
長距離・短距離通信が混在する環境での TCP/IP の
データ転送速度の理論的解析
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長距離と短距離の通信が混在する環境での TCP/IP の性能を理論的に解析する研究について、二
つの方法による結果を述べる。どちらも TCP の輻輳制御アルゴリズムを簡略化した AIMD 輻
輳制御アルゴリズムを対象とし、ボトルネックが 1個だけある単純なネットワークモデルを採用
する。一つは通信が時間とともに動的に発生・完了する環境での total flow time の competitive
analysis で、距離が一定の場合より competitive ratio が距離を反映した加速度の最大と最小の
比だけ悪くなることを示す。もう一つは single-drop モデルでの定常状態の解析で、加速度が一
定の場合には定常状態での帯域利用率の合計は速度を落とす通信の選びかたによらないこと、2
本の通信が存在して加速度が異なる場合には定常状態での帯域利用率の合計は加速度が小さい通
信を常に優先して通す場合に最大となることなどを示す。

Theoretical Analysis of Throughput

of TCP/IP Congestion Control Algorithm
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Two results are presented on the theoretical analysis of the performance of TCP/IP in environ-
ments where both long- and short-distance communications exist. Both studies treat AIMD
congestion control algorithm, a simplified version of the congestion control algorithm used
in TCP, and assume single-bottleneck network model. One result is about the competitive
analysis of the total flow time in environments where communications arrive and complete as
time goes, and shows that the coexistence of communications with different distances results
in worse competitive ratio than the cases all the communications have an equal distances by
factor of ratio of maximum to minimum acceleration. The other result is about the analysis of
stationary states in the single-drop model. We show that if all the connections have an equal
acceleration, the total bandwidth utilization does not depend on which connection decreases
its transmission rate, and that if there are exactly two connections with different accelerations,
the maximum total utilization is achieved by passing the data of the connection with lower
acceleration as much as possible.

1 Introduction

The Transmission Control Protocol (TCP) is used
by most data transfer in the Internet. The con-
gestion control in TCP makes a guess on the ap-
propriate transmission rate by only using the data
exchanged between the endpoints of the connection.
The current congestion control algorithm increases
the transmission rate at a constant rate while the
transmission succeeds, and drops it to a half of the
current rate when congestion is detected. This algo-
rithm is called Additive Increase and Multiplicative
Decrease (AIMD) [1].

These days, the backbone network over gigabits
per second such as Abilene and GÉANT is rapidly
constructed, and the bandwidth of the links in the
Internet, especially of the long-distance ones, is in-
creasing. The increase has revealed the problem the
current TCP congestion control has: the current
TCP results in very low throughput when used for
long-distance data transfer [13], which is known as
the performance problem with Long Fat Pipe Net-
works (LFNs). To tackle the LFN problem, many
alternative congestion control algorithms for TCP
have been proposed [5,8,10]. Currently their perfor-
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mance is evaluated mainly by means of experiments
and simulations. Theoretical analysis of the current
TCP algorithm is now required for analytical com-
parison of different congestion control algorithms,
which is the main theme of this paper. Among
many causes pointed out for the LFN problem such
as high transmission error rate, we focus on the co-
existence of short-distance connections with very-
long-distance ones.

At the same time, there are more and more needs
for the transfer of various kinds of large data. For
example, people will send e-mails with video images
of tens or hundreds of megabytes length in near fu-
ture. As an example where huge data is concerned,
some research institutes currently receive data of
terabytes or more produced by scientific measure-
ment instruments by the physical transportation of
Digital Linear Tapes (DLTs), but they can receive
them online if the LFN problem is resolved [7]. This
indicates the necessity of the analysis of the perfor-
mance of the long-time transfer of very large data.

