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Abstract The tiling problems have received considerable attention for the last decades, and a lot of results are
reported. One of the most popular variants of the problems could be tilings of regions with Wang tiles, which are
1 x 1 squares with colored edges, by using the following rule: If two tiles touch, then the color of their shared edges
must be the same. In this paper, we consider a new tiling problem under the edge-overwriting rule in which any
pair of tiles can touch but the color of the shared edges after tiling is determined by the edge color of the tile placed
later. The problem input is a pair of a target figure and a tile set to be used, and the output is a sequence of tiles
which realizes the target figure under the edge-overwriting rule. We show the sufficient and necessary condition of
a tile set to realize any target figure, and then show NP-hardness proof and an approximation algorithm for the
problem of minimizing the number of tiles realizing target figures.

Key words tiling problem, tileability, NP-hardness, approximation algorithm



1. Backgrounds, Problems and Our Con-
tribution

The tiling problem, which looks simple but is actually very
deep, has been attracting a lot of researchers [1], [2]. Among
many other different settings for tiles (shapes, colors, etc.),
Wanyg tiles are the simplest; each tile is a square of 1 x 1
and its four edges have colors[3]. If two tiles touch, then
the color of their shared edges must be the same. The typi-
cal problem is called the boundary coloring problem: We are
given a region with a colored boundary (like the rectangle
of 2 x 4 in Figure 1-(a)) and a set of tiles (as shown in
(b)), where a solid line denotes a color, say, black and a dot-
ted one, say, white. It turns out that we have a solution as
shown in Figure 1-(c), which has the same outer-border col-
ors as (a). Inner-border colors are different but it is allowed
if touching edges of two tiles have the same color. (One can
see that if the size of the rectangle is 2 x 5, then we have no
answer any longer.) Lewis showed [6] that the general prob-
lem is A"P-hard, but recently Moore, Rapaport, and Rémile
showed [7] that if we can use only two colors, then there is
a polynomial-time algorithm for almost all sets of tiles, by
using an interesting algebraic property.

Although the above problem requires to color only outer
borders, it would be more desirable if we can color inner bor-
ders also as designated. This stronger requirement appears
quite natural for application like picture drawing. Unfortu-
nately, the problem becomes trivial. For example, the rect-
angle of Figure 1-(a) cannot be colored obviously by the set
(b). However, what if we change the rule of touching edges
from coincidence to overwriting? Then we can color the rect-
angle (a) as shown in Figure 1-(d), where numbers denote
the order of placing tiles. This new rule creates another kind
of impossibility as shown later.

The main objective of this paper is to consider what kind
of interesting problems we have by this new setting. Among
others, what is especially important is that we can formulate
a natural optimization version of the tiling problem, namely,
minimizing the number of tiles. We also show a couple of
“first-step” results which nevertheless suggest the possibility

of wide extensions in the future.
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Figure 1 Tiling with Wang tiles

2. Tiling problems with Edge-Overwriting
Rule

A Wang tile is a square of 1 X 1 and its four edges have ei-
ther of two colors, black and white. Let Wy be the set of all
Wang tiles with two colors. As shown in Figure 2, there are
six kinds of different tiles if we allow these tiles to be rotated,
where a solid and a dotted lines stand for black and white,
respectively. Tiles (1) through (6) are referred toby I, L, I1,
C, O, ®, respectively. We use an angle in {0, /2, m,3mr/2}

o[t ek e | e o] e
Figure 2 Wang tiles with two colors, (1) I-tile, (2) L-tile, (3)
I-tile, (4) C-tile, (5) O-tile, (6) ®-tile

to specify the rotation of tiles. Figure 3 show the example of
rotations of L-tile, where L(#) is the rotation of L-tile with
angle 6.
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Figure 3 L-tile and its rotations: (1) L(0), (2) L(7/2), (3) L(n),
(4) L(37/2)

