HHEEA HHLEES RS 2004—AL—96 (7)
IPSJ SIG Technical Report 200477217

A—OF7 YT T AT a v ODENLERSTITEE
— AMO 7T XLORELBIFOHE —

bR I
FRACKFERZEBEE SR ERT R

AFETIX. ZEAEFVETCOI—a T o7 IOT ATy a Ot TS
RN OERLREIAL TN T XAEBRRT S, n AT v 7O ZBARLETOITE
iy X OF T a VERBOEBEK kE BE1bhid &, BeDT7TLTY X Aikn
IERIE L2 VB2 O(X/k) OREFEDELEEE O(kn?) B TRD 2, RenT7 1 IY
A2 Aingworth, Motwani, 33 £ T Oldham (2000) 2 & 2EEI7 =Y XA EEHAR
TATYXLAMEELEbDTHY, FLIEELZBROICOERANCLHEFELTHS,

Efficiently Pricing European-Asian Options
— Ultimate Implementation and Analysis of the AMO Algorithm —

Akiyoshi Shioura* Takeshi Tokuyama*
*Graduate School of Information Sciences, Tohoku University

We propose an efficient and accurate randomized approximation algorithm for com-
puting the price of a European-Asian option on the binomial tree model. For an
option with the strike price X on an n-step binomial tree and any positive integer
k, we give an O(kn?) time algorithm with the error bound O(X/k) which is inde-
pendent of n. QOur algorithm can be seen as a modification of the approximation
algorithm developed by Aingworth, Motwani, and Oldham (2000) into a randomized
algorithm, which improves the accuracy theoretically as well as practically.

1 Introduction

Options are popular and important financial instruments in world financial markets. One of
the simplest options is Furopean call option, which is a contract giving its holder the right, but
not the obligation, to buy a stock or other financial asset at some point in the future (called
the expiration date) for a specified price X (called the strike price). The payoff of an option
is the amount of money its holder makes on the contract. Suppose that we have a European
option on a stock, and the stock price S is more than the strike price X on the expiration
date. Then, we can make some money by ezercising the option to buy the stock and selling
the stock immediately at the market price. Hence, the payoff of a European option is given by
(8 —X)* = max{S — X,0}. The price of the option is usually much less than the actual price of
the underlying stock. Therefore, options hedge risk more cheaply than stocks only, and provide
a chance to get large profit with a small amount of money if one’s speculation is good.

The price of an option is given by the discounted expected value of the payoff. Because
of the popularity of options, techniques for computing the option price have extensively been
discussed in the literature (1, 2, 5, 6, 7, 8, 10}. A standard method of pricing an option is to
model the movement of the underlying financial asset as geometric Brownian motion with drift
and then to construct an arbitrage portfolio [4, 8]. This yields a stochastic differential equation,
and its solution gives the option price. However, it is often difficult to solve this differential

equation for many complex options such as European-Asian option dealt with in this paper, and
indeed no simple closed-form solution is known. Therefore, it is widely practiced to simulate
geometric Brownian motion by using a discrete model, and use this model to approximate the
option price. One such discrete model is the binomial tree model [6, 8], where the time period
is decomposed into n time steps, and Brownian motion is modeled by using a biased random
walk on a directed acyclic graph called a binomial tree of depth n. The option price obtained
from the binomial tree model converges to the option price given by the differential equation if
n goes to infinity. In the binomial tree model, the process of the movement of a stock price is
represented by a path in a binomial tree. An option is said to be path-dependent [5, 8] if the
option’s payoff depends on the path representing the process as well as the current stock price.
Although path-dependency is often useful in designing a secure option against risk caused by
sudden change of the market, it makes the analysis of the price of options quite difficult.

In this paper, we consider the pricing of European-Asian optibn. European-Asian option is
a kind of path-dependent thions' and its payoff is given as (4 — X)*, where A is the average
stock price during the time from the purchase date to the expiration date of the option and X
is the strike price. It is known to be #P-hard in general to compute the exact price of path-
dependent options on the binomial tree model [5]. Thérefore, it is desired to design an efficient
approximation algorithm with provable high accuraby, and various pricing techniqués have been
developed so far [1, 2, 5, 7, 10].

