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Abstract Several results on the monotone circuit complexity and the conjunctive complexity, i.e., the minimal
number of AND gates in monotone circuits, of quadratic Boolean functions are proved. We focus on the comparison
between single level circuits, which have only one level of AND gates, and arbitrary monotone circuits, and show
that there is a huge gap between the conjunctive complexity of single level circuits and that of general monotone
circuits for some explicit quadratic function. Almost tight upper bounds on the largest gap between the single
level conjunctive complexity and the general conjunctive complexity over all quadratic functions are also proved.
Moreover, we describe the way of lower bounding the single level circuit complexity, and give a set of quadratic
functions whose monotone complexity is strictly smaller than its single level complexity.
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. cuit complexity of explicitly defined Boolean functions (2]~
1. Introduction
(5], [7)~[9], [15], [16], [18], such as exponential lower bounds

Deriving a superlinear lower bound on the Boolean circuit- for the clique function, we believe that an investigation of the

size complexity for an explicit Boolean function is one of the
most challenging problems in computational complexity. In
order to attack the problem, the complexity of many types
of restricted circuits have been investigated. The model of
monotone Boolean circuits, i.e., circuits with only AND and
OR gates, is one of the most well-studied models.

In this paper, we investigate the monotone circuit complex-
ity of the class of quadratic Boolean functions, i.e., functions
of the form Vi,j a:; A z; Ax; where a;; € {0,1}. Although

we have a series of strong lower bounds on the monotone cir-

monotone complexity of quadratic functions is important for
several reasons:

(i) The method of approximations and many variants
of them have been successful to obtain exponential lower
bounds on the monotone circuit complexity [2]~[5], 7]~
[9], [15], [16], [18]. However, several researchers have pointed
out that these methods are shown to be equivalent [4],[5],
[8],9],[18]. In addition, a simple analysis of the method
shows that it cannot yield any non-trivial lower bounds on

the monotone circuit complexity of a quadratic Boolean func-



tion. This is because the method is in fact lower bounding
the minimum of the number of AND gates and that of OR
gates needed to compute the function, and every quadratic
Boolean function on n variables can be computed by a mono-
tone circuit including at most n — 1 AND gates. So a su-
perlinear lower bound for quadratic Boolean functions may
imply an essentially different method for lower bounding the
monotone circuit complexity. (ii) For some natural class of
quadratic Boolean functions, which we will describe in Sec-
tion 4, we can show that a superlinear lower bound on the
monotone circuit complexity of a function f in that class im-
mediately implies the lower bound of the same order on the
general circuit complexity of f. In addition, we hope that
a lower bound proof that is highly specialized for a particu-
lar function may not fulfill the “largeness” condition in the
notion of “natural proof” [17].

A quadratic Boolean function is naturally represented by
a graph. Let G = (V, E) be an undirected graph with vertex
set V = {1,...,n} and edge set EC{(i,7) | 1 £4 < j < n}.
A quadratic (Boolean) function associated with G is defined
by fa(zi,...,za) = V(i,j)eEIfzJ'

There have been a series of researches on the complexity
of quadratic Boolean functions (sometimes under the name
of graph complexity), which are mostly concerned on the
circuits of constant depth with unbound fan-in gates (e.g.,
[10], [12], [14]). In this paper, we restrict the fan-in of gates to
two and mainly focus on the comparison between single level
monotone circuits and general monotone circuits. A single
level circuit is a circuit which has only one level of AND
gates. Obviously, every quadratic function can be computed
by a single level circuit of size O(n?). Not surprisingly, if
we restrict ourselves to circuits of single level, we can easily
derive a superlinear lower bound on the size. (We will de-
scribe this in more detail in Section 3.3.) However, it seems
quite difficult to obtain a good lower bound on the general
monotone circuit size for an explicit quadratic function.

One of the major difference between single level circuits
and general circuits in a computation of quadratic functions
relies on the use of “absorption” rule, i.e., fV fg = f (and
f(fVvg) = f). We think that an investigation on the ef-
ficiency of the absorption rule in a monotone computation
may be a key to obtain a tighter/higher lower bound on the
monotone complexity, and this was the initial motivation of
our work.

