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Abstract A drawing of a plane graph is called an inner rectangular drawing if every edge is drawn as a horizontal
or vertical line segment so that every inner face is a rectangle. In this paper we show that a plane graph G has an
inner rectangular drawing D if and only if a new bipartite graph constructed from G has a perfect matching. We
also show that D can be found in time O(n!'%/logn) if G has n vertices and a sketch of the outer face is prescribed,
that is, all the convex outer vertices and concave ones are prescribed.
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plan meeting the adjacency requirement represented by G.,

1. Introduction
as follows:

A drawing of a plane graph G is called a rectangular draw- . .
. . . X . (1) add dummy edges to G. so that every inner face
ing if every edge is drawn as a horizontal or vertical line . .. .
. . of the resulting graph G.' is a triangle, as illus-
segment so that every face boundary is a rectangle. Figures o
. . trated in Fig. 2(b) where dummy edges are drawn
1(a) and 2(d) illustrate rectangular drawings. A rectangular .
. L X R by dotted lines;
drawing often appears in VLSI floor-planning and architec-

tural layout [DETT99, FW74, GT97, Len90, SY99]. Each

inner face of a plane graph G represents a module of a VLSI

(2) construct a new plane graph G from a dual-like
graph of G.' by adding four vertices of degree two

L . corresponding to the four corners of the rectangu-
circuit or a room of an architectural layout. Suppose that . ) L ..
X . R lar chip, as illustrated in Fig. 2(c) where G,' is
a plane graph G, representing the requirement of adjacency . -
L . o drawn by dotted lines, G by solid lines, and the
among modules is given as illustrated in Fig. 2(a). Each ver- R o
L four added vertices by white circles;
tex of G, corresponds to a module of a VLSI circuit, and .

i (3) find a rectangular drawing D of G as a floor plan
each edge of G, means that the two modules corresponding . . . ]
meeting the requirement of Ga, as illustrated in

to the ends are required to be adjacent in the VLSI floor- k
Fig. 2(d).

planning, that is, the two rectangular modules must share a

common boundary. A conventional method obtains a floor In the plane graph G appearing in the conventional method
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Fig. 1 Rectangular drawing (a), and inner rectangular drawings
of (b) L-shape, (¢) T-shape, (d) U-shape, (e) Z-shape, and

(f) staircase-shape.

above, all vertices have degree three except for the four ver-
tices of degree two corresponding to the four corners, because
every inner face of G, is a triangle. Hence the maximum de-
gree A of Gis three. However, some plane graphs with A =4
may have rectangular drawing, as illustrated in Fig. 3(d). Of
course, A must be four or less if G has a rectangular drawing.
A necessary and sufficient condition for a plane graph G with
A £ 3 to have a rectangular drawing is known, and linear
or O(n*"/logn) algorithms to find a rectangular drawing
of G is obtained {BS88, He93, KH97, KK84, LL90, RNNO02,
RNN98. Tho84]. However, it has been an open problem to
obtain a necessary and sufficient condition and an efficient
algorithm for plane graphs G with A < 4 [MMN02, RNN98].

Let G.” be a plane graph obtained from an adjacency re-
quirement graph G. by adding dummy edges to G, so that
every inner face is either a triangle or a quadrangle, as illus-
trated in Fig. 3(b).
a dual-like graph of G,” by adding four vertices of degree

Let G be a plane graph obtained from

two corresponding to the corners. Of course, the maximum
degree A of G may be four since G.” may have a quadran-
gular inner face. If one can find a rectangular drawing D of
G with A < 4 as illustrated in Fig. 3(d), then one can use D
as a floor plan meeting the requirement of G,.

The outer face boundary must be rectangular in a rect-
angular drawing, as illustrated in Fig. 1(a). However, the
outer boundary of a VLSI chip or an architectural floor plan
is not always rectangular, but is often a rectilinear polygon of
L-shape, T-shape, U-shape or staircase-shape. as illustrated
in Figs. 1(b)—-(f) [FW74, Len90, MMNO02, SS93, YS93]. We
call such a drawing of a plane graph G an inner rectangular
drawing if every inner face of G is a rectangle although the
outer face boundary is not always a rectangle.