Let A be a set of two-dimensional n x n squares. Our
problem of this paper, tiling with the edge-overwriting rule,
is formulated as follows: Given the whole set of A’s colored
borders, called a target figure (i.e., as a blueprint), we find
a tiling sequence of triples (tile, angle, cell)’s such that it
can color all the borders according to the blueprint, where
every tile is in a given subset WCW,| and all the four bor-
ders of each cell in the sequence are updated to new colors.
In the following, we assume that the initial color of every
border is white, i.e., if no tile is placed at cells facing a bor-
der, it remains white. On the other hand, black borders must
be drawn by tiling. In this sense, we say that a target figure
is drawable if there exists a tiling sequence realizing it. A
tile set W is said to be complete if any figure can be draw-
able by W according to its border colors. We assume that A
is encircled with cells where we can place tiles to color the
boundary. For example, it is easy to say Figure 1-(d) cannot
be drawn by Wi & {I} without the encircled cells. These
help to exclude such trivial cases.

Under the assumptions, the following problem naturally
arises: Tileability: For a tile set WCW,yy, is a given target
figure f drawable by W ¢ It is obvious that any figure f is
drawable by W,);. However, this is not true for much smaller
W. Indeed, an I-tile can be simulated by neither {L}, {C},
{II}, nor {O}, as any unit length black border is not draw-

able by each of them. On the other hand, one may consider



that W1 = {I} can draw any figure, but it is not true, i.e.,
W, is not complete. Figure 4-(1) shows an example; a cross-
like figure cannot be drawn by W) since it forms a kind of
cycle (Figure 4-(2))). How difficult is problem Tileability
for W1? We can judge if f is drawable by W) in linear time,
since a necessary and sufficient condition of the drawability
for W) is the non-existence of a cycle in a planar dualization
of f.

[Proposition 1] ([5]) Given a given target figure f, its
neighbourhood graph G(f) = (V{(f), E(f)) is defined by

Vi) =¢,
E(f) = {(ci,c;) | ci and ¢; shares a black border,}

where C is a set of all the cells. Then f is drawable by W,
if and only if G(f) is a forest. u]

These observations derive a new problem: Complete-
ness: Which tile set is complete? A partial answer is that
W, &f {I, L} is enough for example, since we have the fol-
lowing simple algorithm (say CF algorithm), which provides

a tiling sequence drawing f by Wo.

Algorithm CF (column-first) algorithm
Input:
Output:

A target figure f.

A tiling sequence < 1, 82,...,8N8 >.

0. Set i:=1,

1. For each z from 1 to n,

2. For each y from 1 to n,

3 let s; = (w, 8, (z,y)) where w € W» such that the
colors of top and left borders of w(#) coincide the
colors of the corresponding borders of cell (z,y) of
f-Seti:=1i+1.

4. Output the sequence < 81,...,8§5 >.

Figure 4-(3) illustrates how CF algorithm works: CF algo-
rithm place tiles drawing its left and top borders, in column-
first order, i.e., from top to bottom and then from left to
right.

3)

Figure 4 (1) Target figure f, (2) non-drawable by W1, (3)a tiling

sequence by W2, (4) an optimal one

This simple algorithm also provides a condition for the
completeness of a tile set.
[Proposition 2] A tile set W is complete if and only if all
figures of 2 x 2 can be drawn by placing tiles of W on the
2 x 2 space’. m]

This can be shown by the fact that tile sets satisfying the
condition can simulate CF algorithm. By Proposition 2 we
have the following corollary.
[Corollary 11 Tile sets {I,L},{L,®}, {I,C,®}, and

{I,0, ®} are all of the minimal complete tile sets.

Next interest is how efficiently f can be drawn by a com-
plete tile set W. Usually, a tiling sequence drawing f is
not unique, e.g., in Figure 4, we have a tiling sequence
with length 5 (Figure 4-(4)) though the algorithm’s out-
put has length 7 (Figure 4-(3)). Here we consider the fol-
lowing: Minimum Tiling Sequence (MTS). Find a min-
imum tiling sequence of W drawing f. We have results for a
complete tile set Wa: Problem MTS for W, = {I, L} is N'P-
hard, and we have a 1.5-approximation algorithm solving it.

