tHEEA HHARES BIEEE

IPSJ SIG Technical Report

EEREA /ML BT L

2004—AL—96 (8)
2004,77,/21

% mERADHNIHELL

RUZR 7077 RUFZZrK%E) RE BGX (LRBEERAEERMAFERAS) Mk B G
IR AR (R P AT 2 0 ERFERAR) B ¥ RIEKE)

BE YELOSAESZFNRTIELT 2MEICHENT, ElOR, bL <R 2RNZR/MET 288

EMHITD
BOBEBT NI XLDEEZEITD.

WTRRS, HIEN 1 DONHNZHOREOHRELBTINTY X LE, — RO kBEBROE

Polyline Fitting of Planar Points under Min-Sum Criteria

Boris Aronov (Polytechnic University,USA) aronov@cis.poly.edu
Tetsuo Asano (JAIST) t-asano@jaist.ac.jp
Naoki Katoh (Kyoto University) naoki@archi.kyoto-u.ac.jp
Kurt Mehlhorn (Max-Planck-Institut fiir Informatik) mehlhorn@mpi-sb.mpg.de
Takeshi Tokuyama(Tohoku University) tokuyama@dais.is.tohoku.ac.jp

Abstract. Fitting a curve of a certain type to a given set of points in the plane is a basic problem
in statistics and has numerous applications. We consider fitting a polyline with k joints under the min-
sum criteria with respect to L;- and Lo-metrics, which are more appropriate measures than uniform
and Hausdorff metrics in statistical context. We present efficient algorithms for the 1-joint versions of
the problem, and fully polynomial-time approximation schemes for the general k-joint versions.

1 Introduction

Curve fitting aims to approximate a given set of
points in the plane by a curve of a certain type.
This is a fundamental problem in statistics, and
has numerous applications. In particular, it is a
basic operation in regression analysis. Linear re-
gression approximates a point set by a line, while
non-linear regression approximates it by a non-
linear function in a given family.

In this paper, we consider the case where the
points are fitted by a polygonal curve (polyline)
with k joints, see Figure 1. This is often referred
to as polygonal approzimation or polygonal fit-
ting problem. It is used widely. For example, it
is commonly employed in scientific and business
analysis to represent a data set by using a polyline
with a small number of joints. The best represen-
tation is the polyline minimizing the error of ap-
proximation. Error i either defined as the max-
imum (vertical) distance of any input point from
the polyline (min-max-optimization) or the sum
of vertical distances (min-sum-approximation).

In either case, distance is measured in some norm.
We follow common practice and restrict ourselves
to norms L and Ls.

Min-max-approximation by a polyline is well
studied. A popular formulation is the vertical
distance minimization in which we minimize the
mazimum of the vertical distance (called the uni-
form metric or Chebyschev error function) be-
tween the points and the curve. Hakimi and
Schmeichel gave a O(n?logn) time algorithm
for this problem [5], and the time complexity
has been later improved to O(nlogn) [4]. An-
other popular approach is to minimize the Haus-
dorff measure that is the maximum of the Eu-
clidean distances between the points and the out-
put curve. This problem can also be solved in
polynomial time [12]. These problems are closely
related to curve simplification, in which the input
is a polyline with n edges rather than a set of n
points; this question arises in geographic infor-
mation systems (GIS, see a survey [15]), and has
received much attention in computational geom-
etry [3, 6, 9, 11].

Figure 1: A 4-joint polyline fitting a set of points.

