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This paper addresses a method for detecting an invisible object e ciently from a point of view

of computational geometry. We discuss the problem by taking the light path alignment process as

example, which is considered critical in opto-electronics industry. The feature of our research is found

in the arrangement scheme of measuring probes to reduce total number of the probes. Our scheme

is expected to shorten the time of detection compared with conventional scheme.

1 Introduction

Today’s optical network comprises many kinds

of devices necessary to generate, modulate,

guide, amplify, switch and detect light signal.

The functions of those devices are analogous

to the ones used in the conventional copper

wire network. In contrast with the electri-

cal devices, the opto-electrical devices requires

the high accuracy of light path alignment to

reduce power loss. Because light path align-

ment with sub-micron accuracy is considered

a norm at each interface on di erent devices,

the process has become a bottle-neck, and the

improvement of e ciency the process greatly

influences total production time.

The light path alignment process comprises

two subsequent processes. Firstly a process

called “blind search” is used to detect the

light and secondly another process called “fine

search”, to find the peak power position. Fig-

ure 1 illustrates the blind-search process which

uses an optical fiber as a sensing probe. The

intensity of the laser light has a Gaussian-like

distribution and can be roughly estimated us-

ing analytical methods [5]. When the lens con-

verges the light, the energy distribution takes a

conic shape like Fig. 2. In the blind-search pro-

cess, typical assembly systems use single-plane

scheme that defines a search plane perpendic-

ular to the axis of the light and then shifts the

sensing probe by even pitches to measure the

power. In this paper, we are going to intro-

duce a new blind-search method called dual-

plane scheme that exactly reduces the number

of probes and thus, the search time is reduced.
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Figure 1: Illustration of the blind-search pro-

cess in the light path alignment application.

Figure 2: The object to be detected.

One of the earliest topics in computational

geometry is the Art Gallery problem that re-

quires the minimum number of guards to watch

an art gallery of a polygonal shape[3, 4]. It has

been generalized to a watchman route prob-

lem [1] for finding a shortest possible route to

find an intruder hidden in an art gallery. The

problem has also been extended to the prob-

lem of detecting a mobile intruder hidden in an

art gallery [6]. The problem to be discussed in

this paper is also an extension of the art gallery

problem in yet another direction. We want to

find or detect a rigid object hidden somewhere

in an art gallery by arranging probes appropri-

ately over the gallery. Our problem is closely

related to the problem of covering a region by

some simple geometric objects (see e.g., [2]).

2 Problem Description

A rigid object B is hidden somewhere in a
region. Implicitly we assume one point o in

its interior as a reference point (the origin).

We call a region in which o can lie reference

point region R. We want to arrange fewest
possible probes in a probe region P , in which
the probes can be placed, so that we can detect

B wherever it is hidden. We assume that we
can determine whether a point q lies in the

interior of B by a predicate F (q) that can be
computed in linear time in the length of the

predicate. We also assume implicitly that a

rigid object B has a simple shape and thus the
inclusion test can be done in constant time.

If the object B is a triangle (p1, p2, p3) in the
plane, then the predicate is

F (q): 4(p1, p2, q) 0, and 4(p2, p3, q)
0, and 4(p3, p1, q) 0,

where 4(p, q, r) is positive if the three points
are arranged in a counter-clockwise order, 0 if

they lie on a line, and negative if they are in

a clockwise order. We also assume that the

three points p1, p2 and p3 are arranged in a

counter-clockwise order.

Thus, a rigid object B is specified as
B = {q|F (q)}. (1)

By B(p, ) we denote the object B trans-
lated to the point p (so the reference point is

located at p) and then rotated by an angle in

a counterclockwise direction around the refer-

ence point. Then, the corresponding predicate

becomes

q B(p, ) F (T (q p)), (2)

where T (q) is the point determined by coun-

terclockwise rotation of the point q around the
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Figure 3: The image of an object: (a) given

rigid object (B) and (b) its image (B 1).

origin by the angle . We assume that point

inclusion is also tested in time proportional to

the complexity of the object.