In the next section, we show these results.

Remark There are several directions for future research.
An obvious one is to extend Problem MTS for other sets
of tiles. For {I,L,II,C}, we have already shown its A'P-
hardness. As for Problem Tileability, probably there are no
hard cases, but it is quite interesting if any. Another inter-
esting extension is to introduce larger Wang tiles, say, 2 x 3
tiles, which have both outer and inner colored edges. This
is closely related to the rectilinear polygon covering and the
picture drawing. Three or more color cases and other edge-
operations such as OR and XOR for all problems would be also

interesting.
3. Complexity of MTS for W, = {I, L}

In this section, we consider the complexity of Problem
MTS for a minimal complete tile set Wy = {I, L}, which

seems to be the most basic. Unfortunately, it is A'P-hard.
[Theorem 1] Problem MTS for Wa = {I, L} is N'P-hard.

Proof. The proof is by polynomial reduction from planar
MAX 2-SAT whose hardness is proved in [4]. We shall show
that for a given Boolean formula ¢ of planar 2-SAT type
we can construct a figure F' such that F' can be drawn by
a tiling sequence of length k or shorter if and only if there
exists a truth assignment that satisfy a given or larger num-
ber of clauses in ¢. The reduced figure consists of variable,

clause, and path gadgets. Roughly speaking, to minimize the

t: This condition is redundant and a more essential condition exists,

though it requires a little more complicated statement.
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Figure 5 variable gadget

sequence length, we replace as many pairs of two I-tiles with  Z’s (bottom). (Note: Strictly speaking, the L-tile draws one

one L-tile as possible. Thus the key idea of the reduction is ~ border of the variable gadget and one border of the path

to associate one of the satisfied clauses with such a replace-  gadget. However, since all borders of the path gadget can be

ment. drawn only by using L-tiles except for connecting parts with
Suppose that ¢ = C1 AC2 A --- A Crn with n variables  the other gadgets, we regard the latter border as one of the

and m clauses. Also, suppose that, for ¢ = 1,2,---,m, each clause gadget in the following.)

clause C; has exactly two distinct literals I} and (5. Our vari-

able gadget consists of n connected components. One of the

components, e.g., for variable £ and its negation Z, shapes

a jagged structure, and has upward and downward branches

with terminals labeled z or Z, as illustrated in Figure 5.
The clause gadget has m components, each of which forms
a zig-zag path from five edges as shown in Figure 6. For
example, if I =Z and I} =y for the ith clause C;, then the
terminals labeled I} and I} are connected with the ¥ and the y

terminals in the clause gadget by the path gadget, which are

also zigzag paths. The complete construction for C; =Z+y

is shown in Figure 7.

Figure 8 z = true (top) and false (bottom)

L
Figure 6 clause gadget See Figure 6 again. If at least one border can be drawn
together with one border of the variable gadget by an L-tile,
then each clause gadget can be drawn only by two L-tiles,
otherwise we need at least three tiles. Hence the question
whether there exists a truth assignment that satisfy a given
or larger number of clauses in a planar MAX 2-SAT formula
¢ is equivalent to asking whether F' can be drawn by a tiling
sequence of length k or shorter (the value of k can be obvi-

ously obtained by a simple calculation). a]

Figure 7 C; =T +y

[Theorem 2] There exists a 1.5-approximation algorithm

The above construction guarantees that there are only two solving Problem MTS for W> = {, L}.

minimum tiling sequences for each component of the variable Proof Sketch of Theorem 2. Here we give a 1.5-
gadget (see Figure 8): If the leftmost vertical border is drawn  approximation algorithm CF* for MTS of {I, L}, which uti-
by using an I-tile, then this corresponds to the variable being  lizes CF tiling. The algorithm CF* is simple, and roughly
set to true, otherwise false. One can see that, for example,  speaking, the idea is just to replace as many pairs of two
if = true (top), then we can use L-tiles, each which can T tiles of CF’s output with L tiles, as possible. To ex-
draw one border of the variable gadget and one border of  plain this, let us call a pair of two tilings (I,0,(z,y)) and
the clause gadget, at the points z’s, otherwise at the points (I,37/2, (z,y + 1)) in a given tile sequance Type A (Figure
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Figure 9 Type A pair of I's (top), B (center), C (bottom)

9, top), and call a pair of (1,37/2,(z,y)) and (I,0,(z +
1,y)) Type B (Figure 9, center).
(I,3n/2,(z,y)) and (1,0, (z+1,y—1)) where cell (z—1,y—1)
is empty Type C.