The minimize-the-maximum (min-maz) for-
mulation is useful in pattern recognition applica-
tions. However, in applications to statistics, its
serious deficiency is fragility in presence of out-
liers. Even a single outlier can drastically change
the output, while outliers, real or imagined, usu-
ally exist in statistical data. For this reason,
minimize-the-sum-of-errors (min-sum) methods are
considerably more popular in statistics: The most
basic one is the least-squares method that mini-
mizes the sum of the squares of vertical distances
between the input points and the output curve.
In this paper, we call it the Lo-fitting problem
(the term least-square fitting is commonly used
as well), and regression line in statistics usually
refers to the Lo-fitting line. If the output curve
is either a straight line or a low-degree algebraic
curve, it is quite easy to compute the optimal L;-
fit. Another criterion is the L;-minimization, in
which we minimize the sum of vertical distances
from the candidate curve to the points being fit-
ted. L, fitting is more resilient to outliers than
L, fitting; however, it is usually more expensive
(or complicated) to compute the optimal solution.
For linear regression, the Lj-optimal line can be
computed in linear time [7] by using sophisticated
computational techniques. Several other formu-
lations have been proposed for further reducing
the effect of outliers on the linear regression. Re-
peated median regression is a well-known exam-
ple, and efficient solutions are known for several
other criteria [10].

In this paper, we focus on the Ly- and La-
fitting problems when the desired curve is a k-
joint polyline; in. other words, it is a continuous
piecewise-linear z-monotone curve with k41 lin-,
ear components. We assume that a coordinate
system is fixed, and the input points are sorted

with respect to their z-coordinate values. To the
authors’ knowledge, the computational complex-
ity of the optimal k-joint problem under either
of these minimization criteria has not been pre-
viously investigated. More specifically, it seems
that an efficient solution of the L;-fitting problem
extending the result of Imai et al. [7] is theoreti-
cally challenging even for the 1-joint problem.

In this paper, we begin by considering the 1-
joint problem. We give algorithms of complexity.
O(n) and O(n'4) time for the Ly and L; cri-
teria, respectively.! The Lo-fitting algorithm is
simple and practical, whereas the L;-fitting al-
gorithm depends on using a semi-dynamic range
search data structure and parametric search. For
general k, we describe approximation schemes.
Let z,t be the minimum fitting error for a k-
joint polyline and let € be a positive constant.

"We give a polynomial-time approximation scheme

(PTAS) to compute a | (1+¢€)k]-joint fitting whose
error is at most 2,y and a fully polynomial-time
approximation scheme (FPTAS) to compute a k-
joint polyline with (1 + €)zyp fitting error, and
consequently show that the problems cannot be
strongly NP-hard, although their NP-hardness re-
mains open. :

Intuitively, why are the problems we consider
in this paper more difficult than some related
questions? We have mentioned that the uniform
metric fitting problem can be solved efficiently.
The key point is that its corresponding decision
problem to determine whether there exists a k-
joint polyline with a uniform error less than a
given value w is geometrically a stabbing prob-
lem. The k-joint path must go through n vertical
line segments of length 2w centered at the input
points, and we can continuously move a feasible
polyline such that each link becomes extremal in
geometric sense, that is, goes through a pair of
endpoints of vertical segments. Hence, we can de-
sign a polynomial-time algorithm. The L;- and
Lo-fitting problems seem to be more subtle: We
do not have reformulation of the corresponding
decision problems in terms of stabbing.

‘We remark that the curve simplification prob-

'We write f(n) = O(g(n)) if there exists an absolute
constant ¢ > 0 such that f(r) = O(g(n)logn). = -

lem under the L;-measure is to minimize the area
between input and output polylines. In a re-
stricted case where the vertex set or the set of
lines supporting edges of the output polyline is a
subset of that of the input polyline, the problem
is reduced to the k-link shortest path problem in
a graph. In particular, if the input polyline is
convex, this problem is related to matrix search-
ing (see [1]). However, for the general case the
authors are not aware of an efficient algorithm.

2 Preliminaries

A k-joint polyline is an alternating sequence P =

problem with respect to the uniform error is to
find a pair of parallel lines at the minimum ver-
tical distance that contain all the given points
between them. This can be done by applying the
rotating caliper method that computes antipodal
pairs of points on the convex hull of the point
set. For an z-sorted point set this can be done
in O(n) time [13]. The L;-linear regression prob-
lem is more involved; however, a linear-time al-
gorithm has been devised by Imai et al. [7] based
on Megiddo’s prune-and-search paradigm.

