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Computing Bounded-Degree Phylogenetic Roots of

Disconnected Graphs

Zhi-Zhong Chen *

Abstract

The PHYLOGENETIC kTH ROOT PROBLEM (PRE)
is the problem of finding a (phylogenetic) tree T'
from a given graph G = (V, E) such that (1) T has
no degree-2 internal nodes, (2) the external nodes
(i.e. leaves) of T are exactly the elements of V', and
(3) (u,v) € E if and only if the distance between u
and v in tree T is at most k, where k is some fixed
threshold k. Such a tree T, if exists, is called a phy-
logenetic kth root of graph G. The computational
complexity of PRk is open, except for k& < 4. Re-
cently, Chen et al. investigated PRk under a nat-
ural restriction that the maximum degree of the
phylogenetic root is bounded from above by a con-
stant. They presented a linear-time algorithm that
determines if a given connected G has such a phy-
logenetic kth root, and if so, demonstrates one. In
this paper, we supplement their work by presenting
a linear-time algorithm for disconnected graphs.

1 Introduction

The reconstruction of evolutionary history for a
set of species from quantitative biological data has
long been a popular problem in computational bi-
ology. This evolutionary history is typically mod-
eled by an evolutionary tree or phylogeny. A phy-
logeny is a tree where the leaves are labeled by
species and each internal node represents a specia-
tion event whereby a hypothetical ancestral species
gives rise to two or more child species. Proximity
within a phylogeny in general corresponds to simi-
larity in evolutionary characteristics. Both rooted
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and unrooted trees have been used to describe phy-
logenies in the literature, although they are prac-
tically equivalent. In this paper, we will consider
only unrooted phylogenies for the convenience of
presentation. Note that each internal node in a
phylogeny has at least 3 neighbors.

Many approaches to phylogenetic reconstruction
have been proposed in the literature [8]. In par-
ticular, Lin et al. [4] recently suggested a graph-
theoretic approach for reconstructing phylogenies
from similarity data. Specifically, interspecies sim-
ilarity is represented by a graph G where the ver-
tices are the species and the adjacency relation
represents evidence of evolutionary similarity. A
phylogeny is then reconstructed from G such that
the leaves of the phylogeny are labeled by vertices
of G (i.e. species) and for any two vertices of G,
they are adjacent in G if and only if their corre-
sponding leaves in the phylogeny are at most dis-
tance k apart, where k is a predetermined prox-
imity threshold. This approach gives rise to the
following algorithmic problem [4]:

PHYLOGENETIC kTH ROOT PROBLEM
(PRE):

Given a graph G = (V, FE), find a phylogeny
T with leaves labeled by the elements of V'
such that for each pair of vertices u,v € V,
(u,v) € E if and only if dr(u,v) < k, where
dp(u,v) is the number of edges on the path

between v and v in T'.

Such a phylogeny T (if exists) is called a phyloge-
netic kth root, or a kth root phylogeny, of graph
G. Graph G is called the kth phylogenetic power
of T. For convenience, we denote the kth phylo-
genetic power of any phylogeny 7' as T*. That
is, T = {(u,v) | v and v are leaves of T and
dr(u,v) < k}. Thus, PRk asks for a phylogeny
T such that G = T*.
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1.1 Previous Results on PRE

PRE was first studied in [4] where linear-time al-
gorithms for PRk with & < 4 were proposed. At
present, the complexity of PRk with k& > 5 is still
unknown.

The hardness of PRk for large k seems to come
from the unbounded degree of an internal node in
the output phylogeny. On the other hand, in the
practice of phylogeny reconstruction, most phylo-
genies considered are trees of degree 3 [8] because
speciation events are usually bifurcating events in
the evolutionary process. These motivated Chen
et al. [2] to consider a restricted version of PRk
where the output phylogeny is assumed to have
degree at most A, for some fixed constant A > 3.
We call this restricted version the DEGREE-A PRk
and denote it for short as APRk.

