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Abstract This paper considers how to distribute n? integers between 0 and n? -1 as uniformly
as possible over an n x n square matrix. We introduce a discrepancy-based measure to evaluate
the uniformity. More precisely, we take a sum of matiix elements over every k x k contiguous
submatrix and define the discrepancy of the matrix as the largest difference among those sums.
It is known that if n and & are both even integers then we can construct zero-discrepancy
matrices. In this paper we present a scheme for achieving a new discrepancy bound 2n when n
is odd and k is 2. This is an improvement from the previous bound 4n. We borrow basic ideas
behind orthogonal Latin squares and semi-magic squares. An n-ary number systemn also plays
an important part.

This problem is closely related to digital halftoning. Low discrepancy matrices would improve
the quality of commonly used Ordered Dither Algorithm.

1 Introduction

Digital Halftoning is an important technique for the rendition of continuous-tone pictures on
displays that can only produce two levels. There have been a great number of methods for
digital halftoning. One of the most popular methods is Ordered Dithering which determines an
output level at each pixel by comparison with a threshold in a predetermined table called Dither
Matriz. The performance of the algorithm heavily depends on the Dither matrix.

A Dither matrix is an n ¥ n square matrix containing integers 0,...,n2% — 1. It is good when
those integers are uniformly distributed. To evaluate the uniformity we introduce a discrepancy-
based measure. More precisely, we take a sum of matrix elements over every k x k contiguous
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submatrix (region) and define the discrepancy of the matrix as the lagest difference among
those sums. This measure reflects human eye perception usually modeled using weighted sum of
ntensity levels with Gaussian coefficients over square vegions around each pixel (2] Tt is known
by experience that a matrix with low discrepancy frequently produces good-looking pictures.
This is the reason why we are interested in finding a good matrix with low discrepancy.

The analogous geometric problem of distributing n points uniformly in a unit square has
been studied extensively in the literature [6, 9]. Usually, a family of regions is introduced to
evaluate the uniformity of a point distribution. If the points of an n-point set P are uniformlv
dlbtllbut(‘(l for any region R in the fannls the number of points in R should be close to - area(R).
where 4 is the point density of P in the entire square. Thus, the discrepancy of P in a region R
is dcﬁncd as the difference between this value and the actual number of poiuts of P in R. The
discrepancy of the point distribution P with respect to the family of regions is defined by the
waxitnum such difference, over all regions. The problem of establishing disexepancy bounds for
various classes of regions has been studied extensively [7]. One of the simplest families is that
of axis-parallel rectangles for which ©(logn) bound is known [6, 9].

For the problem of establishing discrepancy bounds for families of regions (contiguous sub-
matrices), some preliminary observations are obtained in [1]. One basic observation is that we
can construct an n X n matrix of zervo-discrepancy for a family of 2 x 2 regions if n is even.

A space-cfficient algorithm is also presented in [1] for constructing a k™ x &A™ matrix of zero-
discrepancy for a family of k x k regions. More precisely, given any matrix index (7, 7) we can
compute the corresponding matrix element of the index in constant time using only O(k?) work-
ing space instead of O(k?™) required to store an output matrix. It is also shown in [1] that
zero-discrepancy cannot be achieved if n is odd and & is even, and only trivial hound has heen
obtained for the discrepancy in that case. In this paper we present a new scheme for achieving
a new discrepancy bound 2n when n > 5 is odd and k is 2. This is an improvement from
the previous bound 4n [1]. Basic tools and theories are orthogonal Latin squares, semi-magic
squares, and the n-ary number system.

2 Preliminary Definitions

For integers n > 1, let Z,(n) be the class of all n x n integer matrices such that all the integers
ranging from 0 to n - 1 are included exactly n times and let Zi(n) be that of all n x n matrices

which contain every value 0, ... n? — 1 exactly once. In this paper we only deal with square
matrices consisting of an odd uumber of rows (and columns) unless otherwise specified.

k)

A contiguous k x k submatrix (or region, hereafter) R, ;j = R,;“J'
at (i,7) is defined by R( ) = {0 | ¢ =4, i+ k—=land j = j,....j+k—1}, where
indices are calculated modulo n. ! Given a ma.trix P and a k x k region R; ;. P(R;;) denotes
the sum of the elements of P in locations given by R;;. The k x k-discrepancy Dy, (P) of an
n x n matrix P for the family F , of all & x k regions is defined as

with its upper left corner

Din(P) = Ao P(R) — Inm P(R)).

€Fkn "€ Fkn
Let N(k,n) be the set of all such zero-k x k-discrepancy matrices of order (k,n).

Theorem 1 [1] The set N(k.n) of zero-k x k-discrepancy matrices of order (k.n) has the fol-
lowsng properties:

(a) N(k,n) is non-empty if k and n are both even.

"Throughout this paper, index arithmetic is performed modulo matrix size » unless otherwise noted.



(b) N(k,n) is empty iof k and n are relatively prime.
(c) N(k,n) is empty if k is odd and n is even.
(d) N(k, k") is non-empty for any integers k and m, k > 2,m > 2.