The contributions of this paper are as follows: First,
in Section 3, we consider the conjunctive complexity of
quadratic Boolean functions. The conjunctive complexity
of a quadratic function f¢ is the minimal number of AND
gates in a monotone circuit that computes fg. Such mea-

sures have been widely studied by e.g., Tuza[20}, Lenz and

Wegener [11]. In Section 3,2, we prove that there is a huge
gap between the conjunctive complexity of single level cir-
cuits and that of general monotone circuits for some ex-
plicit quadratic function (Theorem 2). Almost tight upper
bounds on the largest gap between the single level conjunc-
tive complexity and the general conjunctive complexity over
all quadratic functions are also proved (Theorem 3). Then,
in Section 3.3, we describe the way of lower bounding the
single level circuit complexity (Theorem 5), and give a set
of quadratic functions whose monotone circuit complexity is
strictly smaller than its single level complexity (Theorem 6).
Finally, in Section 4, we discuss the relationship between the
complexity of monotone circuits and of non-monotone cir-
cuits for quadratic functions based on the notion of pseudo

complements (Theorem 7).
2. Boolean Circuits

A Boolean circuit is a directed acyclic graph. Nodes with
indegree zero are called input nodes and there are distin-
guished nodes with outdegree zero called output nodes. An
input node is labeled by a Boolean variable or a constant 0
or 1. Each non-input node has indegree 2 or 1 and is called
the gate node. A gate node of indegree 2 is labeled by a
Boolean operation AND (A) or OR (V). A gate node of in-
degree 1 is labeled by a Boolean operation NOT (). A gate
in a Boolean circuit computes a Boolean function in a nat-
ural way. If g is a gate in a Boolean circuit, we will also
use g to denote the function computed by g. A Boolean cir-
cuit computes Boolean functions that are computed by the
output gates. A monotone Boolean circuit is a Boolean cir-
cuit that contains no NOT gates. A Boolean function that
can be computed by a monotone Boolean circuit is called a
monotone Boolean function. Since we will not discuss any

non-Boolean functions, we may drop the word “Boolean”.

3. Single Level vs. Multi Level

3.1 Notations

Let G = (V, E) be an undirected graph with vertex set
V={1,...,n} and edge set EC{(3,j) |1Si<j<n} A
quadratic (Boolean) function associated with G is defined by
fa(z,. . zn) =V, e poiti.

For a monotone circuit C, the level of C is defined as the
maximal number of AND gates on a path from an input to
an output in C. In particular, a circuit of level 1, ie., a
circuit such that no path combines AND gates, is called a
single level circuit. Obviously, for every graph G = (V, E)
onV ={z1,...,z.}, the function fe can be computed by a
single level circuit including at most |V| — 1 AND gates and
|E| OR gates using the form \/| . =i A (Vi j)er®;)-

Let f be a monotone function. The circuit complezity



(the monotone circuit complezity, resp.) of f, denoted by
size(f) (sizemon (f), resp.), is the minimal number of gates
in a Boolean circuit (a monotone circuit, resp.) for f, and
the single level complexity of f, denoted by sizel,,, (f), is the
minimal number of gates in a single level monotone circuit
for f.

In this paper, we also investigate the number of AND gates
needed to compute a function, which is called as the conjunc-
tive complezity. The conjunctive complexity (the single level
conjunctive complexity, resp.) of f, denoted by sizemon.a(f)
(siz€hon A (f), resp.), is the minimal number of AND gates
in a monotone circuit (a single level monotone circuit, resp.)
that computes f.

3.2 Conjunctive Complexity

If we restrict ourselves to circuits of single level, the con-
Jjunctive complexity of a quadratic function f¢ is equal to the
minimal number of complete bipartite graphs whose union
(of the edge sets) coincides with G.