In the paper we show that a plane graph G has an inner

rectangular drawing D if and only if a new bipartite graph

© G @ D
Fig. 2 (a) Adjacency requirement graph G, (b) inner triangu-
lated graph G.’ augmented from Ga, (c) duallike graph
G of Ga', and (d) rectangular drawing D of G with A = 3.
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Fig. 3 (a) Adjacency requirement graph Ga, (b) inner triangu-
lated or quadrangulated graph Ga' augmented from Ga,
(c) dual-like graph G of G.”, and (d) rectangular drawing
Dof G with A =4.

constructed from G has a perfect matching. We also show
that D can be found in time O(n'%/logn) if a “sketch” of
the outer face is prescribed, that is, all the convex outer ver-
tices and concave ones are prescribed, where n is the number
of vertices of G. We do not assume A £ 3, and an inner rect-

angular drawing is a rectangular drawing if the outer face



is sketched as a rectangle. Thus we solve the open problem
above.

The reminder of the paper is organized as follows. In
Section 2 we define some terms, describe some fundamental
facts, and present our main results, Theorems 1-3. In Sec-
tion 3 we prove Theorem 1 for the case where a sketch of the
outer face is prescribed. In Section 4 we prove Theorem 2 for
the case where the numbers of “convex” and “concave” outer
vertices are prescribed. In Section 5 we prove Theorem 3 for
a general case. Finally in Section 6 we conclude with some

extensions of our algorithms.
2. Preliminaries and main results

We assume in the paper that G is a plane undirected sim-
ple graph. We denote by d(v) the degree of a vertex v in G.
We denote by F, the outer face of G. The boundary of F,
is called the outer boundary, and is denoted also by F,. A
vertex on F, is called an outer vertez, and a vertex not on
F, is called an inner vertez. We may assume without loss of
generality that G is 2-connected and A < 4, and hence every
vertex of G has degree 2, 3 or 4.

An angle formed by two edges € and e’ incident to a vertex
vin G is called an angle of vif e and ¢’ appear consecutively
around v. An angle of a vertex in G is called an angle of G.
An angle formed by two consecutive edges on a boundary of
a face Fin G is called an angle of F. An angle of the outer
face is called an outer angle of G, while an angle of an inner
face is called an inner angle.

In any inner rectangular drawing, every inner angle is 7/2
or w, and every outer angle is /2, w or 37/2. Consider a
labeling f which assigns a label 1, 2, or 3 to every angle of
G, as illustrated in Fig. 4(c). Labels 1,2 and 3 correspond to
angles 7/2, © and 37/2, respectively. We denote by n., the
number of outer angles having label 3, and by n. the num-
ber of outer angles having label 1. Thus n., is the number
of “convex” outer vertices, and n.. is the number of “con-
cave” outer vertices. For example n.y = 5 and nec = 1 for
the labeling f in Fig. 4(c).

We call fa regular labeling of G if f satisfies the following

three conditions (a)-(c):

(a) For each vertex v of G, the labels of all the angles
of v total to 4;

(b) The label of any inner angle is 1 or 2, and every
inner face has exactly four angles of label 1; and

(€) Niev — Mo = 4.

Figure 4(c) illustrates a regular labeling f of the plane graph
in Fig. 4(a) and an inner rectangular drawing D correspond-
ing to f.

Conditions (a) and (b) imply the following (i)~(iii):
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Fig. 4 (a) Plane graph G, (b) decision graph Gy, and (c) inner
rectangular drawing D and regular labeling f of G.

(i) If a vertex v has degree 2, that is, d(v)= 2, then
the two labels of v are either 2 and 2 or 1 and 3.
In particular, if v is an inner vertex, then the two
labels are 2 and 2.

(ii) If d(v)= 3, then exactly one of the three angles of
v has label 2 and the other two have label 1.

(iif) If d(v)= 4, then all the four angles of v have label
1.