Chen et al. [2] presented a linear-time algorithm
that determines, for any input connected graph G
and constant A > 3, if G has a kth root phylogeny
with degree at most A, and if so, demonstrates
one such phylogeny. Unfortunately, their algorithm
fails when the input graph G is disconnected. One
of their open questions asks for a polynomial-time
algorithm for disconnected graphs, because the dis-
connected case is real in biology.

1.2 Other Problems Related to PRk

A graph G is the kth power of a graph H (or equiv-
alently, H is a kth root of G), if vertices u and v are
adjacent in G if and only if they are at most dis-
tance k apart in H. An important special case of
graph power /root problems is the TREE ATH ROOT
PrROBLEM (TRk): Given a graph G = (V, E), we
wish to find a tree T' = (V, Er) such that (u,v) € E
if and only if dp(u,v) < k. If T exists, then it is
called a tree kth root, or a kth root tree, of graph G.
There is rich literature on graph roots and powers
(see [1, Section 10.6] for an overview), but few re-
sults on phylogenetic/tree roots/powers. It is NP-
complete to recognize a graph power [6]; nonethe-
less, we can determine if a graph has a kth root
tree, for any fixed k, in cubic time [3]. In particular,
determining if a graph has a tree square root can
be done in linear time [5]. Moreover, Nishimura
et al. [7] presented a cubic time algorithm for a
variant of PRk with k < 4, where internal nodes
of the output phylogeny are allowed to have degree
2.

1.3 Ouwur Contribution

Our result is a linear-time algorithm that deter-
mines, for any input disconnected graph G and con-
stant A > 3, if G has a kth root phylogeny with
degree at most A, and if so, demonstrates one such
phylogeny. This answers an open question in [2].
Combining this algorithm with the algorithm in
[2] for connected graphs, we obtain the first linear-
time algorithm for APRE for any constants A > 3
and k > 2. Our algorithm is complicated and it
is based on hidden structures of phylogenetic kth
roots of disconnected graphs. Moreover, the al-
gorithm needs a linear-time subroutine for solving
a certain optimization problem on each connected
component of the input disconnected graph. The
subroutine is obtained by nontrivially refining the
algorithm in [2].

2 Preliminaries

We employ standard terminologies in graph theory.
In particular, the subgraph of a graph G induced
by a vertex set U of G is denoted by G[U], the
degree of a vertex v in G is denoted by degg(v),
and the distance between two vertices u and v in
G is denoted by dg(u,v). Moreover, for a set W
of vertices in a graph G = (V, E), we write G —
W for G[V — W]. Furthermore, in a rooted tree,
each vertex is both an ancestor and a descendant
of itself.

For clarity, if G = (V,E) is a graph and T =
(Vip, E7) is a kth root phylogeny of G for some k,
then we call the elements of V wertices and call
those of Vp nodes.

In the remainder of this section, fix a graph G =
(V, E) and two integers k > 4 and A > 3. A degree-
A kth root phylogeny ((A, k)-phylogeny for short)
of GG is a kth root phylogeny T of G such that the
maximum degree of a node in T is at most A.

A degree-A kth root quasi-phylogeny ((A, k)-QP
for short) of G is a tree @ satisfying the following
conditions:

e Each vertex of G is a leaf of () and appears
in @ exactly once. For convenience, we call
the leaves of Q that are also vertices of G true
leaves of @), and call the other leaves of @) false
leaves of ().

e The degree of each node in ) is at most A.
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e For every two vertices u and v in G, u and v
are adjacent in G if and only if dg(u,v) < k.

e For each node x of Q that is a degree-
2 node or a false leaf in ), it holds that

min,ey dQ ($, ’U) > \_%J .

e If ) has no false leaf, then it has at least one
node z such that 2 < degg(z) < A —1 and
minyey do(z,v) > [£].

The cost of @ is max{l,a + 2b}, where a is the
number of degree-2 nodes in () and b is the number
of false leaves in Q. @ is an optimal (A, k)-QP of
G if its cost is minimized over all (A, k)-QPs of G.