Since the single level conjunctive complexity sizepon A (f)
is a purely graph theoretical complexity measure, it has been
widely studied (see e.g.,[11]). In contrast, little is known
about the conjunctive complexity sizemon,a(f). In the fol-
lowing, we show that almost all quadratic functions have a
conjunctive complexity ©(n), which improves the n/(clogn)
lower bound of Lenz and Wegener [11]. We remark that it
was shown that almost all quadratic functions have a single
level conjunctive complexity of larger than n — clog n.
[Theorem 1]

of almost all quadratic functions is larger than cn.

For each ¢ < 1/13, the conjunctive complexity
Proof. The proof of the theorem is analogous to the proof
of the n/(clogn) lower bound due to Lenz and Wegener
[11]. The only difference is to use the result of Zwick [24],
which says that if f can be computed by a monotone cir-
cuit that contains k& AND gates, then f can also be com-
puted by a monotone circuit that contains k AND gates and
O(k(n + k)/logk) OR gates, instead of the result of Alon
and Boppana [2], which is slightly weaker than the result of
Zwick.

Careful inspection of Zwick’s proof reveals that the hid-
den constant in the Big-O notation of their upper bound is
at most 3. The standard counting argument shows that, for
each d > 4, the monotone circuit complexity of almost all
quadratic functions is at least n®/(dlogn). Hence, for al-
most all graphs on n vertices G, if we denote the conjunctive
complexity of fc by k, then

n_2 < 3k(n+ k)

dlogn = logk

holds. A simple calculation shows that k 2 en for sufficiently

+ k.

large n. u]

One might conjecture that an optimal circuit for a

quadratic function with respect to the conjunctive complex-
ity is always given by a single level circuit. This was known
as the single level conjecture (with respect to the conjunctive
complexity) and was disproved by Lenz and Wegener [11].
They provided an explicit graph H on 8 vertices such that
4 = sizelion a(ft) > 8i%€mon,a(fir) = 3, and asked what the
largest possible value of sizel,,, A(fc)/5126mon.n(fc) is (as
open problem No. 7 in[11]).

In the following, we improve their result by giving an
explicit construction of a graph G on n vertices such that
$12€mon 1 (fG)/$i26mon A (f&) = Qn/ logn).

[Theorem 2]
$iZemon.a(fa) = Qn) and sizemon,a(fc) = O(logn).

Proof. Let G = (U U V,E) be a bipartite graph with
U={u,...,Uny2}, V={v1,...,00/2} and E = {(u;, ;) |

,n/2}. For simplicity, we assume that n = 2* for

There is a graph G on n vertices such that

i=1,...
some positive integer {. Let G be a graph on U UV such
that G = GU Ky U Kv where Ky and Ky are the complete
graphs on U and V respectively. In the following, we show
that sizepon A(fG) 2 n/4 and sizemon,n(fo) = O(logn).

First, we show that size,'non,,\(fc) 2 n/4. Let C be a sin-
gle level monotone circuit for fg. For a function g, let PI(g)
denote the set of all prime implicants of g. Since G contains
n/2 edges, it is sufficient to show that for every A gate g
in C, if PI(g) contains more than two edges in G then g
can be eliminated without changing the output of C. Let g¢;
and g» be two inputs of g. Note that g; and g, are OR’s of
variables. Suppose that PI(g) contains three edges in G, say
(ui, vi),(u;,v;),(uk, vx). Then, w.lo.g., we can assume that
for some distinct indices 41,42 € {i,j,k}, ui, and u,, are
appearing in g; and v;; and v;, are appearing in gz. This
implies that PI(g) contains (ui,,vi,), which is not included
in G. Hence g cannot contribute the output of C, and can
be removed safely.