3 Fitting a 1-joint polyline

(e1,V1,€2,Va,-.. ,€k, Vi, €g+1) Of line segments (links) We consider the problem of fitting a 1-joint poly-

and joint vestices (or simply joints), where e,
and eg41 have v, as a shared endpoint, for s =
1,2,... ,k, and e; and eg4) are infinite rays. We
denote the link e, on line y = asx — b, by (as, bs)
if the interval of the values of z corresponding to
the link is understood. A joint v, is represented
by the pair (us, vs) of its coordinate values. Thus,
the connectivity and monotonicity of the poly-
line can be guaranteed by requiring that v, =
asus —bs = agy1us —bst1, fors =1,2,... ,k+1,
and uy < ... < ug.

We now formulate the problem of fitting of
k-joint polyline to an n-point set. Given a set of
points S = {p; = (z1,%1),p2 = (Z2,¥2),--- ,Pn =
(Zn,yn)} with 21 < x2 < -+ < z,, and an integer
k, and setting ug = —oo and uk4; = oo for conve-

nience, find a polyline P = ({(ay, b1), (u1,v1), (a2, b2),

(’U,g, 1)2), v ,(Uk, Uk)7 (ak+17 bk+1)) InjnimiZing one
of the following three quantities for L;-, Lo-, and
uniform gi.e. Lo) metric fitting, respectively:

Ly: Z::l Zu,_1<zi§us laszi — bs — yil
Ly: lec-:l—% Zu,-1<z,‘5us(asxi —bs— y’i)za and
Loo : maxi<e<k+1{MaXy,_, <c;<u, |€s2i —bs —yil}.
For k = 0, the problems are linear regression
problems. The Lo-linear regression is well known
as the Gaussian least-squares method. Once we
compute A, = Y.z, Bp = Y 4, Cn =
Yie1 %5 Do = 3L #f, and By = 300, @iy in
linear time, we can construct an optimal fitting
line y = az — b by considering the partial deriva-
tives of the objective function and solving a 2 x 2
system of linear equations. The linear regression

line to a set of points. We proceed in two steps.
We first assume that the joint vertex lies in a
fixed interval [zg4,Zg4+1] and later eliminate this
assumption. Let S$1(¢) = {p1,p2;... ,pq} and
S2(q) = {Pg+1,-.- 1Pn}. Our objective polyline
consists of two links lying on lines 4;: y = a12—by
and £3: y = agz — by, respectively. We call a
tuple (ay,b1,az,b2) feasible if the two lines y =
a1z —>by and y = a2z — by meet at a point whose -
coordinate u. = a’—’}:—z% lies in the interval [zq, T¢41]-
Our goal here is to find a feasible tuple (aj, b1, ag, ba)
representing a 1-joint polyline minimizing (for a
given gq)

oy leazs = by — gl + 30 4 laoi — b2 —yi| and

L i(armi — by —)2 + S0y a2z — bo — i),
for L;- and Lo-fitting, respectively.

Lemma 3.1. For either Li- or La-fitting crite-
rion, the 1-joint problem for a fized q reduces to
solving two convex programming problems.

Proof. Disregarding the feasibility constraint, the
problem is clearly a quadratic programming prob-
lem for the Ly case and a linear programming
problem for the L; case. The feasibility con-
straint requiring that the lines ¢; and £ meet in
the strip between z, and x4 can be expressed by
different linear constraints depending on whether
a; < ap. Thus, we can decompose the (L or Lg)
problem into two subproblems. If a; < a3, the
lines meet in the strip if and only if ¢; is not be-
low £3 at x4 and is not above at zq4;. Thus, the

additional constraint becomes
Tqlaz —a1) by~ by < zgpa(az —ar). (1)
In the opposite case, the additional constraint is
Tgr1{az —a1) < by — by S x4(az —ar). (2)

Clearly, each subproblem is a convex program-
ming problem, as claimed. m

From the above lemma, it is clear that the
optimal 1-joint polyline can be computed by us-
ing linear/quadratic programming. However, we
can design combinatorial algorithms. Indeed, we
can classify the solution into two cases: (1) An
inequality in (1), (2) holds with equality. (2) All
of the inequalities in (1), (2) are strict. We call
the solution fired in the former case and free oth-
erwise. From the form of the expressions in (1),
(2) we deduce the following simple observation.