The CF™ algorithm replaces these types of pairs of tilings

Also we call a pair of

with L tiles so that all the replacements preserve the drawa-

bility of the original sequence. (see Figure 9 again.)

Algorithm  Algorithm CF*

Input: A target figure f.

Output: A tiling sequence < s1,82,...,88 >.

0. Apply CF to f and let < s1,82,..., 8, > its output.

1. while (T € {A,B})

2.  For each z from 1 to n,

3 For each y from 1 to n,

4. Replace all Type T pairs of tilings with L tiles.

5. For each z from 1 to n,

6 For each y from 1 to n,

7 Delete all Type C pairs of [ tiles, and insert
the equivalent L tiles to the the sequence top.

8. Output the sequence < s1,...,s5 >.

In case of Types A and B, the replacements are simple: Step
4 of the algorithm replaces Type A pair of tilings with one L
tile; i.e., for s; = (1,0, (z,y)) and siy1 = (I,37/2,(z +1,y)),
set s; = (L,0,(z,y)) and s; := 0.
for s; = (I,3n/2,(z,y)) and s; = (1,0,(z + 1,y)), set
si = (L,37/2,(x,y)) and s; := @.) On the other hand,

Type C pairs require a careful treatment: Type C’s replace-

(In case of Type B,

ment, different from Type A and B, places the L tile on a
new cell (z — 1,y — 1). This may affect the colors of the
left and the top borders of (z — 1,y — 1); To avoid this, the
algorithm changes the tiling order. In step 7 of the algo-
rithm, for s; = (I,37/2,(z,y)) and s; = (I,0,(z+ 1,y — 1)),
first Type C tiles are deleted, i.e., set s; := @ and s; := 0.
Then, insert (L,w/2,(z,y)) to the sequence top, i.e., for
r=12...,i—1, set s,41 := s, and s, := (L, /2, (z,y))-
This order change preserves the colors of the left and the top
borders of (x — 1,y — 1). Also the colors of the right and

the bottom borders of (z — 1,y — 1) are not over-written,
because no tile is placed on cells (z,y) and (z + 1,y — 1).

Consequently, the replacements preserves the drawability.

C-70 02 O-
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Figure 10 Border graph

Here, we show the approximation ratio of 1.5. We call a
tiling sequence S minimal if in S borders once colored black
is kept black. If S drawing f is minimal, then the length of
S is p(S) + ¢(S), and m = 2p(S) + ¢(S) holds, where p(S)
and ¢(S) are the numbers of L and I tiles in S, respectively.
Notice that a tiling sequence by algorithm CF* is minimal.
Now, we restrict our attention into minimal tiling sequences,
since any tiling sequence drawing f can be reduced to a min-
imal one. Under this restriction, our problem is equivalent
to the problem of finding minimal S (drawing f) that max-
imizes p(S). To estimate an upper bound on p(S), we relax
S’s condition as follows: It can be computed as a maximum
matching of a border graph defined by a dual transforma-
tion as Figure 10, and L tiles located by CF* form maximal
matching on the border graph. Since the size of any maximal
matching is at least 1/2 of the size of maximum matching,
p(Sa) 2 1/2-p(S") holds, where S4 is a tiling sequence by
CF* and S7 is one giving the upper bound. The approxi-

i io i p(S4)+q(S _ p(S4)
mation ratio is at most M H L2 ;(S—% <1.5. We

have many tight examples for CF*. ]
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