We now show that sizemon a(fe) = O(logn). Let d be
a positive integer whose value will be chosen later. Let
! = 27! and r = (n/2)"/'. For simplicity, we assume
that r is an integer. For 1 £ k £ n/2, we represent k by
k) € {1,..., 7}
nient to consider that k'is represented by an r-ary I-digits
number. For 1 £ ¢ £ land1 £ j £ 1, let P; (Qj,

resp.) be the set of n/r variables consists of all ux (vi,

a vector k = (ki,.. It will be conve-

resp.) such that k = (ry,...,7-1,7,7i41,...,71) for some
r1,...,71 € {1,...,7}, i.e., the i-th digit of the r-ary repre-
sentation of k is equal to j.

We claim that f¢ is equivalent to

A |V (0r®)r0R@))

1<igil 1<5<r



v (T2 W) v TR (1)) (1)

where OR(X) denotes the disjunction of all variables of X
and Thi(X) denotes the k-threshold function on n variables,
i.e., it outputs 1 iff the number of ones in an input is greater
than or equal to k.

Before we show the correctness of Eq. (1), we determine
the value of d and estimate the number of AND gates needed
to compute Eq. (1). Since (i) the AND of I functions can
be computed by a circuit of level logl = d — 1 with [ — 1
AND gates, and (ii) the 2-threshold function on n/2 vari-
ables can be computed by a single level circuit that includes
log(n/2) = logn—1 AND gates™"', we can construct a d-level

circuit including at most

Ir+1—-1+2(logn—1)
< 27 (/)" +1) + 2logn 2)

AND gates. If we choose d = loglogn, the RHS of Eq. (2)
is upper bounded by 4.5logn.

Now we proceed to the proof of the correctness of Eq. (1).
Obviously, for an input with at most 1 ones, both f¢ and
Eq. (1) output 0. For an input with at least 3 ones, both
fe and Eq. (1) output 1 because (at least) one of two sets
U and V contain at least 2 variables that assigned the value
1. Thus, the interesting cases are for an input with 2 ones.
(Case 1) ug, = ux, =1 or vk, = vx, = 1 for some k; + k3.

Obviously, both f¢ and Eq.(1) output 1 in this case.
,nf2}.

By the definition of G, f¢ outputs 1 on such an input. For
each 1 £ i < I, OR(F;,) = OR(Qy,) = 1 if k; is equal to
the i-th digit of r-ary representation of k. This implies the

(Case 2) ur = vk = 1 for some & € {1,...

output of Eq. (1) is also 1.
(Case 3) uk, = vk, = 1 for some k; + k2.

By the definition of G, f¢ outputs 0 on such an input.
Since ki = ko, there is 1 < ¢ < ! such that the i-th digit
of the r-ary representation of k, and kq are different. For
such i, the value of V]g]‘gl(OR(ID;) AOR(Q})) is 0, and this
implies the output of Eq. (1) is also 0. a
[Remark 1]

Theorem 2 consists of three subgraphs, G, Ky and

The graph we defined in the proof of

Ky. Interestingly, the single level conjunctive com-
plexity and the conjunctive complexity of each sub-
graph are identical, i.e., size,lnony,\(é) = sizemona(G) =
n/2, sizehon A(Ku) = Sizemona(Ky) = logn — 1 and

si2ehmon n(Kv) = sizemon a(Kv) =logn — 1.

(711) : Proof: Let X = {x1,...
k = 1,...,n is represented by a log n-digits binary number. Let
X,.; (j € {0,1}) be the OR of all z; such that i-th digit of bi-
nary representation of k is equal to j. Then it is easy to check that

Thy = Vigigiogn(Xio A Xi1).

,xn} and consider that an integer

Let Gapa(n) = max{sizemon A(fc)/siz€monn(fa) | G =
(V,E),|V| = n}.
Q(n/logn). Note that the upper bound of O(n) is triv-

ial since sizelon a(fc) £ n — 1 for every G on n ver-

Theorem 2 shows that Gapa(n)

tices. We conjecture that our lower bound is tight, i.e.,
Gapa(n) = ©(n/logn). Below we prove a slightly weaker
upper bound of Gapa(n) = O(n/loglogn).

[Theorem 3]

that sizel,on.A(fc) = Q(p(n)) for some function p(-). Then

Let G be a graph on n vertices. Suppose
sizemon,a (fa) = Q(loglog p(n)).
Proof.

level conjunctive complexity is Q(p(n)).