A most naive method for computing the exact price of European-Asian options, called the
full-path method, is to enumerate all paths in the binomial tree model. Unfortunately, the
full-path method requires exponential time since there are exponential number of paths in the
binomial tree. Hence, the Monte Carlo method that samples paths in the binomial tree is
popularly used to compute an approximate value of the exact price. The error bound of the
Monte Carlo method, however, depends on the volatlhty of the stock price when a polynomial
number of samples are taken by naive sampling.

Aingworth-Motwani-Oldham (AMO) [1] proposed the first polynomial-time approximation
algorithm with guaranteed worst-case error bound, which enables us to avoid the influence of
volatility to the theoretical error bound. The idea is to prune exponential number of high-payoff
paths by using mathematical formulae during the run of an aggregation algorithm based on
dynamic programming and bucketing. In each of n aggregation steps the algorithm produces
the error bounded by X/k, where k denotes the number of buckets used at each node of the
binomial tree. Hence, the error bound of the AMO algorithm is nX/k, and the algorithm runs
in O(kn?) time. While algorithms on the “uniform” model has been mainly considered in the
literature [1, 2, 5, 7], the AMO algorithm and its analysis work on the “non-uniform” model
where the transition probabilities of the stock price may differ at each node [10].

Following the work by Aingworth et al. [1], many variants of the AMO algorithm were pro-
posed to achieve a better error bound than nX/k. Akcoglu-Kao-Raghavan [2] presented various
pricing techniques applicable to approximation algorithms such as the Monte Carlo method and
the AMO algorithm. In partlcular, they use a recursive version of the AMO algorithm and
reduce the error bound to O(n X /k) by spending almost the same time complexity under the
condition that the volatility of the stock is small.

The error bound is further improved by Dai-HuangLyuu (DHL) [7] and by Ohta—Sa,dakane—
Shioura-Tokuyama (OSST) [10]. While the AMO algorithm uses the same number of buckets at
each node of the binomial tree, the DHL algorithm [7] uses different number of buckets at each

node. By adjusting the number of buckets at each node appropriately while keeping the time
complexity O(kn?), they achieved the error bound O(y/nX/k), where k. is the average number
of buckets used at each node. Their analysis, however, applies only to the uniform model and
does not extend to the non-uniform model. On the other hand, the OSST algorithm [10] uses
the idea of randomized rounding in the aggregation steps of the algorithm, and achieves the
error bound O(y/nX/k) for the non-uniform model. Moreover, it is shown in [10] that for the
uniform model the error bound of the OSST algorithm can be reduced to O(n'/4X/k).

In this paper, we further reduce the error bound by giving a randomized approximation
algorithm with an O(kn?) time complexity and an O(X/k) error bound. The error bound of
our algorithm is independent of the depth n of the binomial tree, although those of the AMO
algorithm and its previous variants [2, 7, 10] are dependent on n. Our algorithm uses the ideas
in Dai et al. {7] and Ohta et al. [10]. As in [10], we regard the aggregation steps of the algorithm
as a Martingale process with O(n?) random steps by using novel random variables. It can be
shown that the expected value of the output by our algorithm equals the exact price, and that
the error in each single step is bounded by a function of the number of buckets at a node of the
binomial tree. Thus, we can apply Azuma’s inequality [3] to the Martingale process to obtain
the error bound. If we choose k as the number of buckets at each node, the algorithm coincides
with the one in [10]. To reduce the error bound as much as possible, we adjust the number of
buckets at each node and obtain the error bound O(X/k), where k is the average number of
buckets used at each node. Since the value X/k can be seen as the “average” of the absolute
error produced at each node of the binomial tree, the error bound of our algorithm is the best
possible within the framework of the AMO algorithm. We also show the practical quality of
the approximate value computed by our algorithm by some numerical experiments; indeed, its
accuracy is better by a factor of nearly 100 than that of the AMO algorithm when n = 35.

2 Preliminaries

A binomial tree, also called a recombinant binary tree, of depth n is a leveled directed acyclic
graph defined as follows. A binomial tree of depth n has n + 1 levels. There are ¢ + 1 nodes
in the i-th level (0 < ¢ < n) and each node is labeled as (7, 7), where j (0 < j < 1) denotes
the numbering of the nodes. The node (0,0) in the 0-th level is called the root, and each node
(n,7) in the n-th level is called a leaf. Each non-leaf node (i, j) has two children (i + 1,) and
(i 41,7+ 1). Therefore, each non-root node (i, j) has two parents (i — 1,5 — 1) and (¢ — 1, j) if
1 <j <i-1, and each of (¢,0) and (¢,7) has only one parent.