Lemma 3.2. If the solution is fized, the joint is
located on either of the two vertical lines x = x,
T = Tqg+1-

If the joint is on the line = x441, we can re-
gard it as a solution for the partition into Si(q+
1) = S1(q)U{pg+1} and S2(g+1) = S2(a)\{pg+1}-
Thus, for each partition, we essentially need to
solve two subproblems: (1) the free problem and
(2) the fixed problem where the joint is on the
vertical line ¢ = z,. This leads to the follow-
ing generic algorithm: For each partition of S
into two intervals S; and Ss, we first consider the
free problem ignoring the constraints, and check
whether the resulting solution is feasible or not,
i.e., we verify that (1) or (2), as appropriate, is
satisfied. If it is feasible, it is the best solution for
the partition. Otherwise, we consider the fixed
solution adding the constraint that the joint lie
on & = &, and report the solution for the parti-
tion. After processing all n—1 possible partitions,
we report the solution with the smallest error.

If it takes O(f(n)) time to process a subprob-
lem for each partition, the total time complexity
is O(nf(n)). For efficiency, we design a dynamic
algorithm to process each partition so that f(n)
is reduced in the amortized sense.

3.1 The L, 1-joint problem

We show how to construct an optimal Lp-fitting
1-joint polyline in linear time. We process the
partitions (Si(g), S2(q)) starting from ¢ = 1 to
g = n— 1, in order. We maintain the sums,
variances, and covariances Aq = Y 7., 7;, Bg =
Y19 Co =i 2}, Dg =L, ¢/, and E; =
Y-, ziy; incrementally, at constant amortized
cost. They also provide us the corresponding val-
ues for Sy(g) if we precompute those values for S,
ie, Y igr1 i = Ap — Ag etc.

For the free case, the objective function is
separable, in the sense that the optimal solution
can be identified by finding (a1,b1) minimizing
>4 (a1zi — by — y;)? and (az, b;) minimizing
Y ieg1(a2zi —b2— y;)? independently. This can
be computed in O(1) time from the values of
Ag,... By as explained in section 2. The fea-
sibility check of the solution is done in O(1) time
by computing the intersection point of the cor-
responding pair of lines. It remains to solve the
subproblems with the additional constraint that
the joint is at . = z4. This can be solved by
using a standard method such as the Lagrange’s
method of indeterminate coefficients.

Theorem 3.3. La-optimal 1-joint fitting can be
computed in linear time.

3.2 The L, 1-joint problem
3.2.1 Semi-dynamic L; linear regression

We start with the problem of computing the op-
timal linear Ly-fitting (i.e., linear regression) of
the input point set, i.e., we seek the line fopt: y =
az — b minimizing } -, |az; — b — yil.

The difficulty with the L;-fitting problem is
that, written in linear programming terms, it has
n + 2 variables, in contrast to the least-squares
case where the problem is directly solved as a bi-
variate problem. Nonetheless, the problem can
solved by brute-force in O(n®) time, since there
are O(n?) possible linear dissections of the point
set which can be enumerated in 8(n?) worst-case
time by constructing the dual arrangement, and
we can compute the optimal line in linear time
once the dissection by the line is given (this algo-

rithm can be easily sped up to constant or near-
constant amortized time per dissection). More-
over, it can be easily seen that the optimal line
bisects S into two equal-size subsets; in other
words, the line is a halving line. Using this fact,
Imai et al. [7] devised an optimal linear-time al-
gorithm for computing £opt based on the multidi-
mensional prune-and-search paradigm.

