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Abstract

and that there is an eavesdropper. An undirected graph G, called a key-sharing graph, represents the pairs; each

Assume that there are several persons and some pairs of them share secret keys, called prior secret keys,

vertex of G corresponds to a person, and each edge corresponds to a pair sharing a prior secret key. Each person
can broadcast a message to all the persons through a public communication network; the person creates the message
from his prior secret keys and all the messages that have already been broadcasted through the network. We thus
assume that all the persons and the eavesdropper can hear all the messages broadcasted, and that the eavesdropper
can tap at most t of the prior secret keys for an integer ¢t 2 0. Under such a situation all the persons wish to share
a single common secret key. In this paper we prove that the persons can securely share a common secret key if and
only if the key-sharing graph G has (¢ 4+ 1) edge-disjoint spanning trees.

Key words Protocol, secret key.

. putational power. We use an undirected graph G, called a
1. Introduction ] )
key-sharing graph, to represent the pairs; each vertex of G

Assume that there are several persons and some pairs of
them share secret keys, called prior secret keys, and that

there is an eavesdropper, named Eve, with unlimited com-

corresponds to a person, and each edge corresponds to a pair
sharing a prior secret key. We also assume that each person

knows only prior secret keys of the pairs containing him, that
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is, each person does not know any prior keys corresponding
to the edges not adjacent to the vertex corresponding to the
person. Each person can broadcast a message to all the per-
sons through a public communication network; the person
creates the message from the prior secret keys known to him
and all the messages that have already been broadcasted
through the network. We thus assume that all the persons
and Eve can hear all the messages broadcasted. We also as-
sume that Eve has tapped at most ¢-bit of the prior secret
keys for an integer ¢t 2 0. Under such a situation all the
persons wish to share a single common secret key. Once all
the persons securely shared the common secret key, they can
securely communicate information to each other by using it.
In this paper we prove that the persons can securely share
a common secret key if and only if the key-sharing graph
G has (t + 1) edge-disjoint spanning trees. We observe that
the sufficient condition can be obtained by relatively simple
analyses. That is, if G has (¢ + 1) edge-disjoint spanning
trees, then we can actually construct a protocol such that
all the persons securely share a common secret key by using
it. However, it is relatively difficult to obtain the necessity
condition. We first consider the simplest case where Eve has
tapped no prior secret key, i.e. t = 0. In order to obtain
the sufficient condition for this case, we analyze a commu-
nication between persons by using a new class of protocols,
named one-round one-bit multi-party protocol, for communi-
cations under the situation described above. We then prove
that if G has no edge-disjoint spanning tree, i.e. G is not
connected, then all the persons can securely share no infor-
mation, and consequently they cannot securely share a com-
mon secret key. Once a necessary and sufficient condition
is obtained for a case where ¢t = 0, we discuss a case where
t > 0, i.e. Eve has tapped arbitrary ¢-bit of the prior secret
keys. By extending the analyses for the case ¢t = 0, we then
prove that if all the persons can securely share a common
secret key, then G has at least ¢ + 1 edge-disjoint trees.
The rest of this paper is organized as follows. In Section
2, we describe our problem and a motivation to consider this
problem. We also give the definition of a key-sharing graph.
In Section 3, we propose a one-round one-bit multi-party
protocol and t-safety of a key sharing graph; a key-sharing
graph is called t-safe if there is a protocol, classified as the
one-round one-bit multi-party protocol, such that all the per-
sons can securely share a common secret key. In Section 4,
we consider the simplest situation in which Eve has tapped
no prior secret key. Then, we prove the necessary and suf-
ficient condition for O-safety of a given key-sharing graph.
In Section 5, we prove the necessary and sufficient condition
for t-safety by extending the result obtained in Section 3 to

general situations. In Section 6, we present our concluding

remarks.
2. Preliminaries and Motivations

Secure communications in several kinds of situations have
been widely studied in recent years. We assume that the
eavesdropper Eve has unlimited computational power, as
described above. When there are several persons wishing
secure communications under the assumption, one of impor-
tant problems is how all the persons securely share a single
common secret key. Once all the persons securely shared
a common secret key, they can securely communicate infor-
mation to each other by using it. This problem is called
a multiparty secret key exchange problem, and it has been
studied in several situations [1],[2]. Throughout this paper,
we consider how all the persons securely share a one-bit com-
mon secret key; if they can securely share a one-bit common
secret key by doing some communications, then it is easy to
see that they can securely share z-bit common secret key for
arbitrary integer x by iterating communications similar to
those used for sharing the one-bit common secret key.