If G has an inner rectangular drawing, then clearly G has
a regular labeling. Conversely, if G has a regular labeling,
then G has an inner rectangular drawing, as can be proved
by means of elementary geometric considerations. We thus
have the following fact.

[Fact 1] A plane graph G has an inner rectangular drawing
if and only if G has a regular labeling.

A drawing of a plane graph is called an orthogonal drawing
if each edge is drawn as an alternating sequence of horizontal
and vertical line segments. A point at which an edge changes
its direction is called a bend. An inner rectangular drawing
is an orthogonal drawing with no bend such that every inner
face is a rectangle. Tamassia gives an algorithm to find an
orthogonal drawing of a given plane graph with the minimum
number of bends in time O(n”logn) by solving the “mini-
mum cost flow problem” of a new graph constructed from
G [Tam87]. Garg and Tamassia refine the algorithm so that
it takes time O(n"™/Togn) [GT97]. Tamassia presents an

“orthogonal representation” of a plane graph for character-
g g



izing an orthogonal drawing [DETT99, Tam87]. Our regular
labeling can be regarded as a special case of his orthogonal
representation. He gives also a linear algorithm to find an or-
thogonal “grid” drawing from an orthogonal representation,
in which every vertex has an integer coordinate. Similarly,
one can find an inner rectangular “grid” drawing from a
regular labeling in linear time.

A sketch of the outer face F, of a plane graph G is to
assign a label 1, 2 or 3 to the outer angle a of each outer
vertex v of G, as illustrated in Fig. 1. If d(v) = 2, then the
label of a must be either 2 or 3. If d(v) = 3, then the label
must be either 1 or 2. If d(v) = 4, then the label must be
1. Furthermore, ne, — n.. = 4. For example, n., = 5 and
nec = 1 for the sketches in Figs. 1(b) and 4(a), and hence the
sketches imply that the outer face boundary F, must have
an L-shape.

Suppose first that a sketch of F, is prescribed. Then one
can immediately determine some of the inner angles by Con-
ditions (a) and (b) of a regular labeling, as illustrated in
Fig. 4(a). The remaining undetermined inner angles are la-
beled with z, which means either 1 or 2. We construct from
G a new graph G, called a decision graph of G, as illustrated
in Fig. 4(b) where Gg is drawn by solid lines and G by dotted
lines. We then have the following theorem.

[ Theorem 1] Suppose that a sketch of the outer face of a
plane graph G is prescribed. Then G has an inner rectan-
gular drawing D with the sketched outer face if and only if
the decision graph G4 of G has a perfect matching. D can
be found in time O(n'-®/logn) whenever G has D, where n
is the number of vertices in G.

The proof of Theorem 1 and together with the construction
of G4 will be given in Section 3.

Suppose next that a sketch of F, is not prescribed but the
numbers nc, and n.. of convex and concave outer vertices are
prescribed. Of course, n., — ne. = 4. For example, ncy =4
and n.. = 0 mean that F, is rectangular as illustrated in
Fig. 1(a), while n., = 6 and n.. = 2 mean that F, has a
T-shape, U-shape, Z-shape or staircase-shape as illustrated
in Figs. 1{c)-(f). Let G4* be a graph constructed from G, as
illustrated in Fig. 6(b). Then we have the following theorem.
[ Theorem 2] Suppose that a pair of non-negative integers
nev and n.. are prescribed. Then a plane graph G has an in-
ner rectangular drawing D with n., convex outer vertices and
ne. concave ones if and only if G4* has a perfect matching.
D can be found in time O(/n(n + ncvno)/ logn) whenever
G has D, where n, is the number of outer vertices.

The proof of Theorem 2 together with the construction of
Ga* will be given in Section 4.

Consider finally a general case where neither a sketch of

F, nor a pair (ncv,nec) is prescribed. Let Gq” be a graph

constructed from G. Then we have the following theorem.
[ Theorem 3] A plane graph G has an inner rectangular
drawing D if and only if Gq4* has a perfect matching. D
can be found in time O(y/n(n+ (no2 — Nos)No)/ log n) when-
ever G has D, where n.2 and n.s are the numbers of outer
vertices of degrees 2 and 4, respectively.
The proof of Theorem 3 together with the construction of
Gq4* will be given in Section 5.