Let us consider a discrete random process simulating the movement of a stock price. We
divide the time from the purchase date to the expiration date of an option into n time periods,
and the i-th time step means the end of the i-th time period. In particular, 0-th (resp., n-th)
time step is the purchase (resp., expiration) date of the option. For ¢ = 0,1,...,n, let S; be a
random variable representing the stock price at the i-th time step, where Sy is the initial stock
price known in advance. The fundamental assumption in the binomial tree model is that in each
time step the stock price S either rises to uS or falls to dS, where v and d are predetermined
constants satisfying u > d and v = 1/d. Thus; we can model the stock price movement by using
a binomial tree. ‘

Suppose that we are at a non-leaf node (7,7) in the binomial tree model and the current

stock price is S. With probability p;j, we move to the node (¢ + 1, j) and the stock price rises
to uS; with probability 1 — p;;, we move to the node (¢ + 1,5 + 1) and the stock price falls to
dS. Thus, the stock price at the node (4, 7) is S;(j) = u~7d’ Sp.

The binomial tree model is said to be uniform if p;; = p for each node (3, 5); otherwise it
is non-uniform. The uniform model has been widely considered [1, 2, 5, 7] since p is uniquely
determined under the non-arbitrage condition of the underlying stock. The non-uniform model,
however, is often useful to deal with various stochastic models. For each node (i, j), we denote
by w(i,) the probability that the random walk reaches to (¢,7). In the uniform model, we have
w(i,j) = (;)pi_j(l — p)?, where (;) =41/(i — j)}3.

Let X be the strike price of an option. The payoff of an option is the amount of money its
holder makes on the contract. We adopt a convention to write F'* for the value max{F,0}.

Furopean option is one of basic options, and its payoff is given by (S, — X)* which is
determined by the stock price S, on the expiration date. It is quite easy to compute the
expected value of the payoff of European options under the binomial tree model. A drawback
of European options is that the payoff may be affected drastically by the movement of the stock
price just before the expiration date; even if the stock price goes very high during most of time
periods, it may happen that the option does not make money at the end.

European-Asian option is more reliable for the holder than European option, and its payoff
is given by (A, — X)*, where A, = (3.1 Si)/(n + 1) is the average of the stock prices during
n time periods. Let 1} = Zfzo S; be the running total of the stock price up to the j-th time
step. Once T; exceeds the threshold (n + 1)X, the option holder will surely exercise it on the
expiration date and obtain the payoff of at least T;/(n + 1) — X.

Our aim is to compute the price of European-Asian options. Since the price of an option is
given by the discounted expected value of the payoff, it suffices to compute the expected payofl.
A simple method is to compute the running total T,,(P) of the stock price for each path P in the
binomial tree together with the probability Pr(P) that the path occurs, and exactly compute
the value

E((A, - X)N) = Z{Pr(’P) (Tu(P)/(n+1)— X)* | P: apath from the root to a leaf}.

We call the expected value of the payoff computed as above the ezact value of the expected
payoff, and denote U = E((A, — X)*). This simple method, however, needs exponential time
since there are 2" paths in a binomial tree. The Monte Carlo method is a popular method to
reduce computation time, although we need a huge number of paths to assure a small provable
error bound if we use naive random sampling of paths.

3 A New Algorithm for Pricing European-Asian Options

3.1 A Basic Algorithm

We describe a basic approximation algorithm for the option’s expected payoff. This algorithm
is a slight generalization of the AMO algorithm, and the previous approximation algorithms in
(1, 7, 10] can be seen as specialized versions of this basic algorithm.

As in [1], the basic algorithm uses dynamic programming to compute an approximate value
of the option’s expected payoff. For a path P from the root to a node (¢, j) in the i-th level, we
define the state of P as a pair (S;(j),T;) of the stock price S;(j) = u*~Jd’Sp and the running

total T;. Note that the states of two different paths reaching a node (i,5) can be the same.
We define the weight of the state (S;(j),7;) as the probability that a path P with the state
(8i(4), Ti) occurs. The basic algorithm is based on a simple observation that if the running total
of a current state is above the threshold (n+1)X, then the conditional expectation of the payoff
at this state can be analytically computed, and such a state can be pruned away.

