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Abstract InfoBoost is a boosting algorithm that improves the performance of the master hypothesis by combining
weak hypotheses with non-zero mutual information about the target. We give a somewhat surprising observation
that InfoBoost can be viewed as an algorithm for growing a branching program that divides and merges the domain
repeatedly. Here, weights are assigned to nodes of the decision graph that the branching program defines, and
for a given instance, the value that the master hypothesis takes is determined by the sum of the weights over the
path induced by the instance. We generalize the merging process and propose a new class of boosting algorithms
called BP.InfoBoost with various merging schema. InfoBoost is a BP.InfoBoost with an extreme scheme that merges
all nodes in each round. The other extreme that merges few nodes yields an algorithm that improves the master
hypothesis very efficiently but has a risk of overfitting. We propose a merging scheme between these extremes that
improves the master hypothesis efficiently while avoiding the risk of overfitting.
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tively makes probability weightings over the sample and re-

1. Introduction . . .
ceives weak hypotheses that slightly correlate with the sam-

Since the stage-wise process of AdaBoost was explained
in terms of a Newton-like method for minimizing an expo-
nential cost function [2], [5], designing and analyzing boost-
ing algorithms by using results from the optimization theory
has been a mainstream of this research area[3], [4], [9], [11].

In the most common scheme of boosting, the booster itera-

ple with respect to the current weightings. The booster then
produces a linear combination of the weak hypotheses as a
master hypothesis with a good performance guarantee ex-
pressed in terms of the margin [6], [12]. Here, the correlation
between a weak hypothesis and the sample is defined as the

expected margin, which intuitively mean how well the hy-



pothesis classifies the sample.

As oppose to the margin based criterion, there is an
information-theoretic approach where the correlation is de-
fined by the mutual information, i.e., how much amount of
information the hypotheses bring on the sample. In this
schemne, the requirement for weak hypotheses can be relaxed
to have non-zero mutual information, rather than non-zero
margin, to obtain a good master hypothesis. The first theo-
retical result on information-based boosting is due to Kearns
and Mansour [8] who give theoretical justification to empiri-
cally successful heuristics in top-down decision tree learning.
The result is naturally generalized for learning multiclass
classification problems{14] and is improved to avoid over-
fitting by merging some sets of nodes {10]. A modification of
the latter algorithm is applied to the problem of boosting in
the presence of noise [7]. These algorithms are quite different
from AdaBoost-like algorithms in that they grow a decision
tree or a branching program as a master hypothesis that is far
from the form of linear combinations. Moreover, the prob-
ability weightings they make are not based on the principle
of minimizing any cost function. Later we give an evidence
that these algorithms are inefficient in the sense that they
make the complexity of the master hypothesis unnecessarily
large. Aslam proposed a promising method of information-
based boosting called InfoBoost [1]. InfoBoost is interesting
because the weight update is obtained by minimizing the
same cost function as AdaBoost and the master hypothesis
has an “quasi-linear” form (the coefficients are not constants
but depend on the values of weak hypotheses).

In this paper, we generalize InfoBoost and propose a new
class of information-based boosting algorithms. We first give
a somewhat surprising observation that InfoBoost can be
viewed as a process of growing a branching program that di-
vides and merges the domain repeatedly. We show that the
merging process used in InfoBoost can be replaced by any
merging scheme with the boosting property preserved. So
we have a class of boosting algorithms with various merging
schema. We call any of them a BP.InfoBoost. BP.InfoBoost
assigns to each node a weight as well as a weak hypothe-
sis, and the master hypothesis is a threshold function of the
sum of the weights over the path induced by a given instance.
Note that this is different from the previous BP based boost-
ing algorithms [7], [10] where the master hypothesis is just a
branching program. InfoBoost is a BP.InfoBoost using an
extreme scheme that merges all nodes in each round. The
other extreme that merges no nodes yields an algorithm for
growing a decision tree. We particularly call this version
DT.InfoBoost. DT.InfoBoost has a totally corrective update
property. (The notion of totally corrective updates was orig-

inally proposed for a better booster in the margin based cri-

terion {9].) Specifically, a totally corrective update makes the
weight Dy for the next round so that all weak hypotheses
hi,...,ht obtained so far are uncorrelated with the sample
with respect to Dy4;. This implies that any weak hypothesis
hi+1 that correlates with the sample must contain novel in-
., ht do not have. Note that AdaBoost

and InfoBoost make D;41 so that only h; is uncorrelated.

formation that hy,..