Lemma 2.1 Suppose that G = (V,E) is a con-
nected graph. Let Q be an optimal (A, k)-QP of G.
Then, the following hold:

1. @ has no node x with min,cy dg(x,v) > LgJ

2. For each node x with degg(xz) = 2 or
degg(xz) > 3, each connected component of

Q — {x} contains at least one true leaf of Q.

We classify (A, k)-QPs @ into four types as fol-
lows.

e () is helpful if it has at most one degree-2 node
and has no false leaf.

e () is moderate if it has no degree-2 node but
has exactly one false leaf.

e () is troublesome if it has at least two degree-2
nodes but has no false leaf.

e () is dangerous if it has at least one false
leaf and the total number of false leaves and
degree-2 nodes in @ is at least 2.

A (A k)-QP @ is unhelpful if it is not helpful.

For a (A,k)-QP Q, we define its port nodes as
follows. If ) is not helpful, then its port nodes are
its false leaves and degree-2 nodes. If @) is helpful
and has no degree-2 node, then its port nodes are
those nodes x with min,ey dg(z,v) > ng If Qis
helpful and has a degree-2 node, then it has only
one port node, namely, its unique degree-2 node.

A nonport node of a (A, k)-QP @Q is a node of @
that is not a port node of Q.

3 Algorithm for Bounded-

Degree PRE

Throughout this section, fix two integers k > 4
and A > 3. This section presents a linear-time
algorithm for solving APRE.

Let G = (V, E) be the input graph. We assume
that G is disconnected; otherwise, the linear-time
algorithm in [2] solves the problem. Let Gy, ..., Gy
be the connected components of G. For each inte-
ger with 1 < i </, let V; be the vertex set of G;.

The next lemma can be proved by a complicated
dynamic programming.

Lemma 3.1 For every i € {1,...,¢}, we can de-
cide whether G; has a (A, k)-QP, in O(|V;|) time.
Moreover, if G; has a (A, k)-QP, then we can com-
pute an optimal (A, k)-QP of G; in O(|V;]) time.

Lemma 3.2 If for somei € {1,...,¢}, G; has no
(A, k)-QP, then G has no (A, k)-phylogeny.

By Lemmas 3.1 and 3.2, we may assume that for
each i € {1,...,¢}, G; has a (A, k)-QP. For each
i€ {l,...,0}, let Q; be the optimal (A, k)-QP of
G; computed in Lemma 3.1.

Lemma 3.3 Suppose that G has a (Ak)-
phylogeny. Then, G has a (A, k)-phylogeny T such
that Qq,...,Q all are subtrees of T'.

In the remainder of this section, a (A,k)-
phylogeny of G always means one in which
Q1,...,Qy are subtrees. By Lemma 3.3, we lose
no generality. For convenience, we call @J1,...,Qy
the unitary (A, k)-QPs.

Let T be a (A, k)-phylogeny T of G. A junc-
tion node of T is a node x of T such that no uni-
tary (A, k)-QP contains z. A node x of T is over-
connected, if it satisfies one of the following condi-
tions:

(1) degr(x) > 3 and « is a junction node of T'.

(2) degr(x) > 3 and z is a port node of some
unhelpful @; (1 <i</Y).

(3) z is a nonport node of some unhelpful Q; (1 <
i < ¢) and degr(x) > degg,(z).

A helpful Q; (1 < i < ¥) is mis-connected in T,
if (i) at least one nonport node of @; is adjacent
to a node outside @; in 7', or (ii) there are two or
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more nodes z outside @); such that x is adjacent to
a node of Q); in T'.

A (A, k)-phylogeny T of G is canonical, if it has
no over-connected node and no helpful @; (1 <i <
¢) is mis-connected in 7.

Lemma 3.4 If G has a (A, k)-phylogeny, then it
has a canonical one.

In the remainder of this section, a (A,k)-
phylogeny of G always means a canonical one. By
Lemma 3.4, we lose no generality.