An object B(p, ) can be detected if at least
one probe is contained in the interior of the

object, that is,

pi B(p, ) F (T (pi p)) (3)

for some probe pi.

We say that a set of probes is feasible if

they detect an object wherever it is located.

We want to find a minimum feasible set of

probes. A key idea behind our scheme pre-

sented in this paper is to define the image B 1

of a rigid object B. If no rotation is allowed,
then it is defined by

B 1 = {p|F ( p)}. (4)

Figure 3 shows the image of a polygonal ob-

ject B, that is point-symmetric to the original
shape. For the time being, we do not allow

rotation.

Now, our problems are described as fol-

lows:

Problem 1: Feasibility Test

INSTANCE: A rigid body B characterized

by a predicate defined by polynomial inequal-

ities with respect to a reference point o, a ref-

erence point region R, and a probe region P .

Figure 4: Hidden objects in a reference-point

region R and a set of probes in a probe region

P .

QUESTION: Is there a feasible set of probes?

Or, in other words, is it possible to arrange the

probes so that they can detect a hidden object

wherever it is located?

Problem 2: Optimal Feasible Set

INSTANCE: A rigid body B, a reference point
region R, and a probe region P .
QUESTION: Find a minimum feasible set of

probes if there exists one.

Figure 4 illustrates a set of probes arranged

in the probe region P which is usually con-

tained in the reference point region R. The
figure includes three objects with di erent an-

gles.

From the above definitions, we have the

following basic observations.

Lemma 2.1 For an arbitrary rigid object B
the following always holds

p B(q) q B 1(p). (5)

Proof p B(q) F (p q) q B 1(p).

¤
Once we have the above lemma, the follow-

ing two lemmas are almost obvious.
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Lemma 2.2 Given B, R and P, there is a
feasible set of probes if and only if the Minkowski

sum P B 1 contains R.

Proof The proof immediately follows from

the definition of the Minkowski sum:

P Q = {p+ q|p P and q Q}. ¤

Lemma 2.3 A set S = {p1, p2, . . . , pn} of probes
in P covers a region R if and only if the union

of their images covers R, that is,

R pi SB 1(pi). (6)

Proof ”if” part: Equation 6 implies that for

any point p R there exists some points pi

such that p B 1(pi). By the definition, p

B 1(pi) pi B(p), which implies that the
point pi detects the object B(p) at p.
”Only if” part: If the union of the images does

not cover R, there must be a point p R
which is not contained in B 1(pi) for any point

pi S. This means that pi 6 B(p) for any
pi S and thus the set S does not cover R.
¤
The lemma 2.3 implies that our problem

reduces to that of finding the minimum num-

ber of images B 1 to cover the entire reference

point region R.

3 Application to the Light

Path Alignment Process

In this paper we consider a rather special case

in which a rigid object is a double-sided conic

cylinder and the reference region (which is equal

to the probe region) is a cuboid of L×L wide
and of unit height. We assume that the height

of the cylinder in one side is exactly 1 so that

Figure 5: Actual light energy distribution

(outside) and conic cylinder (inside).

each half of the cylinder is tall enough to cover

the height of the cuboid,and the largest and

smallest radii of the circles given as cross sec-

tions are R and r, respectively. The conic

cylinder shown in Fig. 5 is a simplified model

of the light energy distribution around the fo-

cal point of the laser beam.

Our objective is to arrange the smallest

number of probes in the probe region (it is

equal to the reference region which is a cuboid

in this case) so that any hidden object (a fo-

cal point of a laser beam in this case) can be

detected wherever it is located in the refer-

ence region. The traditional heuristic method

is characterized as a single-plane scheme in

which all the probes must be located on a

single plane which is parallel to the base face

(rectangle in this case) of the reference region.

With the scheme we have to cover the rectan-

gle by circles of the smallest radius r. Obvi-

ously it is not advantageous. We call our new

scheme dual-plane scheme in which probes are

located in two di erent planes. We will prove

an advantage of the dual-plane scheme over

the single-plane one by showing that the total

number of the probes is considerably reduced.