In order to design an efficient algorithm for
the 1-joint fitting problem, we consider a semi-
dynamic version of the L; linear regression for a
point set P with low amortized time complexity,
where we dynamically maintain P with insertions
and deletions under an assumption that P is al-
ways a subset of a fixed universe S of size 7 that
is given from the outset. (In fact, for our ap-
plication, it is sufficient to be able to start with
P = § and handle only insertions, and to start
with P = S and handle only deletions. Moreover,
the order of insertions and deletions is known in
advance. The data structure we describe below
is more general.)

Consider the dual space, with p; = (zi, %)
transformed to the dual line Y = f;(X) where
fi(X) = ;X — y;. The line y = ax — b is trans-
formed to the point (a,b) in the dual space. The
kth level of the arrangement A = A(S*) of the
set S* of dual lines is the trajectory of the kth
largest value among f;(X). We call the [n/2]th
level the median level.

Lemma 3.4 (Imai et al. [7]). Ifthe optimal L -
fitting line is given by y = aopt® — bopt, its dual
point (opt, bopt) s on the median level if n is odd,
and between the median level and the |(n + 1)/2]th
level if n is even.

Now, given X-value t, consider the point (¢, f;(t))

for each i = 1,2,... ,n, and let F(¢) to be the
sum of the |n/2] largest values in {fi(t) : i =
1,2,...,n} and let G(t) be the sum of the |n/2}
smallest values in the same set. Put H(t) =
F(t) — G(t) and let ayp be the value of ¢ which
minimizes H. The lemma below follows directly
from the fact that, in any line arrangement, the
portions of the lines lying on or below any fixed
level k can be decomposed into & non-overlapping
concave chains (see, for example, {2]).

Lemma 3.5. F(t) is a convex function, while G(t)
is a concave function. As a consequence, H(t) is
also convez. H(t) has either slope 0 at t = agpt
or its slope changes from negative to positive at
t= Qopt

Suppose a fixed universe S* of lines is given.
We need a data structure that at any given mo-
ment maintains a subset P* C S* and supports
the following operations:

Slope-sum query For a query value ¢, return
the sum of the slopes of the |n/2] highest
lines at X =1t.

Height-sum query For a query value ¢, return
the sum of the Y-coordinates of the |n/2]
highest lines at X = ¢. The height-sum
query reduces to a slope-sum-query plus a
constant-term-sum-query.

Update A line in S* is added to or removed from
P,

Similar query problems are given in [8] prvi-
ously. Suppose a data structure supporting such
queries on a set P* C §* of lines in O((n)) time
is available, where n = |S*|. Then we can query
the slopes of F' and G at ¢, and hence compute
the slope of H at t in O(7(n)) time. Because of
convexity of H, we have the following:

Lemma 3.6. Givent, we can decide whethert <
Gopt, t > Gopt, OT t = agpt in O(T(n)) time.

Thus, we can perform binary search to find
acpt. We will show below how to make the search
for agpt strongly polynomial. Once we know agpt,
we determine bopy by determining the median level
att = Qopt -

Because of space limitation, we omit construc-
tion of the query data structure, and just declare
that 7(n) = O(n®4) is possible.

Lemma 3.7. A linear-space data structure at-
taining T(n) = O(n®5) can be constructed in
O(nlogn) time. If we can use O(n'?) space, a
data structure with O(n®%) query time is con-
structed in O(n'*) preprocessing time.

3.2.2 Algorithm for L, 1-joint fitting

Finally, we describe the algorithm to find the L-
optimal 1-joint polyline fitting a set- S of n points
in the plane. Recall that there are two different
types of solutions:

Type 1 There is an index ¢ such that the 1-joint
polyline consists of the optimal L,-fitting
line of S1(q) = {p1,p2,..- ,pg} and that of

52(q) = {Pg+1,Pg+2--- ,Pn}.

Type 2 There is an index ¢ such that the joint
lies on the vertical line r = z,.