In this paper, in quest of the exact reason the cur-
rent TCP does not perform well on LFNs, theoreti-
cal analyses are performed from various viewpoints
on the most fundamental network model with a sin-
gle bottleneck, as depicted in Figure 1. The per-
formance is analyzed in the case that each of the
connections with different distances transfers large
data. As we focus on the transfer of large data,
we consider only the AIMD congestion avoidance
phase of TCP of sufficiently long period, ignoring
the effect of the slow start phase which is relatively
short period of time.

In the real world, the distance of a connection
affects the behavior of the AIMD mainly in three
ways. (1) Acceleration: In the AIMD algorithm,
the transmission rate of a connection increases by
α = c/T 2 per unit time while the transmission suc-
ceeds, where c is Sender Maximum Segment Size
(SMSS), which is a constant for usual case, and T
is Round Trip Time (RTT), which reflects the dis-
tance of the connection. This α is called the ac-
celeration of the connection. (2) Response time:
After a node transmits its data, it takes the time
amount of RTT to know whether the transmission
has succeeded or failed. (3) The number of conges-
tion points: Long-distance connections pass more
congestion points such as routers and switches than
short-distance connections.— We focus on the dif-
ference of (1) to isolate the effects of different dis-
tances of connections. We say the environment is
homogeneous if all the connections have an equal
acceleration, and heterogeneous otherwise.

Edmonds et al. [4] consider the single-bottleneck
network and prove by theoretical analysis that the
AIMD algorithm performs well when all the connec-

tions have a common acceleration, that is, in the
homogeneous case. In section 4, we extend their
result to the heterogeneous case and show a result
that suggests the AIMD does not perform well when
connections have different accelerations, thus ex-
plaining the low throughputs under the coexistence
of short- and very-long-distance communication.

In section 5, we further analyze the total band-
width utilization and the share of the available
bandwidth in the stationary state. Many exist-
ing results, including the result by Edmonds et al.
and our extension to it, assume that when conges-
tion occurs at the bottleneck, all the connections
drop their transmission rate at the same time as
depicted in Figure 2 (a). With this assumption,
it is shown that the total utilization does not de-
pend on the number of connections. To fill a gap
between this assumption and the reality, we con-
sider another model of the drop as shown in Figure
2 (b). In the new model, when congestion occurs,
one connection is chosen as victim and only the vic-
tim drops its transmission rate and the transmission
rate of the other connections does not change. We
call this model the single-drop model and refer to
the previous model as the all-drop model. Using the
single-drop model, we show that under several dif-
ferent conditions, the total utilization increases as
the number of connections increases. We prove that
under some conditions in the single-drop model, the
total utilization becomes worse with the heterogene-
ity increases. In addition, we prove that in the all-
drop model and part of the single-drop model, the
bandwidth is shared among the connections in pro-
portion to their accelerations, hence in proportion
to the inverse of the square of their RTTs.

2 Related works

TCP congestion control is an algorithm which works
without knowledge about the bandwidth of links or
information about other communication sharing the
network. There are two approaches to the theoreti-
cal analysis of the performance of such incomplete-
information algorithms. Probabilistic analysis is
the analysis of the average case after assuming some
probabilistic distribution of the unknown informa-
tion, and competitive analysis is the analysis of the
worst competitive ratio of the performance to the
fictional case where the complete information were
available to an algorithm.
Probabilistic analysis. Several papers [11, 12,
14] analyze how the throughput of homogeneous
TCP connections is affected by random packet
losses under the assumption that every packet is
dropped independently with a constant probability.
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Figure 1: A single-bottleneck network consisting of a bottleneck with bandwidth B and n connections
with different distances. Each connection Ci has the acceleration αi which is inversely proportional to
the square of its RTT.
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Figure 2: Time evolution of the transmission rates r1 and r2 of the two connections with the accelerations
α1 : α2 = 2 : 3 and the drop factor β = 1/2. (a) uses the all-drop model, and (b) uses the single-drop
model and Periodic victim policy.

De Vendictis et al. [2] consider the environment with
two connections where one connection uses the cur-
rent TCP and the other uses a different congestion
control algorithm called TCP Vegas, and analyze
the throughputs of the connections in the station-
ary state.