For the multiparty secret key exchange problem, we con-
sider a new communication model, named a public broadcast
key-sharing model, in which the following conditions (1)-(4)
hold.

(1) Some pairs of persons share secret keys, called prior se-
cret keys, in advance; each person knows only his prior
secret keys, i.e. the prior secret keys of the pairs con-
taining him; each person knows which pair of persons

shares a prior secret key.

(2) Each person can broadcast a message to all the persons
through a public communication network; the message
is created from his prior secret keys and all the messages
already broadcasted.

(3) All the persons and the eavesdropper can hear all the

messages broadcasted.

(4) The eavesdropper Eve has tapped at most ¢ of the prior

secret keys, for an integer ¢ 2 0, in advance.

The pairs described in condition (1) can be represented by a

key-sharing graph, defined as follows.

[Definition 1] Assume that there are n = 3 persons indexed
1,2,...,n, and that a pair of persons (i,5), 1 £ ¢, £ n,
shares a b; ;-bit prior key. If a pair of persons (i,j) shares
no prior key, let b;; = 0 for convenience. Let key(3, j, k),
for 1 £ k£ < b; 5, be k-th bit of the prior key of a pair (3, ),
and let |key(i,j, k)| be the value of it. We call key(i,j, k)
for 1 £ 4,7 <nand 1<k < b;; aonebit prior key. The



key-sharing graph G = (V| E) is an undirected multigraph;
the vertex set V of (f is {1,2,...,n} and each vertex ¢ corre-
sponds to a person i; each edge corresponds to a one-bit prior
key. For each pair of vertices (¢,7) with b;; > 0, the edge
set £ of G contains b; ; edges corresponding to key(i, j, 1),
key(i,4,2), ..., key(i, j, bi ;). If by ; = 0 for a pair (3,7), then

there is no edge between a vertex i and a vertex j.

From the condition (1), each person ¢, 1 £ i < n, knows the
shape of a key-sharing graph G, but does not know the value
of any prior secret keys corresponding to edges not adjacent

to a vertex i.

tkey(1,2,1)| =1 fkey(1,4,1)|=0

key(1,3,2) = 0| [[key(1,3,1)] =1

key(2,3,1){ =0 lkey(3.4,1)| = 1

3
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Fig.1 A key-sharing graph.

Fig. 1 depicts a key-sharing graph corresponding to four
persons {1,2,3,4} and five pairs. Each pair of (1,2), (1,4),
(2,3), and (3,4) shares a one-bit prior secret key with a one-
bit variable, while a pair (1, 3) shares a prior secret key with a
two-bit variable. For example, the value of the variable of the
prior secret key of a pair (1,2) is equal to |key(1,2,1)| = 1.
The value of the variable of the prior secret key of a pair
(1,3) is equal to 01; the first bit, i.e. the rightmost bit, cor-
responds to |key(1,3,1)| = 1, and the second bit corresponds
to |key(1,3,2)| = 0.

In the next section, we will define a new class of protocols,
named a one-round one-bit multi-party protocol, for commu-
nications based on the public broadcast key-sharing model,
where the conditions above (1)-(4) hold. The one-round one-
bit multi-party protocol is an application of the multi-party
protocol, proposed by Fischer and Wright [1], to communica-
tions based on the public broadcast key-sharing model. We
will also define t-safety of a key-sharing graph; a key-sharing
graph is called t-safe if there is a protocol, classified as the
one-round one-bit multi-party protocol, such that all the per-
sons can securely share a common secret key by doing some
communications obedient to the protocol. The main result

of this paper to prove that a key-sharing graph G is ¢-safe

if and only if G has at least (¢ + 1) edge-disjoint spanning
trees.

Several researchers have implicitly used the key-sharing
graph to represent pairs of persons on a private communica-
tion network model [1] 2], [3], and[4]. On the private com-
munication network model, a person in a pair can securely
communicate messages to the other person in the pair, that
is, other persons and the eavesdropper cannot tap the mes-
sages. On the other hand, few works have used a key-sharing
graph for communications using broadcasts through a pub-
lic communication network. A reference [6] is one of such
works, although it deals with a much limited communica-
tion model compared with the public broadcast key-sharing
model used in this paper. In general, communications using
broadcasts through a public communication network can be
realized much easily than communications on a private com-
munication network model, and hence our result is useful in

practice.