So we can expect that DT.InfoBoost improves the master
hypothesis much faster than InfoBoost. On the other hand,
since the size of the decision tree may grow exponentially in
t, DT.InfoBoost has more risk of overfitting than InfoBoost"’

There must be an appropriate merging scheme between
the two extremes that takes advantages of the two extremes.
In this paper, we propose a merging scheme that reduces the
training error of the master hypothesis nearly as fast as the
one we would have without merge while keeping the master

hypothesis (branching program) in a moderate size.
2. Preliminaries

Let X denote an instance space and Y = {—1,+1} the set
of labels. We fix a sample S = {(z1,y1), ..., (Zm,ym)}CX x
Y on which we discuss the performance of boosting algo-
rithms. The procedure of boosting is described as in the
following general protocol with two parties, the booster and
the weak learner. On each round #, the booster makes a
probability distribution D, on the index set {1,...,m} of
the sample S and gives S with D; to the weak learner; The
weak learner returns a weak hypothesis h; : X — Y to the
booster (denoted hy = WL(S, D;)); The booster updates the
distribution to Dy;;. Repeating the above procedure for T
rounds for some T, the booster combines the weak hypothe-
ses hi1, ..., hr obtained so far and makes a master hypothesis.

In this paper we measure the performance of a weak hy-
pothesis i, in terms of the information that h: brings. For
the entropy function, we use G(p) = 24/p(1 — p) defined for
p € [0,1] so that we can interpret the progress of boost-
ing as the product of conditional entropies. This function is
used to describe the performance of various boosting algo-
rithms [1], [8], [10], {14]. Note that since the function G upper
bounds Shannon entropy, small entropy in terms of G implies
small Shannon entropy. For a probability distribution D over
{1,...,m}, we sometimes consider X and Y as random vari-
ables that take values x; and y; (resp.) with probability
D(i). Especially we call Y the target random variable. Let

the probability that the target Y takes value 1 under D be

1)}: The decision tree produced by DT.InfoBoost uses the same weak
hypothesis h; as the decision rule at all nodes of depth t — 1. So
we can expect that DT.InfoBoost has less risk of overfitting than the
classical top-down algorithms that produce trees with exponentially

many different decision rules.



denoted by

m

p=Pro(yi=1) =Y DOy = 1],
=1
where [C] is the indicator function that is 1 if the condition
C holds and 0 otherwise. Then the entropy of the target Y

with respect to D is defined as

Hp(Y)=G(p) =2y/p(1~p).

Furthermore, for any function g : X — Z for some countable
set Z, the conditional entropy of Y given g with respect to D

is defined as

Hp(Ylg) = Y Pro(g(z:) = 2)Hp(Ylg(z:) = 2)

€2

= ) Pro(g(z) = 2)G(p:)
z€2

where p. = Prp(ys = 1| g(z:) = 2z). The entropies Hp(Y)
and Hp(Y|g) are interpreted as uncertainty of the target
before and after seeing the value of g, respectively. So
the mutual information Hp(Y) — Hp(Y|g) represents the
amount of information that g brings. In particular, since
the distribution D¢ we consider in this paper always satis-
fies Hp,(Y) = 1, we measure the performance of the weak
hypothesis h; by the conditional entropy Hp, (Y |h:). The
inequality Hp, (Y |h:) < 1 implies that the weak hypothesis
h¢ brings non-zero information about the target.

Here we give some basic properties of the entropies. Let D
be a distribution over {1,...,m} and g’ be another function

defined on X. Then, we have

Ho(Ylg) = 2 V/Pro(g(e) =29 = 1)
P = sy = -1, (1)
Hp(Ylg,g') € Hp(Ylg). )

3. InfoBoost growing a Branching Pro-
gram

In this section, we show that InfoBoost can be viewed as
a top-down algorithm for growing a branching program.