Suppose that we are at a node (i,) in the i-th level and the current state is (S, T), where
T > (n+1)X. Then, the payoff’s conditional expectation is given as {T'+ h(3,5)}(n + 1) — X,
where h(i, j) is the value defined by the following recursive formula [1, 10]:

. 0 if i =mn,

i) = { Pis{h(i + 1,5) + S (D} + A= pip){h(i + 1,j + 1) + Sim(G+ 1)} ifi<n,
Hence, we need to consider only the states with running total less than (n+ 1)X, which may
be exponential many. Rather than dealing with each unpruned state individually, we instead
aggregate the states by using buckets that divide the interval [0, (n + 1)X). At each node (i, j)
in the i-th level, the algorithm creates k;; buckets B;(j, h) (h =0,1,...,k;; — 1), each of which
corresponds to the interval [by,bpy1) = [%ﬁh, ("—Ez(h + 1)). Each unpruned state of a
path terminating at the node (4, j) is stored in one of k;; buckets according to its running total.
The algorithm chooses a value R;(j,h) in the interval [(“—",:il_zh, (—"%E(h + 1)) appropriately,
and approximates all states in the bucket B;(j,h) by a sinéle state J(,5',-(]’),R,-(j, h)), where its
weight w;(j, h) is given by the sum of the weights of all states in B;(j, h). Then, the algorithm
produces two new states (Si—i—l(j)yRi(ja h) + Si+1(j)) and (Si-H(j + 1)7Ri(jv h’) + S’H—l(j + 1))
in the (i 4 1)-st level, and inserts these state in appropriate buckets at the nodes (i + 1, j) and
(i 41,7+ 1), respectively, or computes the conditional expectation of the payoff at these states.

Theorem 1. The basic algorithm computes a value ¥ satisfying |[¥-U| < X 37 Z;=Ow(i, J)/kij-
The time and space complezity are O(3 7, Z;':o ki ;).

3.2 Previous Algorithms

We can obtain the algorithms in (1, 7, 10] by customizing the number of buckets k;; and the
choice of the value R;(j, h).

The AMO algorithm [1], which has the time complexity O(kn?) and the deterministic error
bound nX/k for the non-uniform model, can be obtained by setting k;; = k with a positive
integer k for all nodes (4, 7) and R;(j, h) = ﬁ"—*'klg-h. Note that the AMO algorithm computes a
lower bound of the exact value U of the expected payoff; we can also compute an upper bound
by setting R;(j, h) = @HIX (b 4 1) instead. We denote by AMO-LB (resp., AMO-UB) the AMO
algorithm for computing the lower bound (resp., the upper bound) of the exact value.

Dai et al. [7] proposed four approximation algorithms nUnifDown, nUnifCvg, nUnifUp, and
nUnifSpl, where the first two compute lower bounds of the exact value U and the last two
compute upper bounds. All algorithms use k;; values defined as follows:

kij = lrk(n +1)(n+2) X w(i, j) for all nodes (3, j),

2 3:0 Zj‘f:o vw(d,j')
where k is a positive integer corresponding to the average number of buckets at each node. In the
algorithm nUnifDown (resp., nUnifUp) we set R;(j,h) = ""?j X p, (vesp., R;(j, h) = g"—%z(h+1)).

The algorithms nUnifCvg and nUnifSpl are modified versions of nUnifDown and nUnifUp by using
heuristics. Although the deterministic error bound /nX/k of nUnifDown and nUnifUp is better
than that of the AMO algorithms, the analysis in [7] applies only to the uniform model. While
the error bounds of nUnifCvg and nUnifSpl are the same as those of nUnifDown and nUnifUp
theoretically, they are much better practically.

The OSST algorithm [10] is a randomized algorithm, and can be obtained as follows. To set
the value R;(j, k), we choose a “representative” state (S;(j),7T') in the bucket B;(j, h) randomly,
where a state with weight w is chosen with probability w/w;(j, k), and set R;(j,h) = T. We
also set k;; = k with a positive integer k for all nodes (i, j), as in the AMO algorithm. The
OSST algorithm has the probabilistic error bound O(f X/k) for the non-uniform model and
O(nY/2X/k) for the uniform model.