3. One-Round One-Bit Multi-Party Pro-
tocol and t-Safety of a Key-Sharing
Graph

In this section, we propose a new class of protocols, named
a one-round one-bit multi-party protocol, for communications
based on the public broadcast key-sharing model. The def-
inition of the one-round one-bit multi-party protocol is. as

follows.

[Definition 2] A one-round one-bit multi-party protocol is
a class of protocols for communications based on the pub-
lic broadcast key-sharing model. A protocol, classified as
the one-round one-bit multi-party protocol, determines H
rounds of communications for an integer H 2 0. At h-th
round, 1 £ h £ H, each person ¢ sets a one-bit variable,
denoted by I; », as follows. The value of the variable I, 5, is

denoted by |I; x| € {0,1}.

® Sender. A person, denoted by s(h), becomes
a “sender” of information at h-th round. That
is, s(h) determines the wvalue of Iy, by using

To(hy, 10 Lschy,25 -5 Ls(h),h—1, Rh, Kn, where Ry, is a random bit
with a value 0 or 1 and K}, is a set of his one-bit prior keys
{key(s(h),q,b) | (s(R),q,b) € E}. Then, s(h) determines
the value of a one-bit message M), using the one-bit variable
Is(n),» and a one-bit prior key kp, where kx, € K. The value
of My and ky are denoted by |Ma| and |kn|, respectively.
Then, s(h) broadcasts the message M to all the persons
through a public communication network.

®  Receiver. A person, denoted by r(h), becomes a “re-

ceiver” of information at h-th round. That is, r(h) deter-



mines the value of 1.5, by using the broadcasted message
Mjp, and his one-bit prior key.

e QOthers. Each person i, except s(h) and r(h), set I, »
as | n| = | Ma|.

After H rounds communications are finished, each per-
son 7 determines the value of a one-bit variable f; by us-
ing his variables I;1,...,[; v, and his one-bit prior keyé
{key(4,7,b) | (,7,b) € E}}. The one-bit variable f; is called
a final key.

Prior to the communications the protocol determines meth-
ods how the players determine the values of the messages,
the variables, and the final keys, and hence the methods are
known to all the persons and Eve. Consequently, if Eve pos-
sesses the same information as that possessed by any person,
then Eve can compute correctly the value of the final key de-
termined by the person.

If all the final keys have the same value and Eve cannot
guess correctly the value with probability more than 1/2,
then the persons will be able to use the value as the value of
a one-bit common secret key for secure communication. We

thus define t-safety of a key-sharing graph as follows.

[Definition 3] A given key-sharing graph G is called t-safe,
if there is a protocol, classified as the one-round one-bit
multi-party protocol, satisfying the following conditions for
any assignment E — {0,1} of values to the one-bit prior
keys.

(1) Every person generates a final key with the same value,
after the communications determined by the protocol
and the assignment of the values to the one-bit prior
keys.

(2) Eve does not possess information about the final keys;
we say “Eve does not possess” information about a one-
bit variable if Eve can guess correctly the value of the
variable with probability 1/2.

A protocol, classified as the one-round one-bit multi-party

protocol, can be determined by using information about the

shape of the key-sharing graph G prior to the communica-
tions, but it is determined independent of particular assign-
ment of values to the one-bit prior keys. Hence, a protocol
used for the t-safety has to satisfy the conditions above for

any assignment of values to the one-bit prior keys.

4. Necessary and Sufficient Condition for
0-Safety

In this section, we first analyze each round of communica-
tions based on the one-round one-bit multi-party protocol.
Note that it is difficult to analyze each round of communi-

cations based on the original multi-party protocol. We then

consider the simplest situation in which Eve has tapped no
prior secret keys.

Let us consider how a person securely provides a piece of
possessed information to another person by a communication
at h-th round, for 1 £ h £ H.

[Lemma 1] At h-th round, the sender s(h) can provide in-
formation Iyn),n to the receiver r(h) such that Eve cannot
possess information about I ), if and only if the following
conditions are satisfied.

(1) [My| = Lsr),nl @ lkn] or [Ma| = =(|Lsn),n] @ lknl),
where ki, € {key(s(h),r(h),c) | (s(h),7(R),c) € E}.

(2) Eve has not tapped k.

Proof. If the both conditions are satisfied, then the receiver
can compute correctly the value of Iy, and Eve cannot
guess correctly it with probability more than 1/2, and hence
these conditions are sufficient. We thus prove the necessity
below.