3.1 The Case where £k is Odd

Throughout this subsection, we assume that £ is
odd. A doube (A, k)-QP is a tree T; ; obtained by
combining two helpful unitary (A, k)-QPs Q; and
Q; as follows:

1. Select a port node z; of @;, and select a port
node z; of Q;.

2. Introduce a junction node y, and connect it to
both z; and x;.

Note that 7T;; has exactly one degree-2 node
(namely, the junction node y) but has no false
leaf. So, T;; is a helpful (A, k)-QP of G[V; U V}].
Moreover, the minimum distance from y to a true
leaf in T} ; is exactly | 5] + 1 (cf. Statement 1 in
Lemma 2.1).

Lemma 3.5 Suppose that each Q; (1 < 1 < ()
is helpful or moderate. Then, G has a (A k)-
phylogeny if and only if £ > 2b + 3, where b is the
number of moderate (A, k)-QPs among Q1, ..., Q.

In the sequel, we assume that at least one Q);
(1 < i < {) is troublesome or dangerous (since
otherwise Lemma 3.5 solves the problem).

Let T be a (A, k)-phylogeny of G. For each dan-
gerous Q; (1 < i < /), we say that a false leaf x
of Q; is active in T, if no connected component
of T — {z} is a double (A, k)-QP. A dangerous Q;
(1 < i <¥)is active in T if at least one false leaf
of Q; is active in T'.

Lemma 3.6 Suppose that G has a (Ak)-
phylogeny. Then, G has a (A, k)-phylogeny T such
that no dangerous Q; (1 <i <{) is active in T.

Let I be the set of all ¢ € {1,..., ¢} such that Q;
is dangerous. For each i € I, let t; be the number of
false leaves in Q;. Let t =) _,;t;. By Lemma 3.6,
if G has a (A, k)-phylogeny, then there are at least
2t helpful unitary (A, k)-QPs. So, if there are less
than 2¢ helpful unitary (A, k)-QPs, then G has no
(A, k)-phylogeny. In the sequel, we assume that
there are at least 2¢ helpful unitary (A,k)-QPs.
Without loss of generality, we may assume that
Q1,...,Qo are helpful.

We connect @1, . . ., Qo to the dangerous unitary
(A, k)-QPs as follows.

1. Introduce t junction nodes x1, ..., x:, and con-
struct a one-to-one correspondence between
them and the t false leaves of the dangerous
unitary (A, k)-QPs.

2. For each ¢ € {1,...,t}, add an edge from z;
to its corresponding false leaf, add an edge
from x; to an (arbitrarily chosen) port node
of Q2;—1, and add an edge from z; to an (ar-
bitrarily chosen) port node of Q2;.

The above modification extends each dangerous
unitary (A, k)-QP @Q; to a troublesome (A, k)-QP

R;. For convenience, let R; = @Q; for each i €
{2t +1,...,¢} such that @; is not dangerous.
Now, we are left with Roti1,..., Ry; none of

them is dangerous. Let 7 be the number of trouble-
some (A, k)-QPs among Ray1, ..., Ry. Note that
T =1]i€{l,...,0} | Q; is troublesome or danger-
ous}. So, 7 > 1. Without loss of generality, we may
assume that Ro¢t1, ..., Rotrr are troublesome.

By Lemma 3.6, if G has a (A, k)-phylogeny, then
it has one in which Rg;11, ..., Ry are subtrees. So,
in the remainder of this section, a (A, k)-phylogeny
of G always means one in which Roy1, ..., Ry are
subtrees.

A bridging node in a (A, k)-phylogeny T of G is
a node x of T such that no R; with 2t +1 <3</
contains z. For each (A, k)-phylogeny T' of G and
for each R; with 2t +1 < i < £, each degree-2 node
x of R; is adjacent to exactly one bridging node y
in T (by the canonicity of T'); we call y the bridging
neighbor of x in T.

For each (A, k)-phylogeny T of G, let M(T) de-
note the tree obtained by modifying 1" by merging
each R; with 2t +1 <1 </ into a super-node. For
convenience, we abuse the notation to let each R;
also denote the super-node of M(T") corresponding
to R;. Note that each bridging node of T" remains
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to be an internal node in M(T') and the leaves of
M(T) one-to-one correspond to the helpful unitary
(A, k)-QPs among Rat41, - - ., Ry. Moreover, by the
canonicity of 7' and Statement 1 in Lemma 2.1, no
two super-nodes can be adjacent in M(T).