We assume that some trivial conditions for the existence
of an inner rectangular drawing hold in Theorems 1, 2 and

3, as we will explain in Sections 3, 4 and 5.

3. Inner rectangular drawing with sketched
outer face

In this section we prove Theorem 1.

Suppose that a sketch of the outer face of a plane graph
G is prescribed, that is, all the outer angles of G are la-
beled with 1, 2 or 3, as illustrated in Figs. 1 and 4(a). Of
course, the number n.. of outer angles labeled with 3 and
the number n.. of outer angles labeled with 1 must satisfy
nev — Nee = 4. The outer angle of an outer vertex v must be
labeled with either 2 or 3 if d(v) = 2, with either 1 or 2 if
d(v) = 3, and with 1 if d(v) = 4. Then some of the inner
angles of G can be immediately determined, as illustrated in
Fig. 4(a). If v is an outer vertex of degree 2 and the outer
angle of v is labeled with 2 and 3, then the inner angle of »
must be labeled with 2 and 1, respectively. The two angles
of any inner vertex of degree 2 must be labeled with 2. If
v is an outer vertex of degree 3 and the outer angle of v is
labeled with 2, then both of the inner angles of v must be
labeled with 1. On the other hand, if v is an outer vertex
of degree 3 and the outer angle of v is labeled with 1, then
we label both of the inner angles of v with z, because one
cannot determine their labels at this moment although one
of them must be labeled with 1 and the other with 2. We
also label all the three angles of an inner vertex of degree 3
with z, because one cannot determine their labels although
exactly one of them must be labeled with 2 and the others
with 1. We label all the four angles of each vertex of degree
4 with 1. Label £ means that z is either 1 or 2, and exactly
one of the labels z's attached to the same vertex must be 2
and the others must be 1. (See Figs. 4(a) and (c).)

We now present how to construct a decision graph Gy of G.
Let all vertices of G attached a label z be vertices of Gq. Thus
all the inner vertices of degree 3 and all the outer vertices of
degree 3 whose outer angles are labeled with 1 are vertices of
Ga, and none of the other vertices of G is a vertex of G4. We
then add to G4 a complete bipartite graph inside each inner
face F of G. Let n, be the number of angles of F labeled

with z. Let n1 be the number of angles of F which have been



labeled with 1. One may assume that n; < 4; otherwise, G
has no inner rectangular drawing. Exactly 4 — ni of the n,
angles of F'labeled with z must be labeled with 1 by a regular
labeling. We add a complete bipartite graph K(4_n,jn, in F,
and join each of the n, vertices in the second partite set with
one of the n, vertices on F whose angles are labeled with z.
Repeat the operation above for each inner face F of G. The
resulting graph is a decision graph Gq of G. The decision
graph Gy of the plane graph G in Fig. 4(a) is drawn by solid
lines in Fig. 4(b), where G is drawn by dotted lines. The idea
of adding a complete bipartite graph originates from Tutte's
transformation for finding an “f-factor” of a graph [Tut54].

A matching of Gy is a set of pairwise non-adjacent edges in
Ga. A marimum matching of G4 is a matching of the max-
imum cardinality. A matching M of Gy is called a perfect
matching if an edge in M is incident to each vertex of Gy. A
perfect matching is drawn by thick solid lines in Fig. 4(b).

Each edge e of Gq4 incident to a vertex v attached a label
T corresponds to an angle « of v labeled with z. A fact that
e is contained in a perfect matching M of G4 means that the
label z of o is 2. Conversely, a fact that e is not contained
in M means that the label z of a is 1.

We are now ready to prove Theorem 1.