If the optimal solution is of type 1, we com-
pute an optimal Li-fitting line for S1(g) and Sz(g)
separately, for every ¢ = 1,2,... ,n, by using the
semi-dynamic algorithm with S as the universe.
If we use quasi-linear space é(n), the time com-
plexity is O(n!%), and if we use O(nl?) space,
the time complexity is O(nl4).

Otherwise, the optimal solution is of type 2.
For each ¢, we guess the y-coordinate value 9 of
the joint vertex (z4,7). Then, we can compute
the best line, in the sense of L; fitting, approxi-
mating S1(g) going through the (for now, fixed)
joint by using almost the same strategy as in sec-
tion 3.2.1. Indeed, it suffices to determine the
slope of this line. In the dual space, we just
need to compute a point p = (a(p), b(p)) on the
line Y = z4X + n such that Y7, |a(p)z; — b(p)|
is minimized. We observe that the above func-
tion is convex if it is regarded as a function of
a, and hence 8(p) = 6% (p) — 0~ (p) is monotone
and changes the sign at p, where 8% (p) (6 (p))
is the sum of slopes of lines above p (resp. below
p). Thus, we can apply binary search by using
slope-sum query, and this binary search can be
performed in O(logn) steps by using the filtra-
tion as described above.

Moreover, because of the convexity of the ob-
jective function, once we know the optimal solu-
tion for a given 7y, we can determine whether the
optimal value 7 is greater than my or not by using
the height-sum query. Indeed, when we infinites-
imally slide 7p, the gain (or loss) of the objec-
tive function can computed from the slope sums
and height sums associated with each of the sets

of points lying above, below, and on the current
polyline (for each of Si(g) and S2(q)).

Thus, we can apply binary search for comput-
ing the optimal value of . In order to construct
a strongly polynomial algorithm, we apply para-
metric search. Note that given 7, our algorithm
has a natural parallel structure inherited from the
range-searching algorithms, and runs in polylog-
arithmic time using O(r(n)) processors. Thus,
popular framework for the parametric searching [14]
works. Therefore, for a fixed ¢, the second case of
the problem is computed in O(7(n)) time. Thus,
we have the following:

Theorem 3.8. The optimal L;-fitting 1-joint poly-
line is computed in O(n'5) randomized time us-
ing linear space, and O(n14) randomized time us-
ing O(n12) space.

4 Fitting a k-joint polyline

The k-joint fitting problem is polynomial-time
solvable if k is a fixed constant. We describe
the algorithm in a non-deterministic fashion. We
guess the partition of z,... ,z, into k intervals
each of which corresponds to a line segment in
the polyline. Also, we guess whether each joint is
free or fixed. We decompose the problem at the
free joints and have a set of subproblems. In each
subproblem, we give the linear constraints corre-
sponding to the fixed condition (i.e., each joint
is located on a guessed vertical line}). Thus, each
subproblem is a convex programming problem: a
linear program for L;, and a quadratic program
for Ly. We solve each subproblem separately to
obtain the solution of the whole problem. Note
that this strategy works because of the convex-
ity of each subproblem. There are O((3n)*) dif-
ferent choices of the guesses, thus we can be re-
place guessing by a brute-force search to have a
polynomial-time deterministic algorithm if &k is a
constant.

For a general k, we do not know whether the
problem is in the class P or not. Thus, we con-
sider approximation algorithms. One possible ap-
proach is to relax the requirement that the num-
ber of joints is exactly k. We can design a PTAS
for it. ‘ *

Theorem 4.1. Let z,, be the optimal Ly (or
Ls) error of a k-joint fitting. Then, for any con-
stant € > 0, we can compute a |(1 + €)k|-joint
fitting whose error is at most zp in polynomial
time.