(Sketch) Let G be a graph on n vertices whose single
Let C be an arbi-
trary monotone circuit that computes fi. Below we show
that C must contain (loglogp(n)) AND gates.

For a monotone function h, let PI;(h) be the set of all
prime implicants of A whose length is i. The covering num-
ber of h, denoted by cou(h), is defined as the minimal m
such that there are m pairs of sets of variables (A;, B;) (i =
1,...,m) that satisfy (i) A;NB; = 0 (i), (ii) AixB:CPIy(h)
(Vi), and (iii) {J]_, A x B; = PI>(h). In such a case, we say
that a set of pairs {(4;,B:) | ¢ =1,...,m} covers Pfg(h).
Obviously, cov(fg) = sizehon A(fc) for every G.

We define the operation A* as follows: Suppose that
g = g1 A ga. Then g1 A* g2 is the disjunction of all prime
implicants of g whose length is at most 2. Let C” be a cir-
cuit obtained from C by replacing each A gate in C' with A*
gate. The theorem known as the “replacement rules” (see
e.g.,[22, Theorem 5.1]) guarantees that the circuit C* also
computes fg. In the following, we assume that if g1 and g2
are two inputs of an A* gate in C*, then PI;(g1) and PIi(g2)
are disjoint. (If PI;(g1) N PIi(g2) =S # ®, then we replace
g1 A" g2 by (b1 A* ha) V OR(S) where h; is obtained from g;
by removing all prime implicants in S. This does not affect
on the number of A* gates in C* and the output of C*. In
addition, this replacement has no influence on the covering
number of each gate.)

For an A" gate g in C”, the level of g is defined as the
maximal number of A* gates on a path from an input to
(the output of) g. Note that the lowest A" gate is of level 1.
Let d be the level of the circuit C*, and for ¢ = 1,...,d, let
k: be the number of A" gates whose level is i. Note that the
?:1 k..

Let g = g1 A™ g2 be an arbitrary A" gate of level I in C~.
We claim that for | = 2,

number of A* gates in C*, say k, is given by k =

cov(g) € 5-6% "*max{ks,... ki_1}* 2 3)
and forl 22 and i = 1,2,
2l=2_1 2l-1.1
cov(g:) £ 6 max{ki,..., ki-1} , (4)

To prove these inequalities, we need the following lemma.



(Lemma 1] Let h = hi A" hs.
cov(hi),cov(hz) 2 1 and PI(h1) N PI;(h;) = B. Then
cov(h) £ 5 cov(hy)cov(ha). ]

Proof. Let my = cov(h;) and ms = cov(hs). We can ex-

Suppose that

press hy and hy as

my
hi =tV vaz,lbi‘l,
i=1

where the t;, a; ; and b; ; are disjunctions of variables such
that Var(a; ;)NVar(b; ;) = 0 (Vi,5) and Var(t,)NVar(ty) =
0. We have

m2
hy =ty V \/ ai2b; 2,

i=1

PIZ(h] A hz) = v PIZ(azl,laig,lbu.lbiz‘?)

11,12

V\/PI2(tlaz2,th2,2)
iz

v \/ PIy(taai; 1biy 1) V PLa(tits).
i1

It is check that, for (21,132),

PI>(ai;,1ai,,1bi, 1biy,2) can be covered by two pairs (ai;,1 N

@iy,2,bi;0 Nbiy2) and (ai; 1 Nbiy 2, aip2 Nbip 1)

easy to each pair
Similarly,
each Ply(tiai, 2bi,2) (Pla(t2as,,1bi;,1), resp.) can be cov-
ered by a pair (t1 Naiy.2, 81 Nbiy2) ((t2 Naiy1,t2 N b)),
resp.). Altogether, PI>(h; A” h2) can be covered by a set of

at most 2mimsy + my + mo + 1 < 5mimg pairs. [m}

Proof of Theorem 3(continued) By Lemma 1, Eq. (4) im-
mediately implies Eq. (3) for each I. Hence we only need to
show Eq. (4). We show this by induction on {.