[Proof of Theorem 1]

Suppose that G has an inner rectangular drawing with a
sketched outer face. Then by Fact 1 G has a regular label-
ing f which is an extension of the sketch, that is, a labeling
of the outer angles. We include in a set M all the edges of
Gq corresponding to angles of label z = 2, while we do not
include in M the edges of G4 corresponding to angles of la-
bel £ = 1. For each vertex » of G4 attached a label z, the
labeling f assigns 2 to exactly one of the angles of v labeled
with z. Therefore exactly one of the edges of G4 incident to
v is contained in M. The labeling f labels exactly four of the
angles of each inner face F with 1. Therefore exactly 4 —n; of
the n, angles of Flabeled with z must be labeled with 1 by f,
and hence all the edges of Gq corresponding to these angles
are not contained in M. Including in M a number 4 — n; of
edges in each complete bipartite graph, we can extend M to
a perfect matching of G4. Thus G4 has a perfect matching.

Conversely, if G4 has a perfect matching, then G has a reg-
ular labeling which is an extension of a sketch of the outer
face, and hence by Fact 1 G has an inner rectangular drawing
with a sketched outer face.

Clearly, G4 is a bipartite graph, and 4 — n; £ 4. Obvi-
ously, n, is no more than the number of edges on face F. Let
m be the number of edges in G, then we have 2m < 4n since
A £ 4. Therefore the sum 2m of the numbers of edges on all
faces is at most 4n. One can thus know that both the num-

ber ng of vertices in G4 and the number mq of edges in Gqa

are O(n). Since G4 is a bipartite graph, a maximum match-
ing of Gq can be found either in time O(\/Aama) = O(n'®)
by an ordinary bipartite matching algorithm [HK73, MV80,
PS82] or in time O(y/mama/ logna) = O(n'®/logn) by a
recent pseudoflow-based bipartite matching algorithm using
boolean word operations on log n-bit words [FM31, Hoc04,
HCo04].

This complete a proof of Theorem 1. O

Lai and Leinwand show that a plane graph G with A £3
have a rectangular drawing if and only if a new bipartite
graph constructed from G and its dual has a perfect match-
ing [LL90]. Their bipartite graph has an O(n) number of
vertices, but has an O(n?) number of edges. Therefore their
method takes time O(n?®/log n) to find a rectangular draw-
ing of G.

We also remark that one can enumerate all inner rectan-

gular drawings of G by enumerating all perfect matchings of

Fig. 5 Network N.

Clearly the bipartite matching problem can be reduced
to the maximum flow problem [AMO93, PS82]. Conversely,
modifying Tamassia’s formulation of the bend-minimum or-
thogonal drawing problem [Tam87], one can directly reduce
the inner rectangular drawing problem to a flow problem on
a new planar bipartite network N with multiple sources and
sinks. A network N for the plane graph G in Fig. 4(a) is
illustrated in Fig. 5; N is drawn by solid lines, a flow value
is attached to each arc, and an inner rectangular drawing of
G corresponding to the flow is drawn by dotted lines. Every
arc of NV has a capacity 1. A node of N corresponding to a
vertex of G is a source, the supply of which is written in a
circle in Fig. 5. A node of N corresponding to an inner face
of G is a sink, the demand of which is written in a square in
Fig. 5. An inner angle of 7/2 is represented by an arc of flow
1, while an inner angle of = is represented by an arc of flow
0. One can observe that G has an inner rectangular drawing

with the sketched outer face if and only if N has a feasible



(single commodity) flow satisfying all the demands. A feasi-
ble flow in such a planar network or a bipartite network can
be found either in time O(n'®) by a planar flow algorithm
[MN95] or a bipartite flow algorithm [AMO93, ET75] or in
time O(n'®/logn) by the pseudoflow-based bipartite flow
algorithm [Hoc04, HCO04].

Thus both our matching approach and the flow approach
solve the inner rectangular drawing problem in the same time
complexity. However, the bipartite matching algorithm in
[HK73] can be quite easily implemented in comparison with
the flow algorithms in [Hoc04, HC04, MN95].

4. Inner rectangular drawing with pre-
scribed numbers n¢, and ngc

In this section we prove Theorem 2.

