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Abstract. In this paper, we present a new rapidly mixing Markov chain for counting the number of
proper k-colorings of a Cy-free graph with maximum degree A, where &k > 2A — 4 for A > 6 and
k> 5,6,7for A = 3,4,5, respectively. This is the first MCMC result for k-coloring Cy-free graphs, where
maz(2A —4,A +2) <k < A and 3 < A < 23. The mixing time of our chain is O(A?nlogn).

1 Introduction

A proper k-coloring of a graph G = (V, E) is a
labeling X of the vertices by colors from the set
C = {1,2,---,k}, where neighboring vertices
must receive different colors. The problem of
counting the number of proper k-colorings of a
graph has been extensively studied in computer
science and statistical physics.

The most successful approach for this prob-
lem is the Markov chain approach. Rapid
convergence of a well-designed Markov chain
for a graph corresponds to efficiently count-
ing the number of k-colorings. Jerrum [7]
proved that for a graph with maximum de-
gree A, a simple Markov chain, known as the
Glauber Dynamics, achieves rapid mixing in
time O(,f:—ZAAnlog n) whenever £ > 2A (Note

that Jerrum’s result can be extended to the
case k = 2A). Independently, Salas and
Sokal proved a closely related result on the
phase transition in the Potts model, which
have implications for the rapid convergence of
the Glauber Dynamics. The chain by Jerrum,
Salas, and Sokal is generally called the JSS
chain.. Their results are the first to relate the
convergence property of a Markov chain to the
maximum degree of a graph.

By extending the JSS chain, Dyer and
Greenhill presented a more rapidly mixing
Markov chain for k-colorings. We refer to this
chain as the DG chain. In the transition of
their chain, an edge is chosen uniformly at ran-
dom and the endpoints of the edges are prop-
erly recolored uniformly at random from the
permissible pairs of colors. When k = 2A, the
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bound on convergence time is Q*(n?)! time

faster than that for the JSS chain. Their con-
vergence results are obtained using the method
of path coupling, introduced by Bubley and
Dyer [1]. Furthermore, Bubley, Dyer and
Greenhill [2] presented a computer-aided proof
that 5 colors are enough for graphs of max-
imum degree 7, for a new heat-bath Markov
chain. Nevertheless, there still existed 2A bar-
rier of a given A. Vigoda [10] made the first
breakthrough beyond the 2A barrier by prov-
ing that for £ > 11/6A, the Glauber Dynamics
is rapidly mixing in time O(n?). Their Markov
chain is a reminiscent of the Wang-Swendsen-
Kotecky (WSK) algorithm [11].

For a restricted class of graphs, Dyer and
Frieze [3] gave a rapidly mixing Markov chain
in case k > 1.763A, provided that a graph has
some restriction on the degree A and girth g,
ie, A =Q(logn) and g = Q(log A). With the
same restriction on degree and girth, Molloy
[8] improved the lower bound to k¥ > 1.489A.
Hayes [6] improved the condition on girth to
g > 5 for k > 1.763A, and ¢ > 6 for &k >
1.489A. Still, the maximum degree needed as
A = Q(logn). Recently Dyer et al. [4] showed
that A can be reduced to a sufficiently (but
significantly) large constant.

In this paper, we provide a new Markov
chain which also breaks the 2A bound for Cy-
free graphs. That is, graphs are assumed to
contain no cycle of length four. we also as-
sume that the minimum degree of graphs is at
least 3. The Markov chain achieves rapid mix-
ing in time O(A®nlogn) when k > 2A — 4 for
A >6and k > 5,6,7 for A = 3,4,5, respec-
tively. Thus, in this paper, we provide the first
MCMC results for k-coloring Cy-free graphs,
where maz(2A —4,A +2) < k < %A and
3 < A < 23. Note that our result does not
require a large maximum degree.

Our chain traverses over the states consist-
ing of a pair of a coloring and a vertex of the
input graph, randomly walking over the ver-
tices and recoloring neighbors of the currently
visiting vertex, where for recoloring the neigh-
bor vertices it uses the JSS and DG chains. As
for analysis we use the path coupling method.