The base case, | = 2, is obvious since RHS of Eq. (4) is k;
and the covering number of an input of an A™ gate of level 2
is shown to be at most k.

The induction step is as follows : Since the function com-
puted by an input of an A* gate of level [ can be represented
by the disjunction of variables and outputs of A* gates of level

at most [ — 1, the covering number of it is upper bounded by

—2_, -
5k17162 2_Zrna)({kl,..‘,](?1_2}2 'z
-3 -
+67 _111'13,)({](5],‘“’}{[,2}2 -1
(-2 S
<6 'max{ki,..., k1)’ -

which completes the proof of the induction step.
The assumption sizel, o, A{fc) = 2(p(n)) in the statement

of the theorem implies that k times the value of Eq. (3) for

I = dis Q(p(n)), and this implies (6k)2" 2 (6k)2° = Q(p(n))
(since k = d). Hence we have k = Q(loglogp(n)), which
completes the proof of the theorem. m]

3.3 Disproving Single Level Conjecture for Multi-
Output Functions

Again, if we restrict ourselves to circuits of single level, a

good lower bound on size,,,(f) can easily be derived by

combining the graph theoretic arguments and the results

that have been developed for obtaining a lower bound on the
monotone complexity of the Boolean sums, which we state
below.

[Definition 1] Let X = {zi1,...,Za}. F(X) =
(fiy-oy fm) : {0,1}" = {0,1}™ is a set of Boolean sums if
each function f; is a disjunction of variables in X. For a dis-
junction f of variables in X, we use Var(f) denote the subset
of X on which f essentially depends. A set of Boolean sums
F is called (h, k)-disjoint if for every {40, ...,én}C{1,...,m},
| Ui, Var(f:)| < k holds.

[Theorem 4] (Mehlhorn [13]) Let F = (f1,..., fm) be a set

of Boolean sums. If F' is (h, k)-disjoint, then the size of an

optimal monotone circuit for F is at least

Z HVar(f)l/k1 -1

2 “hmax{l,h— 1} '

By using the above theorem, we can show the following.

[Theorem 5] Let G = (V, E) be a graph that does not con-
tain a copy of K3 2. Then sizel...(fc) 2 |E|.
Proof. Let C be an optimal single level monotone circuit
for fc. We represent fo = V*_,gi.19i.2, where k is the num-
ber of AND gates in C, and g;1 and g;,2 are disjunctions of
variables computed by the inputs of the i-th AND gate.

For each i = 1,..., k, at least one of Var(g: 1) or Var(giz)
contain at most one variable. This is because if |Var(gi,1)| 2
2 and |Var(gi,2)| 2

sets are disjoint), or fg must contain a prime implicant of

2, then G must contain K, (if two

length 1 (if two sets are not disjoint). Hence, without loss

of generality, we can assume that |Var(gi1)| = 1 for every
i=1,...,

\ =, Var(g:1). Now we convert C to a circuit C’' by the

k (by exchanging g;,1 and g2 if necessary). Let

following construction:

\/ z A v 95,2

zeX jiVar(gy1)={=}
Since we can save k — |X| AND gates and the number of
additional OR gates we need is shown to be at most k — | X|,
the size of C’ is not greater than that of C.

For each z € X, let h. = \/j:‘,w(g]‘]):
vious that Var(h:) is a subset of the set of neighbors of .
hay)l £1

(e} 952 It is ob-
Since G does not contain K32, {Var(hs,) N Var(
for every distinct z;,z; € X. Hence the set of functions
H = {h, | £ € X} can be viewed as the (1,1)-disjoint

Boolean sums. Therefore, the size of C’ is at least

sizemon (H) + | X| +|X| -1 2 |E| - |X|+2|X|-12|E|

The first inequality follows from Lemma 4. [m)
An explicit construction of the graph on n vertices that
does not contain K> and has Q(n3/2) edges based on the

notion of the “projective plane” was known {e.g.,[1]). The



above theorem yields sizel,,, (fo) = Q(n*?) for such G. We
remark that we can extend the arguments of the proof of
Theorem 5 for a graph that does not contain a copy of K. .
for r > 2. Thus an explicit construction for such a graph may
vield higher lower bounds on the size of single level circuits.