Suppose that an outer face of a plane graph G is not
sketched but a pair (ncv,n) is prescribed, where nc, is the
number of convex outer vertices and n.. is the number of
concave outer vertices. If (ncy,ncc) is prescribed as nc, = 5
and 7. = 1 like in Fig. 6(a), then the outer boundary must
have an L-shape as illustrated in Fig. 6(c), but it has not
been prescribed which outer vertices are convex and which
outer vertices are concave. We label all the four angles of
each vertex of degree 4 in G with 1, and label both of the
angles of each inner vertex of degree 2 with 2. The labels of
all the other angles of G are not determined at this moment,

and we label them with z or y as follows:

(1) label all the three angles of any vertex v of degree
3 with z; and
(2) label the inner angle of any outer vertex v of degree

2 with z, and label the outer angle of » with y.

The labeling of the same plane graph as in Fig. 4(a) is de-
picted in Fig. 6(a). Label z means that z is either 1 or 2,
similarly as in Section 3. On the other hand, label y means
that y is either 2 or 3. Each outer vertex of degree 2 is at-
tached two labels z and y, and if £ = 1 then y = 3 and if
z =2 then y = 2.

We now present how to construct a decision graph Gq*
of G. The construction is similar to that of G4. Let all the
vertices of G attached label z or y be vertices of G4™ as il-
lustrated in Fig. 6(b). Thus all the outer vertices of degree
2 in G and all the vertices of degree 3 in G are vertices of
Gq". All the other vertices of G are not vertices of G4*: all
the vertices of degree 4 and all the inner vertices of degree 2
are not vertices of Gy4~.

For each inner face F of G, we add a complete bipartite
graph K(s_,,),, inside F, where n, is the number of an-
gles of F labeled with z and n, is the number of angles of F

labeled with 1. Of course, one may assume that n; < 4.

Rey=5ncc=1

© D

Fig. 6 (a) Plane graph G and pair (ncv,ncc), (b) decision graph

Gg4*, and (c) inner rectangular drawing D and regular la-
beling f of G.

‘We then add two complete bipartite graphs inside the outer
face F,, as follows. Let n,. be the number of outer angles
of G labeled with z, and let noy be the number of outer an-
gles labeled with y. For the example in Fig. 6(a) ne, = 4
and 7oy = 7. Let 7no4 be the number of outer vertices v of
degree 4. For the example in Fig. 6(a) n.4 = 0. The outer
angle of v must be labeled with 1, and v must be a concave
outer vertex. One may assume without loss of generality
that ncc 2 nos; otherwise, G has no inner rectangular draw-
ing with n.. concave outer vertices. Exactly ncc — no4 of the
Noz outer angles of label ¢ must be labeled with 1. We add a
complete bipartite graph K, . —n,s)no, it Fo, and joint each
of the no; vertices in the second partite set with one of the
Toz Outer vertices of degree 3. Exactly n.. of the no, outer
angles of label y must be labeled with 3. We add a complete
bipartite graph K., »,, inside F,, and connect each of the
Ney vertices in the second partite set with one of the n,,
outer vertices of degree 2 via a path of length 2.

In Fig. 6(b) Ga
is drawn by solid lines, and G by dotted lines. A perfect

This completes a construction of G4~.

matching of G4~ is drawn by thick solid lines in Fig. 6(b).
Let a be an angle of a vertex v of G labeled with z or y,
and let e be the edge of G4~ which is incident to v and corre-
sponds to a. A fact that e is contained in a perfect matching
M of G4* means that the label of « is 2 if it is z and the
label is 3 if it is y. Conversely, a fact that e is not contained
in M means that the label of a is 1 if it is z and the label is



2 if it is y. Similarly as for Theorem 1, one can easily prove
that G has an inner rectangular drawing with n., convex
outer vertices and n.. concave ones if and only if G4* has
a perfect matching. Clearly Gq* is a bipartite graph. Since
N 2 Nev > Nee, Ga™ has an O(n) number of vertices and an
O(n + ncvn,) number of edges. where n, is the number of
outer vertices of G. Thus a maximum matching of G4~ can
be found in time O(y/n(n + ncyn,)/ log n).