Competitive analysis. At the top of our
knowledge, the application of the competitive anal-
ysis to the performance evaluation of TCP conges-
tion control was first proposed and performed by
Karp et al. [9]. They formalized the congestion
control as the algorithm to guess a secret available
bandwidth which changes little by little over time.
Edmonds et al. [4] consider the setting where mul-
tiple homogeneous connection jobs arrive and com-
plete over time. They regard TCP as an online and
distributed algorithm to share the available band-
width among ongoing connections and compare it
to scheduling algorithms which share the available
processors among ongoing jobs in the centralized
manner. They show that TCP achieves a constant
competitive ratio independent of the number of con-
nections by the competitive analysis against the op-
timal offline scheduling algorithm. However, the re-
sult holds only for the homogeneous case.

3 Definitions

Figure 1 illustrates the single-bottleneck network we
consider. The network consists of one bottleneck
with bandwidth B, n senders S1, . . . , Sn on one
side of the bottleneck, and n corresponding receivers
R1, . . . , Rn on the other side. Sender Si sends its
data to receiver Ri, together making a connection
Ci. Si sends data at the rate of ri per unit time,
where ri, called the transmission rate of Ci, changes
as time goes on. Any algorithm must control the
transmission rates so that their sum

∑n
i=1 ri never

exceed B. Here we use fluid model : ri can be any
nonnegative real value and the data can be sent as if
it does not have the minimum unit such as a packet,
an octet or even a bit.

Each connection Ci is associated with three con-
stants: the arriving time ai, the data length li > 0,
and the acceleration αi > 0. The connection Ci

starts at time ai to send li amount of data. We
consider both the case of li < ∞ and the case of
li = ∞. The acceleration αi is used by the AIMD
algorithm as described later.

In this paper, the behavior of the AIMD conges-
tion control algorithm is formalized as follows. A
constant 0 < β ≤ 1 fixed. β is called drop fac-
tor and common to all the connections. Each Ci
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maintains its transmission rate ri ≥ 0 as follows.
While

∑n
i=1 ri < B, in other words, the sum of

transmission rates of the n connections is less than
the bottleneck bandwidth, each Ci transmits an in-
finitesimally small amount ri dt of data for an in-
finitesimally short time dt and increases ri by αi dt.
When

∑n
i=1 ri = B, meaning that the sum of trans-

mission rates hits the bandwidth, what happens de-
pends on which drop model we adopt. (1) All-drop
model : All the ri’s are multiplied by (1 − β) in-
stantly at the same time, as shown in Figure 2 (a).
(2) Single-drop model : One connection Ci is chosen
as victim and its transmission rate ri is multiplied
by (1 − β) instantly. Note that in the single-drop
model, the choice of victim is not unique, and we
will discuss about victim policies in section 5. For
example, Periodic victim policy defined in section
5.3 chooses every connection as victim in turn as
shown in Figure 2 (b).

When li < ∞ and
∫ t

ai
ri dt = li, meaning that

connection Ci has sent all of its data, then connec-
tion Ci terminates. In this case, the time elapsed
since the arriving time ai until the termination of
Ci is called the flow time fi of connection Ci, and
the sum F =

∑n
i=1 fi is called the total flow time.

The connection Ci is alive since its arrival until its
termination.

In the current TCP congestion control algorithm,
β is fixed to 1/2, and αi is inversely proportional
to the square of RTT of connection Ci. The case
that αi’s are equal for all the connections is called
homogeneous case, and the other case heterogeneous
case.

4 Competitive analysis of to-
tal flow time in heteroge-
neous environments

In this section, we assume the all-drop model and
we consider the case that li < ∞ for all i, that
is, each sender sends a finite amount of data. In
this setting, we consider the optimization problem
of minimizing the total flow time.