The question that then arises is : “Is there a quadratic
function f such that sizemon(fc) is strictly smaller than
sizenon(fG)?

The problem of answering this question was stated as open
problem in [11]. We have shown in the previous section that
the answer is “yes” if we only count the number of AND
gates. In the following, we show that the answer is also
“yes” if we consider a set of quadratic functions.

For a set of m graphs G = (G1,...,Gwn), a set of quadratic
functions associated with G, denoted by fg, is defined by the
set of m functions (fe,,.. ., fom)-

[Lemma 2] Let H = (hy,...
.,zn}. Let F = (f1,...,fn) be a set of quadratic
SunpU{v,. ..

f: is obtained from h; by replacing each variable z) in h;

,h.) be a set of Boolean sums
on {z1,..
functions on UUV = {uy,.. ,Un} where each
with the conjunction uivk. Then an optimal single level
monotone circuit for F is a circuit obtained from an optimal
monotone circuit for H that consists of OR gates only by
replacing each input node z; with an AND gate wx A vk.
Proof. Let C be an optimal single level monotone circuit
for F. Let g be an AND gate in C. Since C is a single level
circuit, we can represent ¢ = g1 A go where g; and go are
disjunctions of variables. Suppose that g contains a prime
implicant not of the form wu,v for some k. In such a case,
there is an assignment to the input variables that contains
at most 2 ones such that g outputs 1 and f; outputs 0 for
every i. This implies that there are no paths from an input
to an output of C that leads through g (since C is a single
level circuit), and this contradicts the assumption that C is
optimal. Hence we can conclude that every AND gate com-
putes the conjunction of the form u,ve for some k. a
[Theorem 6] There is a set of graphs ¢ = (G1,...,G14)
such that sizemon (fg) is strictly smaller than sizel, o, (fg)-
Proof.
Boolean sums given by Tarjan [19] (or [22, p.164]), which was

To prove the theorem, we use the construction of

used for disproving that AND gates are powerless for com-

puting Boolean sums. Let H = (hi,...,h14) be a set of

Boolean functions on {zi,...,z1,} defined as follows: Let
H; ={1,5}, H:={2,6}, H; ={3,5}, Hi= {4,6},
Hs = {5,9}, He = {5,9,10},
Hy = {5,9,10,11}, Hs = {6,9},
Ho = {6,9,10}, Hio = {6,9,10,11},

HU = Hl LJ{7,97 ].0,11}7
Hys = Hy U {7,9,10,11},

Hy; = H,U {8,9,10,11},
Hy,,=H,uU {8,9, 10, 11},

and define hi = \/, .y @k for i = 1,...,14. It was shown
that 18 OR gates are necessary to compute H if no AND
gates are used. On the other hand,‘ we can compute H by
a circuit that contains 16 OR gates and one AND gate (an
AND gate that computes h7 A h1o can save two OR gates.)
s fi4)
as in the statement of Lemma 2. By the above argument,
we have sizeémon (F)) £ 17 + 11 = 28. On the other hand,
by Lemma 2, we have sizeh,,(F) = 18 + 11 = 29, which

completes the proof of the theorem. [m)

Define a set of the quadratic functions F = (fi,...

As for the case of the conjunctive complexity, to determine
the largest possible value of sizey, o (F)/sizemon (F) seems to
be an interesting subject. The construction in the proof of
Theorem 6 gives the lower bound of 29/28. More sophis-
ticated constructions may yield a slightly better constant.
The authors do not know whether there is a set of quadratic
functions ¥ such that the ratio is more than a constant at

the time of writing this paper.
4. Monotone vs. Non-Monotone

The graph G that we defined in the proof of Theorem 2
has the form of G = G U Ky U Ky where G_’gU x Vis a
bipartite graph, and Ky and Ky are the complete graphs on
U and V respectively. Interestingly, it is shown that NOT
gates are almost powerless for quadratic functions associated
with graphs of such form.