3.3 Our Algorithm and Analysis

Our algorithm is based on the ideas used in Dai et al. [7] and Ohta et al. [10], and can be
obtained from the basic algorithm by setting k;; and R;(j, h) as follows.

First, we set R;(j,h) in the same way as in [10], i.e., we choose a representative state
(Si(4), T') in the bucket B;(34, h) randomly, where a state with weight w is chosen with probability
w/w;(j, k), and set R;(j,h) = T. We explain later how to choose k;;.

Let ¥ be the payoff value computed by our algorithm. Since our algorithm is randomized,
V¥ is a random variable depending on the coin-flips to choose representatives of states in the
buckets. Let Y;; be the random variable giving the future value of the payoff just after the
algorithm processes the node (3, j) in the i-th level, i.e., after the choice of representatives in all
buckets has been determined up to the j-th node in the i-th level. By definition, Ypo = U and
Yan = V. Thus, we have a random process with 37" (¢ +1) = (n + 1)(n + 2)/2 steps.

The following lemma shows that random variables Yoo, Y10, Y11, .., Ynn_1,Ynn constitute
a Martingale sequence.

Lemma 2. E()fiv]‘ | vao, Yl,O, Yl,l» ey Y;J'_l) = Y;’j_l fOT 1= 0, 1, ey, j = 0, 1, .

Lemma 2 also shows that the expected value of the payoff ¥ equals the exact value U of the
expected payoff, i.e., E(Y,,) = E(¥) =

When the algorithm processes a node (4, j), the running totals of the paths terminating at
(¢,7) are approximated with the error less than X/k;;, and the running totals of other paths
remain the same. Hence, from the argument in Section 3.1 we have |Y; ;41 — Yi ;| < Xw(4,7 +
1)/kij+1 (0<j <i<n)and |[Yip10— Yii| < Xw(i+1,0)/kit10 (0 < i < n). Thus, Azuma’s
inequality [3] applies (see [9, Theorem 4.16] for the present form).

Theorem 3 (Azuma’s inequality). Let Zy, Z1,... be a Martingale sequence such that |Zy —
Zk_1| < ¢k for each k, where ¢y is a constant depending on k. Then, we have

Pr(|Z, — Zo| > N < 2exp(=X\?/23 %1 ¢}) (Vt=1,2,..., YA > 0).

Theorem 3 yields Pr[|Y, n,—U| > A] < 2exp(—)\2/2X21") where’ = 37", EJ 0((i,3)/kij)2
Hence, we have the following lemma.

Lemma 4. Let ¢ be any positive real number. Then, our algorithm computes in O(3__, E;'=0 ki ;)
time a value U satisfying |¥ — U| < cX /T with probability at least 1 — 2e=c*/2,

1.06

ST-derand -% | 1.0014,
1.05 'g_ ST-rand -o- r?l':vjrr:ulifg»?gl; ::
A : 1.0012
1.04%5 % Q nUmevg > ST-derand -%
103 nUnifSpt -+ 1.001
g it OSST =
1.02 1.0008
1.01 1.0006
1B 1.0004
0.99 1.0002
0.98 L "
007 O ‘**%r“m;ﬁ”ﬁ#—**’**#****##ﬁ!
09 . . 0.99%5 75 20 % 36 35
%5 15 20 25 30 35

(b) Comparison of nUnifCvg, nUnifSpl, and

(a) Comparison of our algorithms with ST-derand

nUnifCvg, nUnifSpl, OSST, and MC

Figure 1: Relative errors of approximate option prices computed by several algorithms

To minimize the error bound eXvT while keeping the time complexity O(kn?), we de-
fine the number of buckets at node (4,) by ki; = [k(n + 2)w(i,)/2]. Since I' < 2/k* and
0 2j=0 kij = O(kn?), we have the following theorem:

Theorem 5. For any positive integer k and and a positive real number ¢, our algorithm computes
in O(kn?) time a value ¥ satisfying |¥ — U| < v/2cX/k with probability at least 1 — 2e=°/2.

Although the error bound O(X/k) of our algorithm shown in the last section is better than
the previous approximation algorithms, our algorithm is randomized and therefore the error
bound only holds with “high” probability. Hence, it is desired to derandomize our algorithm
without losing its accuracy. One idea for derandomization is to take the weighted mean of
running totals of the states in each bucket B;(j,h) as the value R;(j,h), as in the algorithm
nUnifCvg by Dai et al. [7]. Although the theoretical analysis does not certify the O(X/k) error
bound, it is experimentally shown that the error bound of this derandomized algorithm is better
than the original randomized algorithm.