First we briefly review how InfoBoost works. In each round
t, when given a weak hypothesis h,, InfoBoost updates the
distribution to

Dy (i) exp(—arhe(zi)]he(x:)y:)

Dy (i) = 7

for appropriately chosen real numbers a¢[—1] and 1], where
Z; is for normalization. The two parameters a;[—1] and
a¢[1] are chosen so that the normalization factor Z; is mini-
mized. Interestingly, for these choices of parameters we have
Zy = Hp,(Y|h¢). The master hypothesis that InfoBoost pro-

duces is given by sign(Fr(z)), where

Input: S = {(z1,y1). -, (Zm,ym)}
Initialize D1(z) = 1/m;
fort=1to T do

hy :VVL(S,Dt);

Choose real numbers a;[~1] and a¢[1] so that
a  Prp(he(z:) =a,yi = 1)
atfa] = = In
2 Prp(he(as) = o,y = -1)

for any a € {-1,1};

Update Dy to D¢y1 so that

Di41(3) = De(i) exp (~aelhe (@) e (2:)y: ) /2¢

holds for | £ ¢ £ m, where Z; is for normalization;
Let Pr:z e Y1 adfhe(z)he(2);
Output sign{Fz(x))

Fig. 1 The algorithm of InfoBoost.

T
Fr(z) =Y adhi(@)]he(). (3)
t=1

The detail of the algorithm is given in Fig. 3.. The per-
formance of InfoBoost is summarized as in the following in-

equality [1]:
Pro (sign(Fr(z:)) # v:) < [] Ho, (¥ Ire), ()

,m}. This

implies that the training error of the master hypothesis de-

where U is the uniform distribution over {1,...

creases rapidly as T becomes large, as long as the weak
hypotheses h; bring non-zero information with respect to
Dy, ie, Hp,(Y|he) < 1.
ses hy satisfty Hp, (Y|h:) £ 1 — « for some 4 > 0, then
Pry (sign(FT(:c,)) + yi) L e with T = (1/7)In(1/e).

Now we interpret InfoBoost as a process of growing a

In particular, if all hypothe-

branching program. At the beginning of round ¢ (except
t = 1), we have the set L;—, of two leaves. When given h;,
each leaf [ € Ly_, beconies an internal node with two child
leaves {_1 and Iy, just as in a decision tree growing algorithm.
Note that the same hypothesis h, is used for the decision done
at any [ € L;—; and the outcomes —1 and 1 correspond to
the edges (1,{_1) and (I,1,), respectively. Here we have four
leaves. Then for each a € {—1,1}, the set {la e Lf-l} of
two leaves are merged into a single leaf and it is labeled with
weight a - a¢[a]. The new leaves corresponding to a = —1
and a = 1 are called a (—1)-node and a 1-node, respectively.
Thus, in the end of round £, we have the set L of two leaves
again. So each round consists of two phases, dividing and
merging the subset of the instance space. See Fig. 2.

By virtue of the branching program representation, we give
natural interpretations of how the distribution D¢y1 and
the combined hypothesis Fr are determined. An instance
z € X induces a path of the branching program based on
the outcome sequence hi(z),...,hr(z) in the obvious way.

Let £ : X — L; denote the function that maps an instance



L,
ha

L,
h3

Ly

Fig. 2 A branching program that InfoBoost grows.

z to the node in L; on the path that z induces. Note that
for the branching program generated by InfoBoost, £;(x) de-
pends only on h¢(z) and so Hp(Y|€;) = Hp(Y|h:) for any
D. Intuitively, the distribution D4, is determined so that £;
(and thus h;) is uncorrelated with Y and the total weight of
leaf | € L; is proportional to the uncertainty of Y at the leaf
1. More precisely, (as we will see later for a general branching

program), the distribution D1 satisfies that
HD:+1(Y|£1) :Hl)z+1(Y'hf) =1 . (5)

and for any [ € Ly,

_ Prp (& (w:) = HHp, (Y|ti(z:) = 1)
Hp, (Y|e) '

Prp,,, (&e(x:) =1)
(6)

The property of (5) is essential because otherwise the
next hypothesis h:y; would be the same as h; for which
Hp,,,(Y|hey1) < 1 but no additional information is ob-
tained. The property of (6) is reasonable since this means
that the leaf with larger entropy will be more focused with
the hope that the next hypothesis h;y1 would reduce the
whole entropy efficiently.