Figure 6 illustrates the concept of our scheme.

The reference point region R is an axis-

parallel cuboid of height 1. Formally, an object
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Figure 6: (a) Conventional single-plane

scheme and (b) our dual-plane scheme (b).

Figure 7: Covering the cuboid regionR by two
sets of conic cylinders.

B is defined by

B = {(x, y, z)|
p
x2 + y2

(r R)|z|+ R, 1 z 1}, (7)

where r and R are the radii of the top and

bottom circles of the object. Since B is sym-
metric, B 1 = B.
It has an axis that is parallel to the z-axis

and it is bounded by a conic surface. Note

that, the cross section of B at any plane per-
pendicular to the z-axis is a disk. A radius of

such a disk is largest at z = 0 and smallest at

z = 1 and z = 1. The largest and smallest

radii are denoted by R and r respectively.

Consider the following arrangement of conic

cylinders. An idea here is to place those cylin-

ders on the two planes z = 0 and z = 1. Pre-

cisely, two sets of probe locations are deter-

mined as follows.

S0(k) = {(0, 0, 0), (0, 2d, 0), (0, 4d, 0), . . . ,
(2d, 0, 0), (2d, 2d, 0) . . . ,

(2kd, 2kd, 0)},
S1(k) = {(d, d, 1), (d, 3d, 1), (d, 5d, 1), . . . ,

(3d, d, 1), (3d, 3d, 1), . . . ,

((2k + 1)d, (2k + 1)d, 1)}.

The set of conic cylinders whose center points

(reference points) are located on the plane z =

0 are called 0-cylinders and those on the plane

z = 1 1-cylinders. 0-cylinders are located on

a regular grid of space 2d. 1-cylinders are also

located in a similar manner, but their centers

are characterized by odd integers times d. The

space parameter d is determined by

d =
R + r

2
. (8)

The other parameter k is determined to be

a smallest integer such that the correspond-

ing set of cylinders cover the entire cuboid.

To find such an smallest integer k, we have

to consider di erent cases (See Fig. 8). For

simplicity, we assume that the base area is a

square of side length L. In case kd < L

(k + 1)d, the cuboid is covered with cylin-

ders corresponding to S0(k) S1(k) so that

total number of cylinders needed is |S0(k)|2 +
|S1(k)|2 = 2k2 = 2(bL/(2d)c)2. In other case
(k+1)d < L (k+2)d, the cuboid is covered

with the ones corresponding to S0(k+1) S1(k)

so that the total number of disks for covering

becomes |S0(k+1)|2+|S1(k)|2 = (k+1)2+k2 =
(bL/(2d)c+ 1)2 + (bL/(2d)c)2.
By C0i,j and C

1
i,j we denote the intersec-

tions of the cuboid with the 0-cylinder and 1-

cylinder, respectively, whose reference points
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Figure 8: Change in parameter k with di er-

ent size of base area; (a) upper right corner of

cuboid lies on the center of S1(k) (b) the same

corner lies on the center of S0(k).

are located at the points (id, jd, z), that is,

C0i,j = {(x, y, z)|0 z 1,

(x id)2 + (y jd)2

(R (R r)z)2},
(i, j) = (0, 0), (0, 2d), (0, 4d), . . . ,

(2d, 0), (2d, 2d), . . . , (2kd, 2kd) and

C1i,j = {(x, y, z)|0 z 1,

(x id)2 + (y jd)2

(r + (R r)z)2},
(i, j) = (d, d), (d, 3d), (d, 5d), . . . ,

(3d, d), (3d, 3d), . . . ,

((2k + 1)d, (2k + 1)d).

Lemma 3.1 A cuboid of a square base face

and of height 1 can be covered by 0-cylinders

and 1-cylinders placed at the locations specified

by S0(k) and S1(k), respectively, on the planes

z = 0 and z = 1, respectively.

Proof We shall show how the cross section

of the cuboid at z = z0, 0 z0 1 is covered

by those cylinders. When z0 > 1/2, the 1-

cylinders cover more space than 0-cylinders.