If the value of the message |M4| is determined by a ran-
domized method or depends on a random variable, that is,
if My may have two different values for fixed |Isn sl and
|kn|, no person can compute correctly M| from Iy 5 and
kr. We thus have to use a deterministic method to deter-
mine |My| from Ign, and kn. We then claim that if |My|
is equal to neither |Iynyn| ® |kn| nor (|5 n| @ lkrl) for
some ky, € {key(s(h),7(R),c) | (s(h),r(h),c) € E}, then ei-

ther no person can compute correctly |My| or Eve can guess

correctly the value with probability more than 1/2.
Let Np (N1) be the number of possible combinations of
[Ts(ny,n| and [kx| such that |[My] = 0 (or 1, respectively). If

Ng > Ni or No < Nip, then no person can compute cor-

rectly the value of I ), from My and any kp. There-
fore, the number of possible patterns of |My|, for all the
combinations of |Iyny,n| and kx|, is Cs2 = 6. Table 1

describes all the six patterns. The patterns are named

£1 M, OBY 556 2D F—
Table 1 The six possible patterns of |Mp|

Iqma | kn|A|B|C|DIE|F
o lolojoltlof1]1
0O |1]0]|1}l0{1|0}|1
1 Jof1fofo]1]t]o
1 1]1]1]1]o]o]o

A, B, C, D, E, and F. Pattern A (or F) corresponds to
[Mn] = Usmynl (or [Mn] = —HLsqnyn

hence Eve can compute correctly |Iynyn| from M. Pat-

, respectively), and

tern B (or E) corresponds |My| = |kn| (or [Mp} = —|kn|, re-
spectively), and hence Eve can compute correctly |ky| from

Mj,. Note that in this case no person can compute correctly



[Zs(r),n| since M} is independent of I ) r. The remaining
patterns are D and C, corresponding to |Mp| = [Is(a),n|®|kn|
or |My| = —{|Is(h).n] ® lknl). This implies the necessity of
the first condition.

If the communication at h-th round satisfies the first con-
dition and Eve have tapped kp, then Eve can compute cor-
rectly Iyn),n from My. Hence, the second condition is also

necessary. [m]

We say a communication at a round is a one-round commu-
nication if it satisfies the condition (1), and call a one-round
communication satisfying the condition (2) a one-round se-
cure commaunication.

We now consider how securely generate a common secret
key by iterating one-round communications. To begin with,
we assume the simplest situation where Eve has tapped no
one-bit prior key in G in advance. Under this situation, any
one-round communication becomes a one-round secure com-
munication. Recall that a person cannot provide securely
information without using a one-round communication, even
in this situation. In the rest of this section, we prove the

following theorem hold in this situation.

[Theorem 1] A given key-sharing graph G is O-safe if and

only if G is connected.

Proof.

protocol, classified as the one-round one-bit multi-party pro-

To prove the sufficiency, we actually describe a

tocol, for communications to share a one-bit common secret
key. Since G is connected, G has a spanning tree 7. Without
loss of generality, we can assume that edges of T is indexed
in BFS order of T, e1,e2,...,en-1, and that e; = (1,2,1).
In the following one-round one-bit multi-party protocol, the
persons provide information by using the one-bit prior key

corresponding to ep at h-th round.

A Protocol for Communications to Share a One-Bit
Common Secret Key

(1) The communication at the first round consists of the
following four procedures (a)-(d).

(a) Person 1 sets a one-bit variable /1) at random;
11,1] = 0 with probability 1/2, and |[;1] = 1 with prob-
ability 1/2.

(b) Person 1 broadcasts a message M), where |Mi1| =
[11,1] b |key(1,2, 1)|. Person 1 is called the sender at the first
round.

(c) Person 2 receives and decodes the message, and set
a one-bit variable Iz 1 as [I2,1] = |11,1| = |M1| @ |key(1,2,1)].
Person 2 is called the receiver at the first round.

(d) Each person z, 3 £ z £ n, receives the message and
sets |Ip1}) = [Mi].

(2) Let ep = (u,v,1).

s(h) = u, and the receiver at this round r(h) = v. The com-

Let the sender at h-th round

munication at h-th round, 2 £ h < n — 1, consists of the
following four procedures (a)-(d).

(a) 1fs(h) + 1, person s(h) sets |Iyonynl = Logn).ecn)-1-
Otherwise, person s(h) sets |Iypyn| = |[T1,1]-

(b) Person s(h) broadcasts a message My, where |My| =
siny, bl @ |key(s(h),r(h), 1)].

(c) Person r(h) receives and decodes the message, and
sets a one-bit variable I.(y) » such that [Inyal = [Lsn),n| =
[Mn| @ |key(s(h),r(h),1).