Now consider the arriving time ai is not known
until the request of data transfer of Ci arrives at
time ai. Similarly, consider the data length li is
not known until the sender sends li amount of data,
reaching the end of data. This situation is common,
because it corresponds to the case that the conges-
tion control algorithm is implemented as a protocol
stack independent of the application which decides
when and which data to send. The AIMD algo-
rithm works without any problem in this situation,
because it does not use any information given in fu-

ture to work. In this sense, the AIMD algorithm is
called an online algorithm.

Besides, the AIMD is a distributed algorithm in
the following sense. Each connection Ci only re-
quires the information about its own parameters, ai,
αi and li, and does not need to know the bottleneck
bandwidth B or the parameters of the other connec-
tions, provided the sender knows whether

∑
ri < B

or
∑

ri = B. In TCP, this last additional informa-
tion is supplied by the presence or the absence of
acknowledgment from the receiver.

In contrast to the online and distributed AIMD
algorithm, we can consider fictional offline and cen-
tralized algorithms. This kind of algorithms know
B, and ai and li of all the n connections before any
request arrives, and controls all the ri’s simultane-
ously. Because offline and centralized algorithms
have more access to knowledge than online and dis-
tributed algorithms like the AIMD, the optimal of-
fline and centralized algorithm achieves no longer
total flow time than the AIMD.

For the homogeneous case where α1 = · · · = αn =
α, Edmonds et al. prove the following.

Theorem 1 ([4]). The AIMD is competitive to the
optimal offline and centralized algorithm with a lim-
ited bottleneck bandwidth in the following sense. Let
q ≥ 1 be an integer, ε > 0,

s = (2 + ε) · 1
1− (1− β)q−1

· 2
2− β

(
1 +

1
q

)
, (1)

and suppose we compare the total flow time
F (AIMD(C, B)) of the set C = {C1, . . . , Cn} of
connections achieved by the AIMD with bottleneck
bandwidth B and that achieved F (OPT(C, B/s)) by
the optimal offline and centralized algorithm with
bottleneck bandwidth B/s. Then, for D = 2(q +
1)nB/α, it holds that

F (AIMD(C, B))
F (OPT(C, B/s)) + D

≤ 2 +
4
ε
.

To prove this, they compare AIMD with an on-
line centralized algorithm called Equi-partition, or
EQUI. At time t, EQUI allocates B/|Alive(t)| band-
width to each Ci ∈ Alive(t), where Alive(t) is the
set of connections alive at time t.

Theorem 2 ([4]). Let t be the time when the con-
nection Ci drops for the jth time in AIMD. Then,
ri[t−0] ≥ (1− (1− β)j−1)B/|Alive(t)|.

From Theorem 2, it can be shown that
F (AIMD(C, B)) ≤ F (EQUI(C̃, B′)) + D, where
F (EQUI(C̃, B′)) means the total flow time achieved
by EQUI with bottleneck B′ = B/( 1

1−(1−β)q−1 ·
2

2−β (1+ 1
q )), and C̃ is a slightly modified set of con-

nections which may include sequencial phases. A
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sequencial phase takes a constant amount of time to
complete, regardless of how much bandwidth is al-
located to the connection. By combining this result
and the following theorem, the proof of Theorem 1
is completed.

Theorem 3 ([3]). EQUI with bottleneck B′ is
(2 + 4

ε )-competitive to the optimal offline and cen-
tralized algorithm with bottleneck B′/(2 + ε) even
if connections have sequencial phases. Formally,
F (EQUI(C̃, B′)) ≤ (2 + 4

ε )F (OPT(C̃, B′/(2 + ε))).

Now we consider the heterogeneous case where
each connection has an acceleration within a range
αmin ≤ αi ≤ αmax. We consider Proportional Par-
tition (PROP) instead of EQUI in heterogeneous
case. PROP allocates the bandwidth to connec-
tions in proportion to their accelerations. Formally,
PROP allocates Bαi/

∑
Ci′∈Alive(t) αi′ bandwidth

to Ci ∈ Alive(t) at time t.
Theorem 2 is extended to heterogeneous case nat-

urally.