Lemma 3.7 If G has a (A, k)-phylogeny, then it
has one T such that there is a path q in M(T') on
which Roti1, ..., Rotrr appear.

Lemma 3.8 If G has a (A, k)-phylogeny, then it
has one T such that some path q in M(T) satisfies
the following three conditions:

1. Roty1,..., Roryr and exactly T — 1 bridging

nodes appear on q.
No two bridging nodes on q are adjacent in T.

For each bridging node x on q, there is a help-
ful unitary (A, k)-QP R; such that x is adja-
cent to a port node of R; inT.

In the remainder of this section, a (A,k)-
phylogeny of G always means one T such that some
path ¢ in M(T) satisfies the three conditions in
Lemma 3.8. We call g the spine of M(T). The fol-
lowing corollary shows that it does not matter in
which order Rgiy1,..., Roirr appear on the spine.

Corollary 3.9 Let T be a (A, k)-phylogeny of G.
Then, for every pair (R;, R;) of troublesome (A, k)-
QPs, there is another (A, k)-phylogeny T' of G
such that the spine of M(T") can be obtained from
that of M(T') by exchanging the positions of R; and
R;.

The following corollary is obvious and shows that
it does not matter via which degree-2 nodes each
troublesome R; is connected to the spine.

Corollary 3.10 Let T be a (A, k)-phylogeny of G.
Then, for every troublesome R; and for every pair
(z1,x2) of degree-2 nodes of R;, we can obtain an-
other (A, k)-phylogeny T' of G by deleting edges
(x1,y1) and (z2,y2) and adding edges (x1,y2) and
(z2,y1), where yy (respectively, ya) is the bridging
neighbor of x1 (respectively, xs) in T. Moreover,
the spines of M(T) and M'(T) are the same.

By Lemma 3.8, if G has a (A, k)-phylogeny, then

there are at least 7 — 1 helpful unitary (A, k)-
QPs among Ro¢tri1,-..,Re.  So, if there are
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less than 7 — 1 helpful unitary (A, k)-QPs among
Rotyr41,..., R, then G has no (A, k)-phylogeny.
In the sequel, we assume that there are at least 7—1
helpful unitary (A, k)-QPs among Rat 4741, - - ., Ry.
Without loss of generality, we may assume that

Rotyr41,. .., Roryor—1 are helpful unitary (A, k)-
QPs.

If 7 > 2, then we connect Roii1,..., Roi1or—1
into a single (A, k)-QP R as follows.

1. Introduce 7 — 1 bridging nodes z1,...,T;_1.

2. Select a degree-2 node yo; 11 of Rory1, and se-
lect a degree-2 node zgi4+, of Ropqr.

3. For each i with 2t + 2 < i < 2t+4+ 7 — 1, select
two degree-2 nodes z; and y; of R;.
4. For each ¢ with 1 < ¢ < 7 — 1, add edges

(24, yor+i) and (x4, 29¢4i41), and add an edge
from z; to an (arbitrarily chosen) port node of
Rotyr+i-

If r = 1, we let R = R2t+1.

Note that R is a troublesome (A, k)-QP. By
Lemma 3.8 and Corollaries 3.9 and 3.10, if G has
a (A, k)-phylogeny, then G has one T such that
R, Rotior, ..., Ry are subtrees of T. In the re-
mainder of this section, a (A, k)-phylogeny of G
always means such a tree T. Let h be the num-
ber of degree-2 nodes in R. Let x1,...,z, be the
degree-2 nodes of R.

Lemma 3.11 If G has a (A, k)-phylogeny, then
it has one T such that for all but one x; €
{z1,...,2n}, the connected component of T — {x;}
containing no node of R is a double (A, k)-QP.