The combined hypothesis Fr given by (3) is also repre-
sented in terms of the branching program. For each node
l € Ly, let w[l] denote the weight labeled at I. That is,
wll] = —a[-1]} if I is a (—1)-node and w[l] = a¢[1] if [ is a
1-node. It is easy to see that for a given instance z, Fr(z)
is represented as the sum of the weights of the nodes on the

path induced by z. That is,

Fr(z) =) _wlti(z)} M

t=1

4. BP.InfoBoost

In this section, we generalize the merging scheme used by

InfoBoost and propose a class of boosting algorithms called

Fig. 3 A branching program that a BP.InfoBoost grows. Note
that any leaf in L; is determined by a leaf in L;_; and

the outcome of hy.

BP.InfoBoost with various merging schema. Curiously, we
show that the bound (4) on the training error remains to
hold for BP.InfoBoost with any merging scheme.

First we describe how BP.InfoBoost works. For conve-
nience, we represent the set of leaves L, as a partition of
{—1,1}!. That is, a leaf [ € Ly is a subset of {-1,1}'. For a

given partition L, the function £ : X — L; is defined as

b(z) =1 (hi(z),...,he(z)) €L

At the beginning of round ¢, we have the set L;_; of leaves.
Now L;_; may contain more than two leaves. When given h;,
each leaf | € Ly~ becomes an internal node with two child
leaves {_; and I;. Formally, the leaf l, with a € {-1,1} is
a subset of {—1,1}! and given by lo = {(v,a) | v € I}. So,
an instance z that reaches a leaf I € Li_; (i.e., &_1(z) = 1)
goes to I, if hi(z) = a. Here we have twice as many leaves
as in L;—;. Then for any a € {—1,1} the set {la |le L{_l}
is partitioned somehow into L} ,,..., L, s, for some k, and
the leaves in each L ; are merged into a single leaf, which
is formally given by |J, ;s la. Thus we have the set L of
leaves of size k-1 + k1. Fig. 3 illustrates how the branching
program grows. A merging scheme is a procedure of deciding
how the sets {l, | | € L;_1} are partitioned. For example, In-
foBoost is a BP.InfoBoost with a particular merging scheme
that lets each set {la |le L,ﬂ} be a partition of itself.

Each leaf I € L is labeled with the weight given by
1 Prp, (bi(zi) =Ly =1)

Pl Prp, (8(zi) =Lyi = —1)° ®)

wll] =

With the notations w and £;, we can write the update rule
and the master hypothesis as in the same way as for the case
of InfoBoost. That is, the distribution is updated to

Dy (i) exp (—w[le(x:)]y:) (9)

Diya(i) = Z

where Z; is for normalization, and the master hypothesis is
sign(Fr(x)), where Fr is given by (7). The details of the
algorithm is given in Fig. 4.. Note that £; can be viewed as
a domain-partitioning weak hypothesis and the weights w({]
derived in (8) are identical to the confidences assigned by

Schapire and Singer [13].



tnput: S = {(z1,1), -+ (Fm v}
Initialize Dy (i) = 1/m, Lo = {¢}, &o : 2+ ¢;
fort =1to T do
hy = WL(S, Dy):
Let lo = {(v,a) |vel}forl € Li—y and a € {—1,1};
fora € {~1,1} do
Partition {l, |l € Ly—1} into L/

a,l’
b={Unery,

Let £ : 2 — L € L¢ where (hi(z),..., he(z)) € 1;
forl € L¢ do

oL L

a.ka)

lgiéka,aé{wl,l}};

Prp, (Be(xi) =ty; =1) i

1
Let w[l] = =1
el = e () = Ly, = —1)

Update D; to
Des1(i) = Di(i) exp(—wlle(z:)lyi ) /2
for 1 £ i < m, where Z; is for normalization;
Let Fr:z— le w(l(z)];
Output sign(Fr(z))

Fig. 4 The algorithm of a BP.InfoBoost.

Now we show that a BP.InfoBoost with any merging
scheme has the same form of upper bound on the training
error. We need some technical lemmas. The first one is im-
mediately obtained by recursively applying the update rule
9).
Lemma 1:
D141 be the distribution obtained in the final round. Then,

Let Zi be the normalization factor in (9) and

Drya(i) = Z?]-—@ZT“" (—Zw{lt(m]yz>
= ZlD-l-;(-i‘)ZrexP(AFr(xl)yi)‘

The next lemma shows that the normalization factor Z; can
be rewritten as the conditional entropy.