! We use the notion Q* for hiding a polylogarith-
mic factor in order, i.e., Q*(f(n)) = O((log" n)f(n))
for some fixed k.

2 Preliminaries

2.1 Graph Notations

Let G = (V, E) be a connected graph of maxi-
mum degree A > 3. In this paper, we assume
that G contains no four-cycle Cy. That is, for
any distinct 4 vertices u, v, w, x, at least one of
{u,v}, {v,w}, {w,z}, {x,u} must be an edge of
G. Further, we assume that every vertex of G
has degree at least 3 (in other words, the min-
imum degree of G is at least 3). In fact, this
assumption is removable. However, we omit
the proof of it due to space limitation.

The set of neighbors of a vertex v is denoted
as N (v). Particularly, I[N (v)] < A for every
vertex v. Let C be a set of k distinct elements,
called colors. A mapping X from V to C'is a
k-coloring of G (or simply coloring when k
is fixed in the context). Let C" be the set of
all k-colorings of G. Thus, X (v) is the color
assigned to a vertex v by the coloring X. A
vertex v is properly colored in the coloring X
if X(v) # X(w) for all w € N(v). A coloring
X is called proper if every vertex is properly
colored in X. Let Q4(G) C CV be the set of
all proper k-colorings of G.

2.2 The Path Coupling Method

Let M be an arbitrary ergodic process whose
states are in a space €). Let 7 be a distribution
over {2 such that, for all Y € Q,

> m(X)PIM(X) =Y] =n(Y).

XeN

This distribution 7 is uniquely determined and
called the stationary distribution of the chain
M. Particularly, 7 is known as the limit dis-
tribution by the outputs of the chain M, let it
begin from an arbitrary initial state.

For practical use of the chain M, it must
converge quickly to w. In more precise, the
mixing time of the chain M is the least integer
T > 0 such that, for X € Q,Vt > T,

5 Y IPIMA(X) = X] —x(X)| <.
Yen

given a parameter € > 0. This value is usually
denoted as 7(e).
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In order to bound the mixing time we use
the so-called path-coupling theorem. A cou-
pling of the chain M is a stochastic process

(X,Y) = (X", Y

on  x Q such that each of X — X', Y — Y7,
considered marginally, is a faithful copy of the
transaction by M; that is, for all X and Y,

Y PUXY) = (XY)] = PIM(X)=X]],
v

Y PHX,Y) = (X Y)] =
<

The path coupling theorem involves a sub-
set S C Q x Q. Two states X and Y are
connected by S if there is a finite sequence
of states X = Xy, X1,...,X; = Y such that
(X¢, Xpp1) € Sforall0 < ¢ <r—1. We say
that a graph (£2,S) is connected if it is con-
nected as a directed graph with the edges in S,
i.e., any two different states in Q are connected
by S.

The path coupling method is first intro-
duced by Bubley and Dyer[1]. Here we refer
to a version by Dyer and Greenhill[5].

Theorem 1 Let (X,Y) — (X', Y') be a cou-
pling of the Markov chain M and let 0 be any
integer valued metric defined on Q x Q. Let
D = maxyxycad(X,Y). Let S C Q x Q such
that the graph (2, S) is connected. Suppose that
there exists 3 < 1 such that

E[§(X',Y")] < B6(X,Y), ¥(X,Y) € S.

Then, the mizing time is bounded as follows. >

log(De™1)

7(e) < =

3 A New Markov Chain
3.1 Definitions

Let s < 2n and

[s] ={0,...,s —1}.