Proof. We ignore continuity and approximate the
points by using a piecewise-linear (not necessar-
ily continuous) function with k linear pieces. This
can be done by preparing the optimal linear re-
gression for each subinterval of consecutive points
of S, and then applying dynamic programming.
‘We can restore the continuity by inserting at most
k steep (nearly vertical) line segments. The re-
sulting polyline has at most 2k joints and error at
most Zope. We can improve 2k to L%‘-J by applying
the 1-joint algorithm instead of linear regression
algorithm, and further improve to |(1 + €)}k] by
using the r-joint algorithm mentioned above for
r=[e1]. O

Another approach is to keep the number of
joints at k& and approximate the fitting error. We
give a FPTAS for it. We only discuss the L
case, since the Ly case is analogous. Let zp be
the optimal L;-error, and we aim to find a k-joint
polyline whose error is at most (1 + €)zope. We
remark that if 2z, = 0, our solution is exactly
the same as the solution for the uniform metric
fitting problem, and thus we may assume zop¢ >
0. Recall that the uniform metric fitting problem
can be solved in O(n log n) time [4]. The following
is a trivial but crucial observation:

Lemma 4.2. Let zo, be the optimal error for the
uniform metric k-joint fitting problem. Then, zoo <
Zopt S NZoo.

Our strategy is as follows: We call the n ver-
tical lines through our input points the column
lines. We give a set of portal points on each col-
umn line, and call a k-joint polyline a tame poly-
line if each of its links satisfies the condition that
the line containing the link goes through a pair
of portal points.

On each column line, the distance between its
data point and the intersection point with the op-
timal polyline is at most zopt, thus at most nz..
Thus, on the ith column line, we place the por-
tals in the vertical range [y; —nzoo, ¥i +Nn20o). The

portal points are placed symmetrically above and
below y;. The j-th portal above y; is located at
the y-value y; + (1 + §)718, where § = %2¢ and
ji=12,... , M. We choose M maximal with
(1+£)M6 < nz, and hence M = O(e"!log(n +
€1)). We also put portals at heights y and
Yi £ N2s. In this way the number of portals in
any column is at most 2M + 3. We call a closed
interval between adjacent portals in a column a
prime interval.

Lemma 4.3. There exists a tame polyline whose
L; error is at most (1 + €)zopt-

Proof. We start from the optimal polyline £y,
and deform it to obtain a tame polyline. We pro-
ceed sequentially, left to right. Consider the line
containing the leftmost link of £,;. We continu-
ously move the line to a tame line without cross-
ing any portal point during the movement; if the
line started off passing through a portal point, we
rotate it around it; if the line started off passing
through two, it is already tame. The right joint
of the current link is accordingly moved to the
intersection of the new line and the line contain-
ing the right neighbor link. It may happen that
during this transformation a joint crosses a col-
umn line. However, the intersection points of the
original and the deformed polylines with a col-
umn line are located in a common prime interval.
‘We repeat this operation, proceeding from left to
right, to obtain a tame polyline.

Now, consider the change of vertical distances
between a point p; and the two polylines. The
polylines go through the same prime interval of
the column line through p;. An index i is called a
near-index if the polylines goes through a prime
interval containing y; as its endpoint; otherwise
it is called a far-index. For the near-indices, the
summation of the errors caused by the new poly-
line is bounded by nd = #2<. For each far-index,
the errors caused by the new polyline at the col-
umn is bounded by (1 + §) times the one caused
by the old (i.e. optimal) polyline. Thus, the to-
tal error of the new polyline for all the far indices
is at most (1 + §)zopt- In total, the error of the
new polyline is bounded by (1 + §)zopt + 28 <
(1 + E)Zopt. O

Thus, it suffices to compute the optimal tame
polyline. There are Mn portals, and thus N =
O(M?n?) lines going through a pair of portals.
Let £ be the set of these lines. We design a
dynamic programming algorithm. For the i-th
column, for each line £ € £ and each m < k,
we record the approximation error of the best
m-joint tame polyline up to the current column
whose (rightmost) link covering p; is on £. When
we proceed to the (i + 1)-th column, each ap-
proximation error is updated. If there is an in-
tersection between lines £ and ¢ in the interval
(x4, Zi+1], we consider the polylines that have the
intersection as a possible joint. This can be done
by copying the data for £ to ¢ and vice versa
incrementing the join number by one, and then
keeping the smaller of the current and the new
(copied) error for each of the pairs (£,m) and
(¢,m) for m = 1,2,... ,k. Then, we add the
distance from p;;1 to each polyline. Finally, we
select the minimum error at the n-th column, and
retrieve the polyline by backtracking.