Zy = Hp, (Y|&) £ Hp,(Y|ht).

Proof. First we show the equality part. By (8) we have

Lemma 2:

2 =y Di(i) exp (~wlti(ei)ly:)

=1

SN D D) =L ys = af exp(—wll]a)

leLiac{-1,1} =1

= Z Z Prp, (€e(xi) =1, y: = a)

€L a€{~1,1} ) (Prul (Er(rz):l»yi#ﬂ))l/z

Prp, (&(x:) =1,y = a)

2) " VP, (&lz) =Ly =1)
l€L, /Prp, (8elz:) = Ly = —1)

Hp,(Y|8).

The last line is derived from (1).

For the inequality part, since the last component of any
vector in the set &/(z) is h¢(z), we have Hp (Y|&:) =
Hp,(Y|€:,h¢), which is at most Hp, (Y'|h¢) by (2).

]

Now we are ready to give an upper bound on the training
error.
Theorem 1: Let Fr be the combined hypothesis of a

BP.InfoBoost. Then

T T
Pro (sign(Pr(z:) + vi) £ [] Ho, (vV1e) < T Ho (Y 1he).
t=1 t=1

Proof. By Lemma 2, it suffices to show that
Pry (sign(FT(zi)) + y,) < H¢T:1 Z;. Since the initial dis-

tribution D; is uniform, we have

Pres (sign(FT(xi)) + yi) = ZDl(i)[Sign(FT(fCi)) + yl

i=1
Using [sign(Fr(z.)) # y.] < exp(—Fr(z:)y:) and Lemma 1,
we have

Pry (sign(Fr(z:)) ) £ ZDl(i) exp(—Fr(z:)y:)

i=1

Zi---Zr ) Dra(i)

i=1

=2y Zp.

a
This theorem means that the upper bound on the training
error for a BP.InfoBoost is not larger than that for InfoBoost
provided that the same distributions D¢ and weak hypothe-
ses h; are used. Moreover, when there is a large gap between
Hp,(Y|€:) and Hp, (Y|h¢), then the BP.InfoBoost would im-
prove the master hypothesis faster than InfoBoost.

Next we consider any possible construction of the master
hypothesis. Since any master hypothesis f : X — {-1,1}
should be constructed from the weak hypotheses hy,..., hr,
it must hold that Hy(Y|h1,..., hr) £ Hy(Y|f) and so the
Lh.s. gives an information-theoretic limitation of the perfor-
mance of f. The next theorem shows how much the entropy
Hu(Ylhy,..
€1 _7(z) is short for the path (£1(z),...,€r(z)) € Li.7T =

Ly x---xLrp.

., hr) is reduced as T grows. For an instance z,

Theorem 2:
Hy(Y|h, ... hr) = He(Ylbr.1)
T
= (H Hn.(th)) Hop,, (Y]er.7).
t=1

Proof.

one correspondence between the set of paths €. .r(x) of

The first equality holds since there is one-to-

the branching program and the set of outcome sequences

(h1(2),...,hr(z)).
By (1) we have

HDT+1(Y|Z1~T)

=2 Z \/Pru-”, (11..7‘(%) =Ly = 1)

TeL, r




-\/Pr[)r+1 (& r(z) =Ly =-1).

Lemma 1 says that the distribution Dr41(7) depends on the
path €, 7(x;) on which an instance x; goes through. So
for a particular path = (... ,lr) € Ly 7 and for any
a € {-1,1}, we have

Prory, (61.7(2) =Ly = a)
Z Dra (e v(z:) =Ly = d]

B ex[)(—a ,T:1w[lf]) Dy (Ve =Ty =
= W—Z ()[er.r(zi) = Ly = a]

T
exp (—a ) ,_ wli] o
2 W g (0,0 = T = ).