We refer to elements in [s] as orders. We in-
troduce a mapping o from [s] to V such that
o([s]) = V (i.e. o is an onto-mapping), and

2 All logarithms are based on the natural number.

for every i € [s], {o(i),0(i + 1)} € E and
o(i —1) # o(i + 1), where we identify o(—1)
with o(s — 1) and o(s) with o(0). Notice that
such a mapping o exists because the minimum
degree of G is at least 3. We fix the map-
ping o throughout the paper, and define a new
Markov chain M (Q(G) X [s]) over state space
Q% (G) x [s]. Note that the first component of
a sate (X,7) is a coloring and the second com-
ponent ¢ is an order.

Before defining the state transitions of
M(Q(G) x [s]), let us make a brief intuitional
description. For an order i € [s] let

() = {{v,w} : {v,w} € E,

v, w € N(o(i))—{o(i—1),0(i+1)} }
U{{v,v}:veN(@u)—{o(i—1),0(i+1)} }

A transition from a state (X,i) consists of
three stages. First, move the order i to i’ €
{i,i4 1,7 — 1}. Secondly, choose an edge from
E(i"), uniformly at random. Finally, choose col-
ors ¢(v) and ¢(w), uniformly at random, such
that both v and w are properly colored in X; if
a selflooping edge {v,v} is chosen then let ¢(v)
be a random proper color of v in X.

To be more precise, we make some prepa-
ration. Let nibble(i) be a random variable of
values in {—1,0,1} x {same,recol} such that,

( (0, same)  with prob. Z
(0, recol) with prob.
: 3s—3i—4
- )
’ © 3s
(—1,same) with prob. 3%;1
| (—1,7recol) with prob. +.

Fore € EU{{v,v}:v €V} and X € CV, let
C% be the set of all proper colors to the ends
of e for X; that is,

C}{(v’w} ={ (¢,d) € CV x OV :
c(v) # X (u) for allu € N (v)—{w},
c(u') # X (w) for all u' € N(w) —
{v}andc=¢ iffv=w}

where we may abbreviate (¢,c) as c¢. Notice
that if e = {v,v}, then C% is the set of all
proper colors of v in X. Denote by X._..
the coloring obtained from X by recoloring v
by ¢(v) and w by c¢(w). Then both v and
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w are properly colored in X,_,. if and only if
c€ C;{(U’w}, for a given coloring ¢ € CV.

Now we are ready to define the transitions
of Markov chain M(Q(G) x [s]). Given a sate
(Xi,4¢) at time ¢, (Xyy1,4441) is defined as fol-
lows.

(i) Let (a,«) = nibble(iy). Let ipy1 = iy + a.
If @ = same then let X1 = X;.

(ii) If & = recol, then let iyy1 = iy + a,
choose a pair (e,c) of e € E(ig41), and
¢ € C% uniformly at random, and let
Xt—l—l = (Xt)e—)c-

In the succeeding sections, we will show
that the Markov chain outputs the uniform
sampling of a proper k-coloring, by taking pro-
jection on the coloring component, and also
show that the stationary distribution is rapidly
mixing for k > 2A — 4.

3.2 Ergodicity of M(Q(G) x [s])

We first show the ergodicity of the chain.

Theorem 2 If k > A + 2 then the Markov
chain M(Q(G) x [s]) is ergodic.

Proof. is aperiodic, since choosing the same
state is given a positive probability. We prove
below that it is irreducible for £k > A + 2.
Therefore, M(Qx(G) x [s]) is ergodic when
k>A+2.

The Hamming distance H(X,Y) between
X and Y in CV is the number of vertices col-
ored differently in X and Y. Let S be a subset
of 2 x Q such that,

((X,9),(Y,j)) € S iff either

1. [i—j|=1and X =Y, or,

2.i = j, HX,Y) = 1 and
X()#Yw)atveN(o(i))—
{o(i+1),0(i—1)}.

Lemma 1 Ifk > A+2 then a graph (Q(G) x
[s],S) is connected.

Proof. Let (X,i),(Y,j) be states in Q;(G) x
[s]. If H(X,Y) = 0, then X = Y. So (X,i)
and (Y, 7) are connected by S as follows: move

order from ¢ to j without changing the coloring
at all.