(d) Every person z, except s(h) and r(h), receives the
message and sets |Izn| = |Mg]|.

After these communications, all the players do the following
procedures.

(1) Person i determines the value of a final key fi such
that | fi] = |11

(2) For 1< h<n-—1,person r(h), the receiver at h-th
round, determines the value of a final key f.(n) such that
frml = [Trny,nl-

We prove that the persons securely generate the final keys
such that |fi| = |f2] = -+ = |fa|. Without loss of generality,
we can assume that r(h) = h+1for 2 £ h < n-—1,ie
r(2) = 3, r(3) =4, ..., r(n — 1) = n. The communication at
h-th round, 1 £ h £ n—1, is a one-round secure communica-
tion, and hence Eve cannot possess information about fr4+1
with the value |fry1] = [Int1,n}l = Hsay,nl- It is easy to see
Il = I2a] = -+ = [Isthy,n41] = {In41,8]- This completes
the proof for the sufficiency.

To prove the necessity, we introduce two lemmas.

[Lemma 2] Let us consider a point of time when h-th round
Then, let KNOW(h,I;/) be a set of per-

sons who know the value of Ijs, where I, = Iy p for

just finished.

an integer A’ £ h; we say “a person i knows the value
of I/,” when he can compute correctly the value from
his information I; s, f;,h—1,...,Ji,1 and his prior secret keys
{key(s,7,¢) | (i,4,¢) € E}. We define KNOW(0, I,/) = 0 for
any 1 £ ' £ H, for convenience. Assume that Eve does not
possess information about I/ at this point of time. Thus,
KNOW(h, I}/) € KNOW(h + 1, 1I/) implies a fact that an-
other person knows the value of I, when (h + 1)-th round
just finished.

We claim that KNOW(h, I,,) C KNOW(h + 1, I/) holds
and Eve does not possess information about I, when (h+41)-
th round just finished if and only if the protocol, classified
as the one-round one-bit multi-party protocol, used for the
communication at (h 4 1)-th round satisfies the following
conditions (1)-(3).

(1) The sender at (h+ 1)-th round, denoted by s(h+1),



is contained in KNOW(h, Ij/).

(2) The receiver at (h+1)-th round, denoted by r(h+1),
is contained in V' \ KNOW(h, I,,).

(3) The communication at (h + 1)-th round is a one-
round secure communication. Thus the key, kpi1, used
in this communication is contained in {key(s(h + 1),r(h +
1),c) | key(s(h + 1),r(h + 1),¢) € E}. The sender cre-
ates a message Mpy1 from knyr and Ignt1),n+1. where
Hsh1y.n+1] = n|. The receiver r(h + 1) then com-
putes correctly {Igns1) n41] from Mpy1 and kpi1, and sets

rht1y,m41! = Hshany naa] = ol

Proof. If all the conditions (1)-(3) hold, then r(h + 1) ¢
KNOW(h, I,») knows the value of Iy after the communica-
tion, and hence these conditions are sufficient.

We prove the necessity below. From Lemma 1, the condi-
tion (3) is necessary. If the sender s(h+1) ¢ KNOW(h, I;/),
then this person cannot compute correctly the value of
Ir. Therefore, no person in V \ KNOW(h,I)/) compute
correctly this value from My, the message created by
s(h + 1).
If the receiver r(h + 1) € KNOW(h, I;/), then no person
in V \ KNOW(h, I},») knows the value of the one-bit prior

key kn+1 used in this round. Consequently, no person can

This implies the necessity of the condition (1).

compute correctly the value of I (n41)n41 from Mpyq, the
message created from Igx41),n+1 and kny1 as described in
Lemma 1. Thus, even if |Is(h41),n+1]| = |In/|, no person con-
tained in V \ KNOW(h, I;+) knows the value of I, imme-
diately after (h + 1)-th round, and hence KNOW(h, I}/) =
KNOW(h + 1,1,/). This implies that the condition (2) is

also necessary. ]

[Corollary 1] 1f KNOW(h,I1/) = V, where Iy = Iynyn
for two integers h and h' such that 1 £ ' £ h £ H, and Eve
does not, possess information about I» when A-th round just
finished, then the key-sharing graph G has a spanning tree,

i.e. G is connected.