Z,
By multiplying the above probabilities with a = 1 and
a = —1 the exponential terms are canceled and we get
,

HDT+| (Y|£1_,T) = ‘I%Q‘%a
which completes the theorem. ]

Theorem 1 and Theorem 2 imply that our master hypoth-
esis sign(F(z)) would be nearly optimal if Hp, (Y€1 1)
is not too small. Although we do not know a lower
bound on Hp, ., (Y|€1.7) in general, the distribution sat-
isfies Hp,,,(Y'|€r) = 1 as shown in (5) for the case of In-
foBoost. That is, BP.InfoBoost updates the distribution so
that £7 is uncorrelated with Y. The next lemma shows that
a BP.InfoBoost makes D;1 so that £ is uncorrelated with
the sample. This implies that the weak hypothesis k41 (and
€41 as well) with non-zero correlation must have some in-
formation that the function €; does not have. This gives an
intuitive justification why the improvement of the master hy-
pothesis for a BP.InfoBoost is upper bounded by the product
of Hp, (Y |€).
Lemma 3: Foranyl £t < T, a BP.InfoBoost updates the
distribution to Deyy so that Hp, ., (Y |€) = 1 holds.
Proof.
Prp,,,(yi = 1] £(x;) =1) = 1/2, or equivalently

It suffices to show that for any leaf I € Ly,

Prp ., (@(x:) =Ly =1) =Prp,, (&(z:) =Ly = -1).
(10)

By (9) and (8), it is straightforward to see that the both

sides of (10) are equal to

VPrp, (&(z) = Ly = 1) Prop, (£e(w:) = Ly = —1)
Zy

0

Note that [7] also suggests to make D;y1 be uncorrelated
with £, but in a trivial way: Ds4, is restricted to a sin-
gle leaf [ and set so that Prp,, (ys = 1 | {) = 1/2. This

means that the weak leaner must be invoked for all leaves

in L; with different distributions. On the other hand, our
distribution (9) assigns positive weights to all nodes I unless
Hp, (Y | £:(z;) = 1) = 0, and the weak leaner is invoked only
once for each depth ¢.

5. DT.InfoBoost

As we stated, InfoBoost is a BP.InfoBoost with a particular
merging scheme that merges all nodes [; into one leaf and all
nodes [_; into the other leaf. Since Hp, (Y |€:) = Hp, (Y |h¢),
InfoBoost takes no advantage of the branching program rep-
resentation.

Next we consider the BP.InfoBoost with no merging
phase, namely, DT .InfoBoost. In this case, since a path
of the decision tree is uniquely determined by the leaf
of the path, we have Hp,(Y|€:) = Hp,(Y|h1,..., he).
Since Hp,(Y|h1,...,h:) is likely to be much smaller than
Hp,(Y]|h:), DT.InfoBoost would improve the master hypoth-

esis more efficiently than InfoBoost. Lemma 3 implies

Hpa(Y|ha, ... he) = Hp, (Y1) = L.

So, DT.InfoBoost has a totally corrective update. This
means that all the hypotheses hy,. .., ht obtained so far are
uncorrelated with Y. So the next hypothesis At will bring
truly new information that hy,...,h; do not have, provided
Hp,,,(Y]hi+1) < 1. This contrasts with the case of In-
foBoost, where h;4) is only guaranteed to bring informa-
tion that h; does not have. Moreover, with the fact that
Hp,,,(Y|€r) =1, Theorem 1 and Theorem 2 gives the per-

formance of DT.InfoBoost nicely as

Pry (sign(Fr(z:)) + ;) £ Hu(Y|hy,. .., ht)

T
[T o (v1R0).

This implies that DT.InfoBoost extracts information very ef-
fectively from the weak learner. Actually, we observe in ex-
periments that DT.InfoBoost reduces the generalization er-
ror as well as the training error very rapidly in early rounds.
Unfortunately, however, the generalization error sometimes
turns to be increasing in later rounds. This is because the
complexity of the master hypothesis grows exponentially in
the number of rounds.

Generally, there is a tradeoff between the size of L; and
Hp, (Y|€:). More precisely, the larger the size of L, is (i.e, the
less nodes we merge), the smaller Hp,(Y|¢;) becomes (i.e.,
the more rapidly the training error decreases). In the next
section, we propose a merging scheme that makes Hp, (Y{£:)
nearly as small as the one we would have without merge,

while keeping L; in a moderate size.
6. A merging scheme

Assume we are given a weak hypothesis h; in the tth round



and each node | € L;_; grows two child leaves I; and [_;.
Now we have twice as many leaves as L;_;. Let the set of

leaves be denoted by
Li={li|teL}u{lo|le i)

and let & : X — L, be defined analogously, that is, £ (z)
is the leaf in L, that instance z reaches. If we merge no
nodes in L, then we would have L; = Ly and £, = . So,
Hp, (Y|£:) gives a lower bound on Hp, (Y|£:) for £; induced
by any merging for L. Let Hp, (YlZ{) = 1— ;. The merg-
ing scheme we give guarantees that Hp, (Y|€:) £ 1 — ¢y, for
some constant 0 < ¢ < 1. For this purpose, we could use the
merging method developed by Mansour and McAllester [10].
[Lemma 4] ([10])
bution D over X x Y, and for any 0 < A, 8 < 1, there exists