Suppose that H(X,Y) > 1. It is enough to
show that: there is a state (Z,¢) in Qx(G) X [s]
such that (X,i) and (Z,¢) are connected by S
and H(Z,Y) < H(X,Y).

Suppose that colorings X,Y disagree at a
vertex v. Let £ be an order such that v = o(¢).
Let U ={u € N(v) : X(u) = Y(v)}. Consider
the following connection by S, beginning from
(X,1):

1. Move order to £ and recolor every vertex
inU—{o(f—1),0({+1)} by a proper
color that is not Y (v).

2. For each a € {—1,1}, move order to m
such that m ¢ {{+a—1,{+a+ 1} and
{o(m),o(l+a)} € E, and recolor o({+a)
by a proper color that is not Y (v).

3. Move order to £+ 1 or ¢ — 1 and recolor
v by Y (v).

4. Move order to /.

Justification of the first step follows. If U
is empty, then the second step is passed over.
Assume that U # (. Let u € U. There are
at most A colors surrounding u, hence at least
|C| — A > 2 colors can be used for properly re-
coloring u, one of which is different from Y (v).
That color is used for recoloring each u € U in
the second step.

Similarly, the recoloring of the second step
is justified. Moreover, since the degree of o (¢ +
a) is at least 3, there exist an order m such that
{oc(l+a),c(m)} e Eand m g {{+a—1,0+
a+1}. Note that m g {{ +a—1,0+a+ 1} iff
l+a¢g{m—1,m+1}.

Next, we show that the obtained state (Z, £)
witnesses the claim. Clearly, all steps of the
procedure are in S, so (X,i) and (Z,¢) are
connected by S. Furthermore, H(Z,Y) <
H(X,Y). In fact, the second step does not in-
crease the Hamming distance from Y, because
X and Y disagree on all the vertices in U. In
addition, the fourth step decreases the distance
by 1. So, H(Z,Y) < H(X,Y). The claim
holds. O

Consequently, Theorem 2 is proved. O
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3.3 Uniformity of the Stationary
Distribution

Since the chain M(Q;(G) x [s]) is ergodic for
k > A+ 2, it converges to the unique distri-
bution after infinite times of excursions. This
is the so-called stationary distribution and is
denoted by 7. To show that the Markov chain
achieves the uniform distribution over proper
k-colorings, we prove the following.

Theorem 3 7 is a production of the uniform
distribution over proper k-colorings and the bi-
nomial distribution over the orders.

Proof. Notice that this is not so trivial, be-
cause the Markov chain M (Q(G) x [s]) is nei-
ther symmetric nor time-reversible. For exam-
ple, let (X,i) € Qx(G) x [s], 1 <i < s —2,
e € E(i+ 1) —&(¢), and ¢ € C5. Suppose
that ¢ # X(e). Then, state (X,i) transforms
t0 (Xe—e, i+ 1) with a positive probability, but
there is no chance that (X._,,7+1) transforms
to (X, 1).

Now, a precise proof follows. Let U be the
uniform distribution over Qi (G). Let B be the
distribution over [s] such that

Ba(i) = (3 ; 1) /251,

Then, it is enough to show the following lemma.

Lemma 2 For all X € Q(G) and i € [s],
m((X,4)) = U(X)Bs(i).

Proof. Let (X,i) and (Y,j) be states in
Q(G) x [s]. Let P((X,1),(Y,J)) be the prob-
ability that (X,4) transforms to (Y,j) by one
step of the chain M (Qx(G) x [s]).

Then, it is enough to show the following

>_UX)Bs()P((X,1),(Y,5)) = U(Y)Bs(j),
X,

for every (Y,j) € Qi(G) x [s], because these
equations uniquely fix the stationary distribu-
tion 7 as claimed in the lemma.