Theorem 4. Let t be the time when the connection
Ci drops for the jth time in AIMD. Then, ri[t−0] ≥
(1− (1− β)j−1)Bαi/

∑
Ci′∈Alive(t) αi′ .

To prove an upper bound corresponding to The-
orem 1 in heterogeneous case, the competitive anal-
ysis of PROP is required.

Theorem 5. Let s > 1. Assume that there ex-
ists a function R(s′) such that for any s′ < s
closer enough to s and any set C of connections,
F

(
EQUI(C, B′)

) ≤ R(s′)F
(
OPT(C, B′/s′)

)
. Then

for any set C of connections, F
(
PROP(C, B′)

) ≤
λ
(

lim
s′→s−0

R(s′)
)
F

(
OPT(C, B′/s)

)
, where λ =

αmax/αmin.

Proof. Let C be a set of connections. For any α > 0,
we define a homogeneous set Cα from C by dividing
each connection Ci ∈ C into dαi/αe equal connec-
tions with arrival time ai and data length li/dαi/αe.

For k = 1, 2, . . . , consider the set
Cαmin/k. Then k ≤ dkαi/αmine ≤ dkλe,
thus F

(
EQUI(Cαmin/k, kB′/(k + 1))

) ≥
k F

(
PROP(C, B′)

)
and F

(
OPT(Cαmin/k, B′)

) ≤
dkλeF (

OPT(C, B′)
)
. They give

F
(
PROP(C, B′)

)

≤ 1
k

F

(
EQUI

(
Cαmin/k,

k

k + 1
B′

))

≤ 1
k
R(

sk/(k + 1)
)
F

(
OPT(Cαmin/k, B′/s)

)

≤ 1
k
dkλeR(

sk/(k + 1)
)
F

(
OPT(C, B′/s)

)

≤
(
λ +

1
k

)
R(

sk/(k + 1)
)
F

(
OPT(C, B′/s)

)
.

By considering the limit as
k → ∞, F

(
PROP(C, B′)

) ≤
λ
(
lims′→s−0R(s′)

)
F

(
OPT(C, B′/s)

)
.

Theorem 5 states that any upper bound of the
competitive ratio of EQUI is also applicable to
PROP with an extra factor of λ. Combining Theo-
rems 2 and 5 gives the following corollary.

Corollary 6. Let ε > 0. Then for any C,
F

(
PROP(C, B′)

) ≤ λ(2 + 4
ε )F

(
OPT

(C, B′/(2 +

ε)
))

, where λ = αmax/αmin.

Theorem 4 and Corollary 6 give the following ex-
tension of 1 to the heterogeneous case.

Theorem 7. Let C = {C1, . . . , Cn} be a set of con-
nections whose accelerations satisfy αmin ≤ αi ≤
αmax for all i. Let ε > 0, and define s as in equa-
tion (1). Let F (AIMD(C, B)) be the total flow time
achieved by the AIMD with bottleneck bandwidth B
and F (OPT(C, B/s)) be that achieved by the opti-
mal offline and centralized algorithm with bottleneck
bandwidth B/s. Then, it holds that F (C)

FOPT(C)+D ≤
λ

(
2 + 4

ε

)
, where D = 2(q + 1)nB/αmin.

On the other hand, no lower bound has been
proven for AIMD. Because Theorem 5 states AIMD
behaves like PROP for long-lasting connections,
here we assume that the total flow time of AIMD
is at least as long as that of PROP with the same
resource. [3] proves that for s > 2, the competi-
tive ratio of EQUI with resource B′ to OPT with
resource B′/s is at least 2/s. The example given
there can be modified to give a lower bound for the
competitive ratio of PROP, which is 2λ/s where
λ = αmax/αmin. This lower bound is also λ times
as large as the homogeneous case.