Proof. From Lemma 2, if KNOW(h, I};) = V and Eve does
not possess information about I when h-th round just fin-
ished, then the players has done at least n—1 times one-round
secure communications when h-th round just finished, and
consequently the edge set, corresponding to the set of one-
bit prior keys used in the communications, forms a spanning
tree of G. 0

[Lemma 3] After H rounds communications based on a
one-round one-bit multi-party protocol, if every person ¢ for
1 £ i £ n can generate the final key f; such that |fi| =

If2l = -+ = |fn| and Eve cannot guess correctly the value

of f; with probability more than 1/2, then 3y = Iy nss
1 £ h' £ H, such that KNOW(H, I/) = V and Eve does

not possess information about I, when H-th round finished.

Proof. Let F; be the set of one-bit variables used to de-
termine the value of the final key f; of a person i. Thus,
fi depends on every one-bit variable contained in Fi. If
there is no one-bit variable 2; € F; foreach 1 £ ¢ £ n
such that either |z;| = |z1] or |z;] = —|z1| holds for arbi-
trary assignment of values to the one-bit prior keys, where
|2;| denotes the value of z;, then the persons cannot gener-
ate the final keys with the same value from Fy, Fs, ..., Fir.
Thus, without loss of generality, we can assume that there
is a one-bit variable z; € F; for each 1 £ i £ n such
that |21| = |z2] = -+ = |za|. From the definition of the
one-bit one-round multi-party protocol, F; is a subset of
{Lia, L2y oy Iw } U {key(3,3,b) | (4,5,b) € E}}. However,
z; cannot be contained in {key(i,j,b) | (3,7,b) € E}, be-
cause the values of the one-bit prior keys depend on the used
assignment of values to the one-bit prior keys; since the num-
ber of persons n 2 3, all the persons share no set of one-bit
prior keys. Hence, z; € {I;1,...I;n} for each 1 £ i £ n,
and thus there is a one-bit variable I, = 2;, 1 £ b’ < H,
such that KNOW(H, I+) = V. This also implies that if Eve
possess information about I, then Eve can guess correctly

the value of the final keys. ]

Now Corollary 1 and Lemma 3 complete the proof for the

necessity in Theorem 1. [m]

5. Necessary and Sufficient Condition for
t-Safety

In this section, we give the necessary and sufficient condi-
tion for ¢-safety of a key-sharing graph. Assume that for an
integer ¢t > 0 Eve has tapped ¢ one-bit prior keys in the key-
sharing graph G in advance. Recall Lemma 1, i.e. a person
cannot provide a part of his information safely without the

one-round secure communication.

[Corollary 2] Let A;, As,..., Ay be one-bit variables satis-
fying the following conditions.

(1) A; is contained in {Iymn | 1 £ B £ H} for
lsy<y.

(2) A, As,.., Ay are independent of each other. That
is, |Ail = |A,| for any 1 £ 7 + j £ Y with probability 1/2
for any assignment of values to the one-bit prior keys.

(3) KNOW(H,A;) = KNOW(H,A2) = -+ =
KNOW(H,Ay) = V.

After H rounds communications, if each person i, 1 £i < n,

can generate the final key f; such that | fi] = |f2| = -+ = | fal



and Eve cannot guess correctly the value of f; with proba-
bility more than 1/2, then Eve does not possess information

about at least one A, for 1 Sy < Y.

Proof. From Lemma 3, there is at least one-bit variable A,
1<y <Y, such that KNOW(H, A,) = V and Eve does not
possess information about A, for generating the final keys

with the same value. [}

[Lemma 4] Assume that there is a one-bit variable I, such
that KNOW(h, I;/) = V for two integers h 2 k' 2 1. Let
T}, be a subgraph of G consists of the edges corresponding
to the set D of the one-bit prior keys used by (n — 1) per-
sons to provide information about I, to another person in

one-round communications. That is,
D={ks|1<d< H KNOW(d—1,1I;) C KNOW(d, I/)},

the set of the one-bit prior keys used at d-th round
where KNOW(d, I;/) contains a person not contained in
KNOW(d, In:)}.

If Eve has tapped a one-bit prior key k, corresponding to
some edge in T}, then Eve can guess correctly the value of
I+ and the values of all the one-bit prior keys corresponding
to the edges of T}..

Proof. Assume that Eve has tapped a one-bit prior key
ke corresponding to some edge in T,. The communica-
tion at a-th round is a one-round communication, because
KNOW(a — 1,I;/) C KNOW(a, I}/). See Lemma 2. Hence,
Eayal = ], and either |Ma| = [Tyl @ kal or [Ma] =
~(|Is(a).a] @ |ka|). Consequently, Eve can compute correctly
the value of I,y = T4/, from M, and kq; this one-round
communication is not a one-round secure communication.