By symmetry of transition of M(Q(G) x
[s]), we have

P((X,4), (Y, 7)) = P((Y,4), (X, 7))

for every states (X,i) and (Y,j) in Q. There-
fore,

U(X)Bs (i) P((X, 1), (Y, 7))

= U(Y)Bs(i) P((Y, ), (X, 5))-
Summing it over all X € Qi(X) and i € [s]
gives that

> U(X)Bs(i)P((X,4), (Y, 5))
X,

=Y U®X)B(i)P((Y, i), (X, j)).
X,

Now, we show that the left hand side is
equal to U(Y)Bs(i). In the left hand side,
term P((Y,7),(X,j)) is nonzero if and only if
i€{j—1,7,7+1}N[s]. Therefore, it is written
as
vmy 2

X ie{j—1j,j+13N0[s]
Let M(Q(G) x [s))(Y,i) = (Z,k). T X #Y
then the transition probability P((Y,1i), (X,7))
is

Pk = jAa = recol|-P|Z = X |k = jAa = recol],
while if X =Y then it is
Plk = jAa = recol]-P|Z = X |k = jAa = recol]

B, (i) P((Y; 1), (X, ))-

+P[k = j N a = same],

where the two events Z = X and k = j Ao =
recol are mutually independent, and

Y PIZ=Xk=jAa=recol
XAY
=1-P[Z=Yk=jANa=recl,

SO

DD

X ie{j—1,4,5+1}N[s]
=U(Y) >
i€{j—1,5,5+1}N[s]
where by definition of nibble,

B,())P((Y,4), (X, 7))

Bs(i)P[k = j]

Sloifi=g4—1
Plk=jl=¢ 1+ ifi=}
HLf =4 +1,

So the right hand side is

UY) > Bs(i)Plk =j]=U(Y)Bs(j).
ie{j—Lgj+13nls)

Hence, Lemma 2 and Theorem 3 are proved. O
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3.4 Path Coupling and Rapid Mix-
ing of M(Q(G) x [s])

We define the distance between states (X, 1)
and (Y, ) as

0((X, ), (Y, 7)) = H(X,Y) + |i — j.

We now prove that the chain M(Q(G) x
[s]) is rapidly mixing when k > max(2A —
4, A + 2), by applying Theorem 1.

Theorem 4 Let G be a graph with mazimum
degree A > 3 and having no Cy. The Markov
chain M(Q(G) x [s]) is rapidly mizing for
k > max(2A —4,A 4+ 2). The mizing time of
M(Qk(G) x [s]) is bounded as follows.

7(e) = O((A — 2)(A — 1) nlog(n/e)).

Proof. Let ((X,4),(Y,7)) be an arbitrary pair
in §. We define a coupling

((X,4), (Y, ) = (X7, (Y7, 57)

of chain M(Q(G) x [s]) in following cases.
Case I. i # j. By definition of S, X =Y.
Without loss of generality, 7 =i + 1.

Let

( (1,0, same, same) Ww.p. 3_23

(1,0, recol, recol) w.p. 3—15

(0, —1, same, same)  w.p. 3_23

nibbles (i) = (0, —1, recol, recol) v;'s[_)g:%?
(1,1, same, same) w.p. =*==*

(1,1, same, recol) w.p. 3_13

(—1,—1, same, same)w.p. %
| (—1,—1,recol, same) w.p. 3—15,

where w.p. stands for with probability. We
define ((X',4"), (Y',n')) by the following proce-
dure:

1. Let (a,b, a, 3) = nibbles (7).
2. Let / =i+4+aand j' =75 +b.

3. If i/ = j' and o = recol then choose a pair
(e,c) of e € £(j') and ¢ € C% uniformly
at random, and let X' =Y’ = X,_,..

4. It i' # j" and (a, B) = (recol, same) then
choose a pair (e,c) of e € £(i') and ¢ €
C% uniformly at random, and let X' =
X.scand Y =Y.

5. If i' # j" and (a, B) = (same, recol) then
choose a pair (e,c) of e € £(j') and ¢ €
C% uniformly at random, and let X' = X
and Y' =Y._,..

6. Otherwise, let X' = X and Y' =Y.

It is immediate to examine that this is a
coupling of M (Qx(G) x [s]).