5 Analysis of asymptotic
bandwidth utilization

In this section, we consider the case that li = ∞ for
all i, that is, all the senders have infinite data to
transmit and the connections never terminate. As
discussed in the introduction, this is an approxima-
tion of the case that all the connections continue
for a long time. Under this assumption, we analyze
the asymptotic bandwidth utilization.

Let us introduce some notations. Let A =∑n
i=1 αi. The transmission rate at time t is de-

noted by ri[t]. In case a drop occurs at time t, we
distinguish the transmission rate just before time
t and just after time t as ri[t − 0] and ri[t + 0].
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Let r[t] = (r1[t], . . . , rn[t])T and r[t ± 0] = (r1[t ±
0], . . . , rn[t± 0])T.

For t1 ≤ t2, the amount Wi[t1, t2] of data trans-
mitted in connection Ci between time t1 and t2 is

Wi[t1, t2] =
∫ t2

t1

ri[t] dt,

and we let W [t1, t2] be the total amount of data
transmitted in n connections between the same pe-
riod,

W [t1, t2] =
n∑

i=1

Wi[t1, t2] =
∫ t2

t1

(r1[t]+· · ·+rn[t]) dt.

The (asymptotic) bandwidth utilization Ui of
connection Ci and the (asymptotic) total utilization
U are defined as the limit of time average of the
proportion of transmission rate in available band-
width1:

Ui =
1
B

lim
T→∞

Wi[0, T ]
T

and U =
1
B

lim
T→∞

W [0, T ]
T

.

A larger total utilization means the algorithm
makes use of much bandwidth and that it is effi-
cient. Besides, a small variation in the values of Ui

means the algorithm is fair.

5.1 Total and individual utilizations
in all-drop case

Theorem 8. In the all-drop model, the total and
individual utilizations are U = 1− β

2 and Ui = αi

A U .

This is proven by representing the utilization
of every connection by n-vector and calculating
the eigenvector of the matrix which represents the
transformation from the utilization vector just be-
fore one drop to that just before the next drop.

Theorem 8 says that in the all-drop model, the
total utilization does not depend on the number
of connections. This is different than the empiri-
cal fact. In the following sections, we consider the
single-drop model.

5.2 Total utilization in homogeneous
single-drop case

In this section we consider the homogeneous single-
drop case where α1 = · · · = αn = α.

Theorem 9. In the homogeneous single-drop
model, total bandwidth utilization U is U =

(2−β)n
(2−β)n+β regardless of how we choose victim of each
drop.

1Ui and U may not have limit values depending on the
choice of victims. In such cases, Ui and U are not defined.

The proof uses a potential function

ϕ(r) =
1
2α

· (2− β){B2 − (B −∑
ri)2} − β

∑
r2
i

(2− β)n + β
,

with which W [0, T ]+ϕ(r[t]) = (2−β)n
(2−β)n+β BT can be

proven.
Theorem 9 shows that in the single-drop model,

the total utilization U increases as n increases,
which means dividing data into multiple streams
gives better total throughput. This is different from
the case of the all-drop model.

5.3 Total and individual utilizations
under Periodic victim policy

In this section, we consider Periodic victim policy
as a typical example of a deterministic policy. This
policy is similar to the all-drop model in that it
chooses every connection Ci equal times.

Definition 1. Periodic victim policy is the policy
where connection C1 is chosen as victim of the first
drop, C2 of the next drop, then C3, . . . , Cn, and this
process is repeated infinitely. An example is shown
in Figure 2 (b).

Theorem 10. Under Periodic victim policy, it
holds

U =
2− β

2− β(1−∑n
i=1(αi/A)2)

, Ui = U · αi

A
.

The proof is similar to that of Theorem 8.
Theorem 10 implies that under Periodic victim

policy, the bandwidth is shared in proportion to αi

like the all-drop model, and αi’s with small devia-
tion give better total utilization.