The communication at d-th round, where KNOW(d —
1,1,) € KNOW(d, I), is a one-round communication to
provide information about I4),4, where |14y 4| = |Ip/|, and
hence from My and I; Eve can compute correctly the value
of any one-bit prior key k4 € D corresponding to an edge in
T;. O

[Corollary 3]
fying the following conditions.

(1) A; is contained in {Iymn | 1 £ B £ H} for
lsysY.

(2) A A, ..
is, |A;] = |Aj| for any 1 £ ¢ % j £ Y with probability 1/2
for any assignment of values to the one-bit prior keys.

(3) KNOW(H,A,) = KNOW(H,4;) = .- =
KNOW(H, Ay) = V.

Let T1, T3, ..., Ty be subgraphs of G, such that the edges of
Ty (1 £y £Y) are corresponding to a set Dy of the one-bit

Let A;, Az, ..., Ay be one-bit variables satis-

., Ay are independent of each other. That

prior keys, where
Dy ={ka|1<d< H, KNOW(d—1, A,) C KNOW(d, Ay)}.

If there are two subgraphs 7T, and Ty for 1 £ a £ b Y
such that T, and T} are not edge-disjoint, and Eve has tapped
the one-bit prior key corresponding to an edge e € T U T,
then Eve can compute correctly the values of A, and A, and
the value of the one-bit prior key corresponding to any edge
€ €T, UT.

Proof. From Lemma 4, Eve can compute correctly the value
of A, because Eve has tapped the one-bit prior key corre-
sponding to e € T, and can also compute correctly the value
of the one-bit prior key corresponding to any edge e’ € T,.
In the same way, Eve can compute correctly the value of A
and the value of the one-bit prior key corresponding to any
edge ¢’ € Tp. =]

[Theorem 2] A given key-sharing graph G is t-safe if and
only if G has (t + 1) edge-disjoint spanning trees.

Proof. First, we prove the sufficiency.

Let T1,T>, ..., Tt+1 be (t+1) edge-disjoint spanning trees of
G. All the persons can share (t+1) one-bit independent vari-
ables Aj, Az, ..., Ai41 by iterating the communications obe-
dient to “the protocol for communications to share a one-bit
common secret key” described in Section 4.. Assume that
for 1 £ j £ ¢+ 1 all the persons use the one-bit prior keys
corresponding to all the edges of Tj to share each A;. In
the communications for sharing A;, the first sender deter-
mines the value of a one-bit variable at random and regard
the variable as A;. Eve has tapped at most ¢ one-bit prior
keys, and hence there is at least one edge-disjoint spanning
tree T;, 1 £ j < t+1, such that Eve has not tapped the one-
bit prior key corresponding to any edge in T;. T1,...,Ti41
are edge-disjoint each other, and the communications obedi-
ent to “the protocol for communications to share a one-bit
common secret key” use only the one-bit prior keys corre-
sponding to the edges in T} for sharing each A;, and hence
each set of the one-bit prior keys used in the communications
for sharing each of Aj; is disjoint each other. Consequently,
Eve can possess information at most ¢ one-bit variables in
Although the

persons cannot know whether or not Eve possesses informa-

A1, Ag, ..., Agyi, after the communications.

tion about a particular one-bit variable or one-bit prior key,
the persons can generate the final key with the same value
by setting |f1] = [fa] = -+ = [fa| = |A1] @ |A2| @ & |Aea].
Eve does not possess information about at least one variables
in A, Az, ..., At+1, and hence it is easy to observe that Eve
can guess correctly the value of the final keys with probabil-
ity at most 1/2.



Next, we prove the necessity.

Let Aj, Az, ..., Ay be one-bit variables satisfying the fol-
lowing conditions.

(1) A; is contained in {Iymyn | 1 £ h £ H} for
1SysY.

(2) A, Az, ..., Ay are independent of each other. That
is, |A;] = |A;] for any 1 < ¢ & j < Y with probability 1/2
for any assignment of values to the one-bit prior keys.

(3) KNOW(H,A;) = KNOW(H,Az) = .- =
KNOW(H, Ay) = V.

Let Ty, T, ..., Ty be subgraphs of G, such that the edges of
T, (1 £y £Y) are corresponding to a set Dy of the one-bit

prior keys, where
Dy =1{ky|1<d < H, KNOW(d—1,4,) C KNOW(d, 4y)}.

From Lemma 1, each Ty, for 1 £ y £ Y contains a span-
ning tree of G, denoted by T},. From Corollary 2, Eve should
not possess information about at least one one-bit variable
Ay in A1, Aa, ..., Ay.