To apply the coupling theorem, we now
compute the upper bound of expectation

E[(S((X’, 7:,)’ (Ylvj,)) - 1]'

IF 7 = ' then 8((X",7),(Y",7)) = 0,
else if ¢/ # 4 and either « = recol or
B = recol then §((X',i"),(Y' 7)) < 3, else
((X',4"),(Y',5")) = 1. The consequent upper
bound of Ey is

—P[la+ b =1] 4+ 2P[|a + b| = 2 and

(o, B) € {(recol, same), (same,recol)} |

Case II. i = j. By definition of S, H(X,Y) =
1, and X,Y differs at a vertex v in N (o (7)) —
{o(i—1),0(+1)}.

We define ((X’,i"), (Y, 5")) by the following
procedure.

1. Let (a,a) = nibble(i).
2. Leti' =j' —i+a.
3. If « = same then let X' =Y' = X.

4. If o = recol and v & N(o(i')) — {o(i' —
1),0(i" + 1)} then choose an edge e =
{u,w} € £(i") uniformly at random and
a proper color ¢ € C§ to the edge e uni-
formly at random. Then, let X' = X,_,,
andY' =Y._,,.

5. If o = recol and v € N(o(i")) — {o(i' —
1),0(i" + 1)} then choose an edge e =
{u,w} € £(i") uniformly at random.

(a) If u # w and v € N(o()) —
{o(i" — 1),0(i' + 1)} then define
((X',i"),(Y',4")) as in the DC chain.
That is,
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v & {u,w}, {v,w} € E and
{u,w} ¢ E. This case di-
vides into 8 subcases and de-
fines (X', Y} for each. See Dyer
and Greenhill (2000).

v & {u,w}, {v,w} € E and
{u,w} € E. See Dyer and
Greenhill (2000), too.

v & {u,w}, {v,w} ¢ E and
{u,w} ¢ E. Choose ¢ € C%
uniformly at random and let
X'= Xeses Y= Yese

iv. v € {u,w}. Choose ¢ € C% uni-

formly at random and let X' =
Y'=Xe e

(b) If w = w then define (X', Y’} as in
the JSS chain. That is,

i. v # w and {v,w} € E. This
case divides into 4 subcases and
define (X',Y') for each. See
Jerrum (1995).

ii. v # w and {v,w} € E. Choose
c € C% uniformly at random
and let X' = X,_...Y' =Y,_,..

iii. v = w. Choose ¢ € C% uni-
formly at random and let X' =
Y'= X e

e
—

—
—

i

We need to justify step 4 of Case II, claim-
ing that v is adjacent to none of the ver-
tices in N(o(i')) — {o(i' — 1),0(i" + 1)}, so
that X’ and Y’ in the step are proper col-
ors of G in spite of X'(v) # Y'(v). In fact,
for an arbitrary w in the set, if {v,w} € FE
then four vertices o(i),o(i'),w and v form a
square with possibly diagonals in G, i.e. all of
{o(i),0(i")},{o(i),w},{w,v} and {v,c(i)} are

edges of GG, a contradiction.

Theorem 5 (Dyer and Greenhill [5])

Let Epg,, be the expectation of H(X',Y') — 1
under the condition that o = recol and an edge
e are chosen as in v of J-(a), v € {i,ii}. Then,
for every A >3 and k> A + 2,

2 k=A+2
Epg,i < (k=A+1)(k—A)+2(k—A)+1
(k—A+D)(k—A)FD))(k—a+) OV
2k —A+1)
E ii S T Ao

Theorem 6 (Jerrum [7]) Let Ejgs be the
expectation of H(X',Y') under the condition
that o = recol and an edge e are chosen as i of
in 4-(b). Then, for every A >3 and k > A+2,

E <
JSS S TN

Lemma 3 Let
B(t) = (_EDG’,i + E‘DG,ii/2)t2 + ((A — S)EDG’,i

_EDG,ii/2 +Ejss—1t—1
and suppose that 3 := maxo<;<a—3 B(t) is neg-
ative. Then,
3s(A—2)(A—-1)
26
Proof. Theorem 1 proves the lemma, if § <
0 and, in both Cases I and II, the expecta-

tion E[H(X',Y’) — 1] is bounded from above
by W@M. By definition, A > 3 and

T(e) < — log(ne™t).