5.4 Upper and lower bounds of to-
tal utilization in heterogeneous
single-drop case

In this section, we consider Priority victim policy,
which is the most unfair policy in some sense. Fig-
ure 3 (a) illustrates this policy. Intuitively, Priority
victim policy chooses the connection Ci with the
largest i that has nonzero transmission rate as vic-
tim. However, this informal definition is not ac-
curate because the transmission rates are always
nonzero. Instead, we define Priority victim policy
as follows.

Definition 2. Let 0 < ε < 1/n. ε-Priority victim
policy is the policy where on every drop, connection
Ci with the largest i that satisfies ri ≥ εB is chosen
as victim. Priority victim policy is the limit of ε-
Priority policy as ε → 0.
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Figure 3: Time evolution of the transmission rates r1 and r2 of the two connections with the accelerations
α1 : α2 = 1 : 9 and the drop factor β = 1/2, under (a) Priority victim policy and (b) Share-Random
victim policy.

Theorem 11. Let A0 = 0 and Ai = α1 + · · ·+ αi.
Under Priority victim policy,

U = 1−
n∏

i=1

(2− β)Ai−1 + βαi

(2− β)Ai−1 + 2αi
,

Ui =
(2− β)αi

(2− β)Ai−1 + 2αi

i−1∏

j=1

(2− β)Aj−1 + βαj

(2− β)Aj−1 + 2αj
.

When n = 2, Priority victim policy gives the
maximum and the minimum of the total utilization
as the following theorem implies.

Theorem 12. Let n = 2 and α1 ≤ α2. If the total
utilization U converges to some value, it holds

1−β

2
·βα1 + (2− β)α2

2α1 + (2− β)α2
≤ U ≤ 1−β

2
· (2− β)α1 + βα2

(2− β)α1 + 2α2
.

The proof is obtained by potential function
method similar to that used in the proof of The-
orem 9.

This theorem indicates an interesting fact that
as long as the total utilization is concerned, the
router should discard the packet from the connec-
tion with the higher acceleration upon congestion.
This strategy may also be useful to discourage the
use of high acceleration by selfish connection, thus
achieving high total utilization and penalty to self-
ish connection at the same time.

5.5 Simulation of two heteroge-
neous connections under Share-
Random victim policy

Definition 3. Share-Random victim policy is the
policy where on every drop, each Ci is chosen as
victim with probability ri/B, as shown in Figure 3
(b).

Share-Random victim policy is the policy which
is most easily implemented by a router placed at the

bottleneck. Provided all the packets are infinitesi-
mally short and the same length, the number of
packets received by the router for each connection
Ci at some moment is in proportion to the trans-
mission rate ri. When the sum

∑
ri exceeds the

capacity B of the router, the router will discard
one packet received at the moment, which is for the
connection Ci with the probability ri/B. This sce-
nario assumed the drop-tail behavior of the router,
but the same thing happens if the router uses the
Random Early Detection (RED) [6] given the buffer
in the router is small enough.

We performed the numerical simulation of
the utilizations by two connections under Share-
Random policy, with B and β = 1/2 fixed and α1

and α2 altered while maintaining A = α1 + α2 = 1.
Figure 4 shows the total and individual utilizations
in this case. From Figure 4 (b) and the results with
other values of β, we conjecture the following.

Conjecture. In heterogeneous two-connection
case under Share-Random victim policy, it holds

E[U ] =
(

1− β

2

)(
1 +

2β

4− β
·
√

α1α2

A

)
.

In addition, Figure 4 (a) suggests that in Share-
Random case, the sharing of bandwidth among the
connections is closer to the fair sharing than the all-
drop case and the single-drop Periodic case. It is
nearly proportional to the square root of the accel-
eration, or inversely proportional to RTT. This can
be interpreted that the Share-Random victim pol-
icy mitigates the unfairness caused by different ac-
celerations by choosing the connection with higher
throughput more often than the other connection.
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