By Lemma 3.11, if G has a (A, k)-phylogeny,
then there are at least 2h — 2 helpful unitary
(A, k)-QPs among Ratior,...,Rp.  So, if there
are less than 2h — 2 helpful unitary (A, k)-QPs
among Roiyor,..., Ry, then G has no (A, k)-
phylogeny. In the sequel, we assume that there
are at least 2h — 2 helpful unitary (A,k)-QPs
among Rgiior,...,Ry. We may further assume
that Raitor, ..., Roiror+on—3 are helpful unitary
(A, k)-QPs. For each i € {2t + 27,...,2t + 27 +
2h — 3}, let z; be an (arbitrarily chosen) port node
of Rz

We connect R, Roitor, ..., Rotror4on—3 into a
single (helpful) (A, k)-QP R’ by performing the
following steps:
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1. Introduce h — 1 bridging nodes s1,...,Sx_1.

€ {1,...,h — 1}, add edges
(i, 22t42742i—2), (Si, 22t42r+2i—1), and (s;, ;).

2. For each 1

Now, we are left with R’, Rojioriop_2,..., Ry
each of which is helpful or moderate. Moreover, by
Lemma 3.11, if G has a (A, k)-phylogeny, then it
has one in which R, Roy1 274012, .., Ry are sub-
trees. So, we can modify the proof of Lemma 3.5
to show that G has a (A, k)-phylogeny if and only
if ' > V' + 3, where o’ (respectively, V') is the num-
ber of helpful (respectively, moderate) (A, k)-QPs
among R', Rator1on—2,- - -, Ry

In summary, we have the following:

Theorem 3.12 Suppose that k is odd. Then, we
can decide if G has a (A, k)-phylogeny, and con-
struct one if so, in linear time.

3.2 The Case where £ is Even

Throughout this subsection, we assume that k is
even. The contents in this subsection are very
similar to those in the last subsection. In par-
ticular, the lemmas in this subsection one-to-one
correspond to the lemmas in the last subsection.
Moreover, the proof of each lemma in this subsec-
tion is very similar to (indeed a bit simpler than)
its corresponding lemma in the last subsection.

Lemma 3.13 Suppose that each Q; (1 < i < ()
is helpful or moderate. Then, G has a (Ak)-
phylogeny if and only if a > 2, where a is the num-
ber of helpful (A, k)-QPs among Q1,...,Qy.

In the sequel, we assume that at least one Q;
(1 < i < {) is troublesome or dangerous (since
otherwise Lemma 3.13 solves the problem).

Let T be a (A, k)-phylogeny of G. For each dan-
gerous Q; (1 < i < /), we say that a false leaf x
of QQ; is active in T, if no connected components of
T — {x} is a helpful unitary (A, k)-QP. A danger-
ous Q; (1 <i < /) is active in T if at least one false
leaf of Q); is active in T.

Lemma 3.14 Suppose that G has a (A k)-
phylogeny. Then, G has a (A, k)-phylogeny T such
that no dangerous unitary (A, k)-QP is active in
T.

Let I be the set of all ¢ € {1,..., ¢} such that Q;
is dangerous. For each i € I, let t; be the number of
false leaves in @);. Let t = >, t;. By Lemma 3.14,
if G has a (A, k)-phylogeny, then there are at least
t helpful unitary (A, k)-QPs. So, if there are less
than ¢ helpful unitary (A, k)-QPs, then G has no
(A, k)-phylogeny. In the sequel, we assume that
there are at least ¢ helpful unitary (A,k)-QPs.
Without loss of generality, we may assume that
Q1,...,Q: are helpful.

We connect @1, ..., Q; to the dangerous unitary
(A, k)-QPs as follows.

1. Construct a one-to-one correspondence be-
tween @1, ...,Q: and the t false leaves of the
dangerous unitary (A, k)-QPs.

2. For each i € {1,...,t}, add an edge from an
(arbitrarily chosen) port node of @Q; to the
false leaf corresponding to Q;.

The above modification extends each dangerous
unitary (A, k)-QP Q; to a troublesome (A, k)-QP
R;. For convenience, let R; = @; for each i €
{t+1,...,¢} such that Q; is not dangerous.