For any function f : X — Z, any distri-

a function g: Z — M such that
Hp(Ylgo f) < (1 + N Hp(Y|f) +4
and
[M| = O((1/X) log(1/4)).

Clearly, letting #,, L, and L, correspond to f, Z and M,
respectively, we have a merging scheme induced by g so
that go f = £. So by choosing A = (1 — ¢)y/2(1 — y)
and 6 = (1 — ¢)v+/2, we have Hp,(Y|€) £ 1 — ¢y. Un-
fortunately, however, the size of L is too big, i.e., |L,| =
O((1/~:)In(1/%:)). In the following, we give a new merging
method that guarantees the same bound on Hp, (Y|€;) with
significantly small L, i.e., |L¢| = O(In(1/v:)).

Let f : X — Z with Hp(Y|f) =1 -~ for
some 0 < v < 1. Then, for any 0 < ¢ < 1, there ezists a
function g : Z - M such that

Theorem 3:

Hp(Ylgo f)<1-cy
and

log(1+1/¢)
Proof. For each z € Z, let

p: =Pro(f(zi) = z) and q. =Prp(y: = 1| fxi) = 2).
Note that

Hp(Y|f) =) p.Gla) =1-7, (11)

z€Z

where G(q) = 24/¢(1 —gq) is our entropy function. Let
a=2c/(1—-c), e =0 and for each j 21, let

o (1+a)1“g
77\ a a’

Let k be the smallest integer such that ¢, = 1. Now we

define the function g. For each 1 £ j < &, let

S i={2€Z|p.<1/2,¢;.1 £1-G(q.) <€}
and

S; = {Z €Z|p. 2 1/2,€j_1 £1-G(g.) < E]‘}.
That is, Z is partitioned into S_xU---USy. Let M = {j, —7 |
1< j <k} and for any z € Z, let g(z) = j such that z € §;.
It is easy to see that |M| =0 (%{%ﬂ). So it suffices
to show that Hp(Y|go f) £ 1 - ¢y.

For each j, let

pE)= pe and py= ) e,

2€S; Z€S;

where p, = p./p(S;) with z € S;. Then,

Hp(Ylge f) =Y p(S;)G(u;).

JEM

Since G(p;) £1 —€j.1, we have

D p(8)G ) S 1= p(S)es-1.

jeMm jeM
If EJGMp(Sj)ej,I 2 ¢y, then we are done. So in what
follows, we assume

D p(S)ei-s <eor. (12)

jeM
Since both G{u;) and Zz€S~ p.G(g:) are in the range
(1 —¢;,1—¢;-1], we have

Glu) £ Y p:Ga:) + e — €

2€S8;

and this with (11) gives

Hp(Ylgo f)S1=~+ ) p(Sj)e; — ;1) (13)

JEM

By our choices of ¢,
€j-1 =ale; —€;-1)

holds for 7 2 2. Plugging this into (13) and using (12), we
get
Ho(Ylgo ) €1-v+ T +a(p(S-)+p(S) 1 -cy.
]
Again, letting £, and & correspond to f and go f, respec-
tively, we have a merging scheme as desired. Intuitively, the
parameter ¢ controls the tradeoff between Hp,(Y|€;) and
[Li|. That is, if we let ¢ close to 1, then Hp (Y|€) is as
small as Hp, (Y |€;) while |L¢| is unbounded. This implies
that the BP.InfoBoost behaves like DT.InfoBoost. On the
other hand, if we let ¢ close to 0, then Hp,(Y|£:) is un-
bounded (naturally bounded by Hp, (Y |h:)) while |L| is as
Thus, the BP.InfoBoost behaves like
InfoBoost. So, we can expect that BP.InfoBoost with appro-

small as a constant.

priate choice of parameter ¢ outperforms both InfoBoost and
DT .InfoBoost.