The radius r1(z0) of a 1-cylinder at z = z0 is

given by

r1(z0) = r + (R r)z0. (9)

Similarly, the radius r0(z0) of the circle of a

0-cylinder at z = z0 is given by

r0(z0) = R (R r)z0. (10)

If r1(z0) > 2d, that is, z0 > ( 2d

r)/(R r), then the cross section of the cuboid

at z = z0 is covered by 1-cylinders. For d <

r1(z0) 2d, that is, 1/2 < z0 ( 2d

r)/(R r), the farthest points from a center

(id, jd) of a 1-cylinder C1i,j are {((i± 1)d, (j ±
1)d)}.
Consider the intersection at z = z0 be-

tween two cylinders C1i,j and C
1
i,j+2, which is

given by (id +
p
r1(z0)2 d2, (j + 1)d). This

point is covered by the cross section of the

cylinder (or exactly disk) C0i+1,j+1 because

{(i+ 1)d id
p
r1(z0)2 d2}2

+ {(j + 1)d (j + 1)d}2 r0(z0)
2

= {d
p
r1(z0)2 d2}2 (2d r1(z0))

2

= 2d{
p
r1(z0)2 d2 + 2(d r1(z0))}

= 2d(2d 2r1(z0) +
p
r1(z0) d2) < 0.

The last inequality is verified as follows.

Let r1 = r1(z0) and f(r1) = 2d 2r1+ r1 d2.

Di erentiating the function f w.r.t. r1 we have

f 0(r1) = 2 + r1

r21 d2
.

So, the function f(r1) takes an extreme value

when r1 =
2 3
3
d. The extreme value is positive

since f(2 3
3
d) = (2 3)d > 0

We also see that f(d) = 0 and f( 2d) =

(3 2 2)d > 0. All these observations suggest

f(r1) > 0. If d < r1(z0) 2d, then 2d(2d

2r1(z0) +
p
r1(z0) d2) < 0. ¤
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Figure 9: Cross sections of 0-cylinders and 1-

cylinders when 1/2 < z0 ( 2d r)/(R r).

Our discussion is also applicable to the case

of the arrangement in discrete space. It is

worth mentioning this because the light path

alignment process is driven by pulse motors

and the probe positions are set by number of

pulses. In this case, we take bdc instead for the
pitch of conic cylinders and rearrange them

(See Fig. 10). The proof of covering can be

made by substituting bdc to d in Lemma 3.1.
The rearrangement causes wider overlap be-

tween conic cylinders and thus results in the

increase of probe points.

Now, we can compare the performance of

our dual-plane scheme with that of the single-

plane scheme in which probes are arranged so

that the smallest circles cover the rectangular

reference point region.

(k+1)2+k2 = (bL/(2d)c+1)2+bL/(2d)c2.
(11)

On the other hand, the number of circles re-

Figure 10: Rearrangement of Conic Cylin-

ders from Continuous (left) to Discrete (right)

Space.

quired by the single-plane scheme is

(k0+1)2+k02 = (bL/(2r)c+1)2+bL/(2r)c2.
(12)

Thus, the ratio is given by

(k02 + (k0 + 1)2)/(k2 + (k + 1)2)

' bL/(2r)c2/bL/(2d)c2 ' (d/r)2
= ((R + r)/(2r))2

= (1 + R/r)2/4. (13)

So, if R = 3r, then the ratio is (1 + 3)2/4 = 4.

4 Conclusions

In this paper, we have considered the prob-

lem of arranging fewest possible probes to find

a hidden geometric object in a given region.

This problem is closely related to an industrial

application of the light path alignment prob-

lem. To reduce the time of the blind-search

process in the application, we introduced the

dual-plane scheme using morphic characteris-

tic of the object. Our scheme succeeded in
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improving the performance of the search pro-

cess.

We are going to consider next the sequence

of measurement to shorten average detection

time. Also, in practical applications we have

to deal with small rotation of objects with ad-

ditional freedom of two rotations, which has

been left as another open problem.
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