—1 < 3, hence Er < WK;(AA)' For steps 3
and 4 of case II, their contributions to E; are
nonpositive.

Let Ag = |[N(o(i")) — {o(i' +1),0(i" — 1)},
and ¢t be the number of edges in £(i') — {v,v}
adjacent to v. By definitions, 0 < §y < A —2
and 0 <t < Ag — 1. Let kpg,, ¢ € {i,ii},
be the number of those edges in £(i') — {v,v}
falling into configuration ¢ of (a); Let kjgg be
that number for subcase (b). Then, we have

kDG,i t(AO —t— 1)
kDG,ii t(t — 1)/2
kiss = t

We remain analysis for each configuration
of step 5. First, |E(i")] = Ag(Ao — 1)/2 +
Ay = A¢(Ag + 1)/2. Among these edges,
kpa,; edges fall into confuguration (a)-i, so
the contribution of confuguration (a)-i to Err

. k E i
is at most Pla = recol]%.

Simi-
larly, configuration (a)-ii and (b)-i contributes

to Err by Pla = recol]% and Pla =

recol]ﬁﬁ%ﬁsﬁg, respectively. On the other

hand, the contributions of both (a)-iii and (b)-
ii are at most 0. Finally, the contribution of
(a)-iv and (b)-iii is Pla = 7“ecol]A0(?j_l)/2 and
Pla = recol]m, respectively. In all,

Err < Pla = recol] (kpaiEpa,i + kpaiEpci
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+krssErss — (t+1))/(Ao(Ao +1)/2)
= (kpaciEpa,i+ kpaiiEpa,ii + kissEjss
—(t+1))/(3sA0(Ao +1)/2)

To this upperbound of Ej;, we substitute
the above numbers of kDG,iakDG,iiakJSS and
the expectations in Theorem 5 and 6, then
taking maximum over 0 < Ag < A — 2 and
0 <t < Ag — 1, deriving an upperbound
ﬁ%*l) of E[[. |

By definition of § and Theorems 5 and 6,
the following upper bound of 3 is obtained,
where 3 = —% is achieved when A = 6 and
k= 8.

Lemma 4 If A >3 and k > max(2A —4, A +
2) then 8 < —&.

Sketch of Proof. We first note that for & >
2A — 5, the upper bounds of 3 can be positive
occasionally. Namely, the right hand side of
the equation in Lemma 3 is evaluated as 3/2, 1,
67/84 for A = 7,8,9, respectively. (For larger
A, max; B(t)is also positive.)

Differentiating B(t) by A, we can prove
that it is monotonically decreasing on A for
A > 6. (The analysis is essentially done for
the upper bound of EDG,i in Theorem 5.) Fur-
thermore, it is shown to be monotonically de-
creasing on k for £ > 2A —4. Finally, we evalu-
ate [ of the end case (A, k) = (6,8), obtaining
6 = —%, Hence, 8 is negative when A > 6
and £ > 2A — 4. Similar analysis holds for
A € {3,4} and k > max(2A —4,A+2), too. O

Finally, Lemmas 3 and 4 immediately de-
rive Theorem 4.

4 Concluding Remarks

We have presented a new rapid mixing Markov
chain for k-colorings of Cj-free graphs with
minimum degree 3 and maximum degree A,
where k > max(2A — 4, A + 2). The detailed
analysis on the upper bounds in Theorem 5 and
Lemma 3, and the removal of the minimum de-
gree assumption will be included in the full ver-
sion of the paper. We conjecture that Cy-free
condition of the input graph could be removed
by allowing to use two more colors.
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