Finally, we remark that we develop the merging method



4] N. Duffy and D. Helmbold. A geometric approach to lever-
aging weak learners. Theoret. Comput. Sci., 284(1):67-108,

in a different philosophy from the one of Mansour and

McAllester {10] in the following two points.

2002.
o Our merging scheme is based on the current distribu- (5] . Friedman, T. Hastie, and R. Tibshirani. Additive logistic
tion D; while that of [10] is based on the uniform distribution regression: a statistical view of boosting. Annals of Statis-

tics, 2:337-374, 2000.

or the sample.
over p [6] A.J.Groveand D. Schuurmans. Boosting in the limit: Max-

e Our merging scheme aims to make the function £; per- imizing the margin of learned ensembles. In 15th AAAI
form not much worse than & as a weak hypothesis. On the pages 692-699, 1998.

. . [7] A. Kalai and R. A. Servedio. Boosting in the presence

other hand, [10] aims to make ¢; perform getting better as of noise. In Proceedings of the 35th Annual ACM Sym-

a master hypothesis, so that Hy(Y|£;) converges to 0. So posium on Theory of Computing, San Diego, California,

USA, June 9-11, 2003, pages 196-205. ACM Press, 2003.

their method needs much more leaves and the complexity of
{8] M. Kearns and Y. Mansour. On the boosting ability of top-

the branching program becomes unnecessarily large. down decision tree learning algorithms. J. of Comput. Syst.
Sci., 58(1):109-128, 1999.

7. Remarks and future works [9] J. Kivinen and M. K. Warmuth. Boosting as entropy pro-

. jection. In Proc. 12th Annu. Conf. on Comput. Learning

(1) Our analysis suggests that the weak learner should Theory, pages 134-144. ACM Press, New York, NY, 1999.

produce h; so that Hp, (Y|€;), rather than Hp, (Y|he), is as [10] Y. Mansour and D. A. McAllester. Boosting using branch-
ing programs. J. of Comput. Syst. Sci., 64(1):103-112, 2002.

small as possible. Special Issue for COLT 2000.
(2) Our algorithm wuses the same cost function  [11] G. Rétsch and M. K. Warmuth. Maximizing the margin
Z e~ Fr{zi)vi 35 AdaBoost and InfoBoost. This seems to with boosting. In 15th Annual Conference on Computa-
! . . tional Learning Theory, COLT 2002, Sydney, Australia,
nicely mesh with our entropy function G(g) = 2v/¢(1 ~ ). July 2002, Proceedings, volume 2375 of Lecture Notes in
What is the relation between the choices of cost functions Artificial Intelligence, pages 334-350. Springer, 2002.

[12] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee.

. . T Boosting the margin: a new explanation for the effectiveness
(3) The combined hypothesis Fr(z) = ., w[£:(2)] of voting methods. Annals of Statistics, 26(5):1651-1686,

can be rewritten as the dot product Fr(x) = W-H(z) where 1998.

[13] R. E. Schapire and Y. Singer. Improved boosting algo-

) T rithms using confidence-rated predictions. Machine Learn-

and its ¢ = (o1, ...,07)th components are W, = Zz:1 w(oy) ing, 37(3):297-336, 1999.

and H,(z) = H(’zlﬂet(z) = o¢], respectively. This defines [14) E. Takimoto and A. Maruoka. Top-down decision tree learn-

ing as information based boosting. Theoret. Comput. Sci.,

292(2):447-464, 2003.

and corresponding entropy functions?

W and H(x) are vectors indexed by paths ¢ € Ly x --- x Lt

feature maps from the node space to the path space. Can
we analyze BP.InfoBoost in terms of the path space?

(4) We need to give a criterion of choosing the tradeoff
parameter ¢ (that may depend on round ¢).

(5) We need to analyze the complexity of the master
hypothesis, say, in terms of VC dimension.

(6) We are evaluating the performance of BP.InfoBoost
on data sets from the UCI Machine Learning Repository.
Preliminary experiments show that the BP.InfoBoost with
the merging scheme developed in Section 6. performs well as

compared to InfoBoost and DT .InfoBoost.
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