This completes a proof of Theorem 2.
5. Inner rectangular drawing

In this section we prove Theorem 3.

Suppose that neither a sketch of the outer face F, nor a
pair of integers (ncv, nicc) is prescribed for a plane graph G.
Let 162, 703 and no4 be the numbers of outer vertices having
degrees 2, 3 and 4, respectively, then 1, = no2 + N03 + Mo
Since nev € np2 and nev — nec = 4, there are at most a num-
ber no» of pairs which are possible as (nicv, nec). Examining
all these pairs, one can know whether G has an inner rectan-
gular drawing for some pair. Such a straightforward method
would take time O(n.2v/n(n + ne2n,)/ logn). However, we
can show as in Theorem 3 that G has an inner rectangular
drawing D for some pair if and only if a new graph G4* con-
structed from G has a perfect matching, and that D can be
found in time O(y/n(n + (no2 — Noa)n0)/ log n) whenever G
has D.

We label each angle of G with 1, 2, z or y in the same
There

are no4 outer angles labeled with 1, n,3 with z, and n2

way as in Section 4, as illustrated in Fig. 6(a).

with . One may assume without loss of generality that
No2 = Noa + 4; otherwise, G has no inner rectangular draw-
ing. The construction of a new graph G4* is the same as G4~
except for the outer face F,. We add a complete bipartite
graph B = K, ,_n_4—4)(noz+no3) il Fo, and join each of the
T2 + M3 vertices in the second partite set of B with one of
the n,2 + no3 outer vertices of degree 2 or 3.

Suppose that G4" has a perfect matching M. Let a be the
number of edges of G4 which correspond to outer angles of
outer vertices of degree 2 and are contained in M. Let b be
the number of edges of G4* which correspond to outer angles
of outer vertices of degree 3 and are contained in M. Since M
covers all the nys ~ n.4 — 4 vertices in the first partite set of
B, we have (no2 — a) + (03 — b) = no2 — nos — 4, and hence
a+b = n.3 + nos + 4. We assign 2 to the b outer angles of
outer vertices which have label z and are ends of edges of M
in Fy, and assign 1 to the remaining (n.3 —b) outer angles of
label . We assign 3 to the a outer angles of outer vertices
which have label y and are ends of edges of M in F, and
assign 2 to the remaining (n.2 — a) outer angles of label y.

Then we have n.. = @ and n.c = (103 — b) + noa, and hence

Tev — Nee = @ — (Nog — b+ Nos) = 4. One can thus know that
G has a regular labeling if G4 has a perfect matching.

Conversely G4 has a perfect matching if G has an inner
rectangular drawing.

This completes a proof of Theorem 3.
6. Conclusions

In this paper, we reduced the problem of finding an in-
ner rectangular drawing ofa plane graph to the perfect
matching problem. More precisely, we showed that a plane
graph G has an inner rectangular drawing D if and only
if a new bipartite graph constructed from G has a perfect
matching. We also showed that D can be found in time
O(n'®/logn) if a sketch of the outer face is prescribed, in
time O(y/n(n+ncn,)/ log n) if a pair (nev, ncc) is prescribed,
and in time O(y/n(n + (N2 — Noa)n0)/ logn) for a general
case where neither a sketch nor a pair is prescribed, where
N, is the number of outer vertices and 7,2 and no4 are the
numbers of outer vertices of degrees 2 and 4, re‘spectively.

If a sketch of several faces of G including the outer face is
prescribed, then one can examine whether G has a drawing
D such that each of the other faces is a rectangle, and can
find D whenever G has D, by finding a maximum matching
in a bipartite graph constructed from G.

I faces Fo,F1,---,Fi, i 2 1, of G are pairwise vertex-disjoint
and the numbers of convex and concave vertices are pre-
scribed for each of these faces, then one can examine whether
G has a drawing D such that each of the faces F,,F:, - -, F;
has the prescribed numbers of convex and concave vertices
and each of the other faces is a rectangle, and can find D
whenever G has D, by finding a maximum métching of a

bipartite graph constructed from G.
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