There are O(N?) intersections of lines, and
it takes O(k) time for each intersection for copy-
ing and updating. This requires O(N2k) work
and dominates the running time. Since N =
O(n?*M?) = O(n%¢?log?(n + €71)), we have the
following;:

Theorem 4.4. An (1+ €)-approzimation, i.e., a
k-joint polyline with error (1 + €) times the opti-
mal, for each of the Ly and Ly k-joint problems
can be computed in O(knie~4logh(n+e71)) time.

Acknowledgment: The authors would like to
thank Jirf Matousek for a stimulating discussion
on convexity.

References

[1] A. Aggarwal, B. Schieber, and T. Tokuyama,
“Finding a minimum-weight k-link path in
-graphs with the concave Monge property and ap-
plications,” Discrete Comput. Geom., 12 (1994)
263-280. :

[2] P. Agarwal, B. Aronov, T.' Chan, M. Sharir,
“On Levels in Arrangements of Lines, Segments,
Planes, and Triangles,” Discrete Comput. Geom.,
19 (1998) 315-331.

[3] P. K. Agarwal and K. R. Varadarajan, “Efficient
algorithms for approximating polygonal chains,”
Discrete Comput. Geom., 23 (2000) 273-291.

[4] M. Goodrich, “Efficient piecewise-linear function
approximation using the uniform metric,” Dis-
crete Comput. Geom., 14 (1995) 445-462.

[5] S. Hakimi and E. Schmeichel, “Fitting polygonal

functions to a set of points in the plane,” Graphi-

cal Models and Image Processing, 53 (1991) 132-
“136.

H. Imai and M. Iri: “Polygonal approximations of
a curve - Formulations and algorithms,” Compu-
tational Morphology, Elsevier Science Publishers
B.V. (North Holland), 1988, 71-86.

H. Imai, K. Kato, and P. Yamamoto: “A linear-
time algorithm for linear L; approximation of
points,” Algorithmica, 4 (1989) 77-96.

[8] N. Katoh and T. Tokuyama, “Notes on comput-
ing peaks in k-levels and parametric spanning
trees,” Proc. 17th ACM Symp. on Computational
Geometry, 2001, pp. 241-248.

[9] Y. Kurozumi and W.A. Davis: “Polygonal ap-
proximation by the minimax method,” Computer
Graphics and Image Processing, 19 (1982) 248-
264.

[10] S. Langerman and W. Steiger, “Optimization
in arrangements.” Proc. Symp. Theor. Aspects
Computer Science (STACS2003), LNCS 2607,
2003, pp. 50-61.

[11] A. Melkman and J. O'Rourke: “On polygonal
chain approximation,” Computational Morphol-
ogy, Elsevier Science Publishers B.V. (North Hol-
land), 1988, 87-95.

[12] J. O’'Rourke and G. Toussaint, “Pattern Recog-
nition,” Chapter 43 of Handbook of Discrete and
Computational Geometry (eds. J. Goodman and
J. O'Rourke), CRC Press, 1997.

(13] F.P. Preparata and M. I. Shamos, Computational
Geometry, an Introduction, Springer-Verlag, New
York, 1985.

[14] J. Salowe, “Parametric Search,” Chapter 37 of
Handbook of Discrete and Computational Geom-
etry (eds. J. Goodman and J. O'Rourke), CRC
Press, 1997.

[15] Robert Weibel, “Generalization of Spatial Data:
Principles and Selected Algorithms,” Algorith-
mic Foundations of Geographic Information Sys-
tems, LNCS 1340, 1997, pp. 99-152.

6

7

