-polynomial time.

Theorem 6 is a consequence of the following,.

Theorem 7 Let Hy,..., Hy C 2" be r multi-hypergraphs on n vertices. For j =1,...,r, H € H;, and
i€ H,let fr,;:Ci— ]R+ be a single-variable monotone function. If F is the family of all mazimal feaszble
solutions of (7), and € C F is non-empty, then

|Z74e) NI (F)| < Z > HIEIE + DI ) ).

=1 HEH;
In particular, |I71(P) NI™HF)| < d(Xf—, [H;)(@IP)+1)4-1|Y)|, where d = max{dim(H,), ..., dim(H,)}.
On the negative side, we have the following proposition.

Proposition 3 Given a hypergraph M C 2" and an integer threshold t, incrementally generating all
minimal infeasible vectors for the inequality f(z) = 5 en iy T <t over z € {0, 1} 45 NP-hard, even
if dim(H) = 2.

6.4 Maximal Packings/Coverings of Points into/by Boxes

Let S be a set of points in R™. Let C: § — {1,2,...,7} and w : S > Ry be respectively a coloring and
a weighting of the point set S, i.e., mappings that assign respectively one of r colors and a non-negative
real weight to each point in S. Given a non-negative threshold vector ¢ = (¢, ..., tr) € R, let us define

a packing of the point set S, with respect to (w,C,t), to be a box containing (in its interior) a subset

of §; def {p-€ S| Clp) = i} of total weight at most t; for all 4 = 1,...,r. Let us define conversely a

(C,w,t)-covering of S, to be any box that contains a subset of S; of total weight greater than t; for some
t=1,...,7. Denote respectively by Fs cw: and T71(Fs ¢ w,) the families of all maximal packings and
all minimal coverings of the point set § with respect to (w,C,t). Clearly, if r = 1, t = k, and all weights
are ones, then Fs ¢y, is just the family of maximal k-boxes discussed in Section 4. Therefore, Theorem
. 5 is a special case of the following.



Theorem 8 All mazimal packings of a given point set S C R", with respect to a given coloring C : S v
{1,2,...,7}, a non-negative weight w : S — Ry, and a given threshold vector t € R, can be generated

incrementally in k°0°8%) time, where k < max{n, |S|,|X|}.

This follows again from a generalization of the dual-bounding inequality, which can be proved using
the intersection lemima:

Theorem 9 Let S be a given set of points in R®, C: S+ {1,2,...,7} and w: S — Ry be respectively a
coloring and a weighting of S, and t € R, be a given non-negatwe real-threshold. If F = Fs oy is the
set of packings of the point set S, with respect to (C,w,t), then

[Z-1(Y) ﬂI’l(}')I < Z Z [{p € S; | point p & the interior of box y}|, (8)

i=1y€y
for‘any D#YCF, where S; = {pe 8| C(p) =i}. In particular, |I~Y(F)| < r|S||F|.

6.5 Maximal Packings with Certain Geometric Properties

We conclude with one more application of Lemma 2. Let S be a set of points in R®. Fori =1,...,n,
consider the set of projection points S; def {p: € R | p € 8}, and let L; be the lattice of intervals whose
elements are the different intervals defined by the projection points S;, and ordered by containment ”> ”.
The meet of any two intervals in £; is their intersection, and the join is their span, i.e., the minimum interval
containing both of them. The minimum element I; of L; is the empty interval. Let £ = £y x --- x £,,, and
for abox z € £, and i € [n], denote by |z;| the length of the interval z;. Let fi; : Ry — Ry, i=1,2,...,n,
j=1,...,7 be monotone supermodular functions, i.e., fi;(z) > fi;(y) for = y, and

Fii(@ NV y) + fi(z Ay) > fii(x) + fisy) 9)

for all z,y € L£;. Let us also say that f : £; — Ry is locally supermodular if (9) is satisfied for all z,y € £;
for which z V y is an immediate successor of x,y. It is not hard to see that local supermodularity is a
sufficient condition for the supermodularity of a monotone function on the lattice £;.

-Consider the system of inequalities
n
Efl](lm’bl)gtja j:la"w'f’ (10)
i=1
over the set of n-dimensional boxes z € £, where t = (t1,...,t,) is a given nonnegative r-dimensional real

vector. Let us denote by Fs ; the set of all maximal feasible solutions for (10).

Theorem 10 Let S CR" be a given point set, fij : Ry — Ry, i=1,2,...,n, j=1,...,r be monotone
supermodular functions, and t € R7. be o given threshold vector. Then for any non—empty subset Y of the
mazimal feasible solutions Fs . of (10) we have :

I ) NI (Fs,0)| < nfS|Y) (11)
Corollary 3 Let S C R™ be a given point set, fi; : Ry — Ry, i =1,2,...,n, 4 =1,...,7 be monotone

convex functions, and t € R be a given threshold vector. Then for any non-empty subset Y of the mazimal
feasible solutions Fs 4 of the system

S fillml) <t i=1,...,r,
i=1

we have
IZ7 ) NI (Fs.0)] < rnfSIIVI. (12)



Finally, we mention two applications of Corollary 3:

(i) Given a set of points & C R™, a coloring C : § — {1,2,...,r}, a weighting w : § = Ry, and
a non-negative real threshold ¢t € R’,, generate all maximal (w,C,t)-packings of S w1th diameter not
exceeding a given threshold 8 > 0. If z € £ is such a packing, then it must further satisfy the inequality
(o7, |2s|P)/P < & which is in the form covered by Corollary 3 for any finite p > 1.

(ii) Given n sets P1,---,P, C R, and a nonnegative real threshold J, generate all minimal boxes
la,b] € £ with {a;,b;} C P;, for i = 1,...,n, and with volume at least 4. In fact, these boxes are the
minimal feasible solutions of the inequality 3", log |z;| > log §, over the lattice L. If F is the family of all
minimal feasible solutions to this inequality, then, as was done in Theorem 10 and Corollary 3, one can use
Lemma 2 to prove that |Z(X) NZ(F)| < %, |Ps|)X|. for any non-empty subset X C F. Thus all minimal
boxes with volume at least 4 can be generated in qua51-polynom1al time.
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