Now, we are left with R;11, ..., Ry; none of them
is dangerous. Let 7 be the number of troublesome
(A, k)-QPs among Ryt1,...,Rs. Note that 7 =
li € {1,...,¢} | Q; is troublesome or dangerous}.
So, 7 > 1. Without loss of generality, we may
assume that R, ..., Ry, are troublesome.

By Lemma 3.14, if G has a (A, k)-phylogeny,
then it has one in which Ryy1,..., Ry are sub-
trees. So, in the remainder of this section, a
(A, k)-phylogeny of G always means one in which
Rit1,..., Ry are subtrees.

For each (A, k)-phylogeny T of G, let M(T) de-
note the tree obtained by modifying 7' by merging
each R; with t + 1 < i </ into a super-node. For
convenience, we abuse the notation to let each R;
also denote the super-node corresponding to R; in

M(T).

Lemma 3.15 If G has a (A, k)-phylogeny, then it
has one T such that there is a path in M(T) on
which Riyq, ..., Riyr appear.

Lemma 3.16 If G has a (A, k)-phylogeny, then it
has one T such that there is a path in M(T') whose

nodes are exactly Rii1, ..., Riqr.

In the remainder of this section, a (A,k)-
phylogeny of G always means one T such that
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there is a path ¢ in M(T') whose nodes are exactly
Riyi,..., Ripr. We call g the spine of M(T'). Ob-
viously, Corollaries 3.9 and 3.10 still hold even if k
is even.

If 7 > 2, then we connect R;1, ..
single (A, k)-QP R as follows.

.y Ry into a

1. Select a degree-2 node y;41 of R41, and select
a degree-2 node zyy, of Ryq,.

2. For each ¢ with t +2 < ¢ < t+ 7 — 1, select
two degree-2 nodes z; and y; of R;.

3. For each ¢ witht+4+1<i¢<t+7—1, add edge
(yiazi+1)~

Ifr=1,welet R = Ri1.

Note that R is a troublesome (A,k)-QP. By
Lemma 3.16 and Corollaries 3.9 and 3.10, if G has
a (A, k)-phylogeny, then G has one T such that
R,Ri+r+1,-.., Ry are subtrees of T. In the re-
mainder of this section, a (A, k)-phylogeny of G
always means such a tree T. Let h be the num-
ber of degree-2 nodes in R. Let z1,...,x, be the
degree-2 nodes of R.

Lemma 3.17 If G has a (A, k)-phylogeny, then
it has one T such that for all but one xz; €
{z1,..., 2}, the connected component of T — {x;}
containing no node of R is a helpful unitary (A, k)-

QP.

By Lemma 3.17, if G has a (A, k)-phylogeny,
then there are at least h — 1 helpful unitary
(A, k)-QPs among Riqr41, ..., Re. So, if there are
less than h — 1 helpful unitary (A, k)-QPs among
Riyr41,. .., Ry, then G hasno (A, k)-phylogeny. In
the sequel, we assume that there are at least h — 1
helpful unitary (A, k)-QPs among Ry 4,41, .., Ry.
We may further assume that Ryyry1,..., Ryprin—_1
are helpful unitary (A, k)-QPs. For each i €
{t+7+4+1,...,t+7+h—1}, let z; be an (arbitrarily
chosen) port node of R;.

We connect R, Ritr+1,--., Rirryn—1 into a
single (helpful) (A,k)-QP R’ by adding edges
(1, Zegrg1), o0 (Th—1, Zigrh—1)-

Now, we are left with R', Ryyryp,..., Ry each
of which is helpful or moderate. Moreover, by
Lemma 3.17, if G has a (A, k)-phylogeny, then it
has one in which R', Ryir1p, ..., Ry are subtrees.
So, we can modify the proof of Lemma 3.13 to
show that G has a (A, k)-phylogeny if and only

if a’ > 2, where a’ is the number of helpful (A, k)-
QPs among R', Ryyrih,-- -, Re.
In summary, we have the following;:

Theorem 3.18 Suppose that k is even. Then, we
can decide if G has a (A, k)-phylogeny, and con-
struct one if so, in linear time.
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