[Theorem 7] (implicitly in[21]) Let G be a graph on
{1,...,n} such that G = G U Ky U Kv where GCU x V

for some partition U,VC{1,...,n}. Then

sizemon (fa) £ 2size(fc) + 6n + o(n). .

Proof. (Sketch) In fact, the result by Wegener [21, Theorem
4.4] is of the form sizemon(fc) £ O(size(fc)) + O(n). For
the purpose of completeness and in order to determine the
hidden constants, we describe the sketch of the proof.

Given an optimal circuit C computing fg. By using the
DeMorgan’s law, we can convert C to a so-called standard
circuit C’ for fc, that is a Boolean circuit in which the per-
mitted gate operations are {A, V} and whose input nodes are
labeled by literals, whose size is at most twice of the size of
C.

Let U = {ui,...,ux} and V = {v1,...,vn-k}. Let
ui = ui A OR(V), v = v; AOR(U), 4 = V;xu; and
@ = Vjx;v;. Let f' be a function computed by a circuit
obtained from C’ by replacing each u; (vi, resp.) with u;
(vl, resp.) and each ; (0., resp.) with @; (%, resp.). The
key to the proof is the observation that f can be computed
by f/ v TRV () VTh’zw(V). (In other words, we can use u;
and v} as pseudoinputs and u; and ¥; as pseudocomplements

for u; and v; respectively. See[21] for more details.)



By following the equation
2

Thy(X) = \/ ThY" (OR(B;'),...,OR(mﬁ )
=1

where X = {2/, | 1 £ 71,72 £ /n} and B} = {z;,s, |
sq = i}, we can compute ThlzuI and Thl‘,v‘ with at most
2(|U[+|V])+o(n) = 2n+o(n) gates. Clearly, \/IU|+/|V| =
o{n) additional gates are suffice to compute OR(U) and
OR(V). All ¥} and v; can be computed with n gates. More-
over, 3|U|+3|V| = 3n gates are suffice to compute all @; and
¥;. Altogether we use at most 6n + o(n) gates. ]

We remark that the standard counting argument shows
that the circuit complexity of almost all quadratic functions
associated with graphs of the form G U Ky U Ky, where
GCU x V, is Q(n?/logn).

For a bipartite graph GCU x V, let G* be the graph
G UKy U Ky.

complexity of fo and of f;+ seems to be an interesting.

The relationship between the monotone

Since sizémon(Th3) is known to be 2n + o(n), we have
$12mon(fa+) £ $i2€mon(fc)+2n+o0(n). On the other hand,
we do not know whether sizemon (fo+) = Q(sizemon(fc)) or
not. However, if we consider multi-output functions, com-
puting a set of functions fGT’ S ’f(;j, may significantly eas-
Jem-
The n-point Boolean convolution CONV, (o, ..

ier than computing a set of functions fg,,...
G Eno1,
Yo, yn—1): {0,1}*" — {0,1}**7! is the function with
.82, -2) defined by

G Yn-1) = V iy

i+i=k

output (So, ..

Se(zo, ..., Tn-1,Y0,--
Each Sk is naturally represented by a bipartite graph
GiCU x V where U =
{¥0,-.,¥n-1}. Let CONV] denote the function with output
(f(;gv s vf(;;'n 2)-

plexity of the nipoint Boolean convolution is Q(n'-*) [23] and

{.’130,...,1,._1} and V =
It was known that the monotone com-

the (general) circuit complexity of it is O(nlog? nloglogn)
(22, p.168]. These imply that sizemon(CONV,) = Q(n'?)
whereas sizemon (CONVS) = O(size(CONV])) + O(n) =
O(size(CONV,.)) 4+ O(n) = O(nlog® nloglog n).
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