Eve has tapped at least one one-bit prior secret key in T

If Y < t, then we can assume that

for each 1 £ j £ Y, and hence Eve can compute correctly
the values of A1, As, ..., Ay, and consequently Eve can com-
pute correctly the value of the final keys. Hence, we can
assume that G has at most ¢ edge-disjoint spanning trees.
Without loss of generality, we can also assume that for an
integer t' < t 77, T%,..., T, are edge-disjoint spanning trees
and each of T}, |, T} 5, ..., T, shares at least one edge with
oneof 7Y, Ty, ..., T,. Sincet' £ t, we can assume that Eve has
tapped at least one prior secret key in each of T}, T3, ..., Ty,
and consequently Eve can compute correctly A1, A2, ..., Ay.
See Corollary 3. This implies that G must have at least (t+1)

edge-disjoint spanning trees. 0

6. Concluding Remarks

We have assumed that there are persons wishing secure
communications, and there is an eavesdropper. We have con-
sidered how the persons securely share a common secret key
under the following situation. Some pairs of persons share
prior secret keys in advance; each person can broadcast a
message to all the persons through a public communication
network; the message is created from his prior secret keys
and all the messages already broadcasted; all the persons
and the eavesdropper can hear all the messages broadcasted;
the eavesdropper Eve has tapped at most ¢ of the prior se-
cret keys, for an integer ¢ 2 0, in advance. We have used
a key-sharing graph G to represent the pairs sharing prior
secret keys; each vertex of G corresponds to a person, and
each edge éorresponds to a pair sharing a prior secret key.

In this paper we have proved that the persons can securely

share a common secret key under the situation above if and
only if the key-sharing graph G has (¢-+1) edge-disjoint span-
ning trees. We have first considered the simplest case where
Eve has tapped no prior secret key, i.e. t = 0, and have ana-
lyzed a communication between persons by using a new class
of protocols, named one-round one-bit multi-party protocol,
for communications under the situation above. Once a nec-
essary and sufficient condition has been obtained for a case
where ¢ = 0, by extending the lemmas and the corollaries
proved for the case t = 0 to a case t > 0 we have given a
necessary and sufficient condition where Eve has tapped arbi-
trary t-bit of the prior secret keys; the persons can securely
share a common secret key if and only if the key-sharing
graph G has (t + 1) edge-disjoint spanning trees.

It is known that an undirected graph has (¢ + 1) edge-
disjoint spanning trees if and only if for every partition of V
into r sets, at least (t + 1)(r — 1) edges of G have endpoints
in different sets of the partition {5].

One of the future works is to compare the one-round one-
bit multi-party protocol with the multi-party protocol. For
this purpose, we are considering an extension of the one-
round one-bit multi-party protocol; it allows a person to use
multiple bits of prior secret keys for a communication at one
round, while in the one-round one-bit multi-party protocol a
person can use only one bit of a prior secret key at one round.
It is easy to prove that the extended protocol is equivalent
to the multi-party protocol, and hence the remaining prob-
lem is to compare the extended protocol with the one-round
one-bit multi-party protocol.

Another interesting future work is to consider a situation
in which more than two persons share the same prior secret
key, while this paper deals with a situation in which just two
persons share the same prior secret key. The former situa-
tion can be formalized by using a hypergraph (V, F) whose
vertices correspond to persons and whose hyperedge eCV

represents which persons share the same prior secret key.

X [

[1] M. J. Fischer and R. N. Wright, “Multiparty secret key ex-
change using a random deal of cards,” Proc. CRYPTO 91,
LNCS 576, pp. 141-153, 1991.

{2 M. J. Fischer and R. N. Wright, “Bounds on secret key
exchange using a random deal of cards,” Journal of Cryp-
tology 9, pp. 71-99, 1996.

[3] M. Franklin and M. Yung, “Secure hypergraphs: privacy
from partial broadcast,” Proc. 27th STOC, pp. 36-44, 1995.

{4] Y. Wang and Y. Desmedt, “Secure communications in mul-
ticast channels: the answer to Flanklin and Wright’s ques-
tion,” Journal of Cryptology 14, pp. 121-135, 2001.

[5] D. B. West, “Introduction to Graph Theory, 2nd edition,”
Prentice Hall, 2001.

6] S. Zhu, S. Xu, S. Setia and S. Jajodia, “Establishing pair-
wise keys for secure communication in ad hoc networks: a
probabilistic approach,” Proc. ICNP03, pp. 326-335, 2003.