3.4 Experimental Results

We show some experimental results to illustrate the performance of our randomized approxi-
mation algorithm and its derandomized version. In particular, we compare the quality of the
option price computed by our algorithms with those by other approximation algorithms. We
implemented the full-path method to compute the exact price, and approximation algorithms
such as the naive Monte Carlo method (MC), the AMO algorithms (AMO-LB, AMO-UB), the
DHL algorithms [7] (nUnifDown, nUnifCvg, nUnifUp, nUnifSpl), and the OSST algorithm [10]
(OSST), We denote our randomized and derandomized algorithms by ST-rand and ST-derand,
respectively. The experiment is done by a Pentium IV 2.60CGHz PC and all programs are
implemented in C++.

In the experiment, we consider a uniform model with Sy = X = 100, u = 1.1, d = 1/u,
pu+ (1—p)d = (1.06)/". The parameter k is set to 100 in the approximation algorithms except
for MC. Recall that the positive integer k denotes the number of buckets used at each node for

AMO-LB/UB and OSST while % is the average number of buckets used at each node for the DHL
algorithms and ours. The Monte Carlo method MC takes 400n sample paths so that it runs in
almost the same time as other approximation algorithms. In the experiment, only one trial is
made for each algorithm.

Figure 1 gives the result of the experiment in the range n € [10, 35], showing the ratio of
the approximate prices computed by approximation algorithms to the exact price. The running
time of the approximation algorithms are almost the same and less than 0.05 seconds, and
the full-path method takes more than 9 hours when n = 35. The results of AMO-LB/UB and
nUnifDown/Up are not shown in the graphs since the relative errors of these are always more
than 0.2 and much worse than the relative errors of the other algorithms.

The graph (a) shows that the relative errors of the algorithms nUnifCvg, nUnifSpl, and ST-
derand are better than those of the other algorithms. In particular, our derandomized algorithm
ST-derand performs much better than the original randomized algorithm ST-rand. In the graph
(b) we compare the three algorithms nUnifCvg, nUnifSpl, and ST-derand. We see from the graph
(b) that the relative error of our derandomized algorithm ST-derand is quite accurate and as
good as nUnifCvg. This result shows that the error bound of our derandomized algorithm ST-
derand is much better than the error bound O(X/k) of the randomized algorithm ST-rand. It
is an interesting open question whether ST-derand also has the theoretical error bound O(X/k),
which is left for further research.

References

[1] D. Aingworth, R. Motwani, and J. D. Oldham, Accurate approximations for Asian options,
Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (2000), 891-900.

[2] K. Akcoglu, M.-Y. Kao, and S. V. Raghavan, Fast pricing of European Asian options with
provable accuracy: single-stock and basket options, Proc. Annual European Symposium on
Algorithms 2001, Lecture Notes in Computer Science 2161 (2001), 404-415.

[3] K. Azuma, Weighted sum of certain dependent random variables, Tohoku Mathematical
Journal 19 (1967) 357-367.

[4] F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political
Economy 81 (1973), 637-654.

[5] P. Chalasani, S. Jha, and 1. Saias, Approximate option pricing, Algorithmica 25 (1999),
2-21.

[6] J. C. Cox, S. A. Ross, and M. Rubenstein, Option pricing: a simplified approach, Journal
of Financial Economics T (1979), 229-263.

[7] T.-S. Dai, G.-S. Huang, and Y.-D. Lyuu, Extremely accurate and efficient tree algorithms
for Asian options with range bounds, 2002 NTU International Conference on Finance,
National Taiwan University, Taiwan, May 2002.

[8] J. C. Hull, Options, Futures, and Other Derivatives, Fifth Edition, Prentice Hall, Upper
Saddle River, NJ, 2002.

[9] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press, London,
1995.

[10] K. Ohta, K. Sadakane, A. Shioura, and T. Tokuyama, A fast, accurate and simple method
for pricing European-Asian and Saving-Asian options, Proc. Annual European Symposium
on Algorithms 2002, Lecture Notes in Computer Science 2461 (2002), 772-784.