It follows from the theorem that zero-discrepancy cannot be achieved in a basic case of 7 odd and
k even. In this paper we consider how much we can reduce the discrepancy of such a matrix in
this basic case. One silmple question is whether we can achicve a ©(log n) bound as in geometric
discrepancy problems.

3 Basic Construction Schemes

A poal here is to design a low discrepancy matrix. We begin with some basic schemes for
constructing matrices having some nice properties.

3.1 n-Ary Number System

JFrom now on, we assume that n is an odd number not less than 3, and our target n x n
matrix C' € Zj(n). Since all such integers ranging from 0 and n? — 1 can be vepresented by two
digits in the n-ary number system, we can associate to each C € Z;(n) two square matrices 4
and B representing upper and lower digits. That is, each clement ¢; ; of the matrix C is given
by
‘:f,,]' =nx (L,‘“}‘ B biu"" 0 :/: a’i.j- bz,J < 1, I,ﬂ‘}z U. 1, ey T 1.

Observe that (" ¢ Zy(n) il and only if the two matrices A and B are in the class Zin(n) and
are mutually orthogonal, that is, no ordered pair (a:;,bi;) occurs more than once. So, we
need schemes for generating two mutually orthogonal matrices in the class Z,(n). One is called
Alternating Diagonal Sequencing and the other Diagonal Repeating.

3.2 Alternating Diagonal Sequencing

4ltemmlmq 1)mqonal %'Pquemmq is a scheme for generating two mutually orthogonal matrices

AP = (a“’l) and 457 = (a ) in the class Z,,(n) as follows.
ot i, i+ 7 is odd, N 7, i+ 7 is odd,
% n—1-1, otherwise, (Y n—1—7j otherwise.

Lemma 2 The two matrices generated by Alternating Diagonal Sequencing are mutually or-
thogonal.

Proof: We omit the proof for space. [
The lemma guar;mteeq thaL combining these two matrices AP and A,{‘,_) by a;j =nx n(+) +

—) (
or a,' j=nXa; 7) a; J ) esults in an n x n matrix A,, containing all the numbers bctwccn

0 and n? — 1. Figure 1 shows how a umtnx is obtained by combining two matrices produced by
this scheme. Here note that a“)

. holds due to the symmetry of their definitions.

Let R ‘) be a 2 x 2 contiguous region on an n x n matrix, i.e., Iik 2 {(6,). G+ 1,7), (i.j +
1), (¢ + 1,_} + 1)} where index dddltmm are done modulo n. By A,Lf ) ( RI( 7-)) we denote the sum
of elements of A,(l" "in the region R , that is, .

) R L (+) (+) (+)
‘471 )(Rm ) + Dit1 \J + (11_7+l - (JL+1 J+1
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(4 o [19181 03374 ERT Y
(- )3 5187 16 9
A x5+ A7 = 122222 x5 |41230| = | 14111213 1D
37313 03214 158176 19
04040 41230 421220

Figure 1: A matrix given by combination of two 5 x 5 matrices Agﬂ and Aﬁ" generated by
Alternating Diagonal Sequencing.

Lemma 3 The 2 x 2 discrepancy of A, = nAf,"") - /-L,(l'") and A, = nA.,(,j " Aﬁ;"f’ are 4n.
Proof: Recall that n is an odd number not less than 3. Then. we have

\ 2n ifi<n-lisevenandj=n- 1,
A‘E,,*")(Rf‘j)) =¢ 2n -4 ifiisodd and j=n -1,
2n -2 otherwise,

, 2n ifi=n-—1andj<n-—1iseven,
ARy =4 2n -4 ifi=n-1andjisodd,
2n -2  otherwise.
Observe that there is no pair (i,7) such that ‘1,,')(1?”) and 4,([‘)(}?(2.)) are both 2n or both
2n — 4. Thus, 4”(/{( )s and A} (R; "))< are at most 2n x n+2n — 2 = 2n2 + 2n — 2 and are at
least (2n - ’1) X n-2n -2 =2n? - 2n - 2. Indeed, An(R(() i) = Af,A(R,(,)_)l.O) =2n% 4 2n 2

and A, (R} L) = An( R),Zl 1) =2n* - 2n - 2. Therefore, the 2 x 2 discrepancy of 4, and A/,
are 4n. O

Observe t}mt when n is even, the 2 x 2 discrepancy of A,, and A/, become 0, because we have

AR fuj) A )(Ru)) - 2n —2 for every (4, j) when n is even. Notice that the non-emptyness
of N(2,n) for even n is already shown in (a) of Theor em 1.

3.3 Diagonal Repeating

We define another scheme called Diagonal Repeating for genexaﬁng low diccwpancy matrices.

We partition n* elements of an n x n matrix into n disjoint sets L ” ..... Lfl‘ ' along 45 degree
lines as follows:
LS = () | G+ j) modn=s}, s=0,....,n—1.
In a similar way we also define sets LO"")., . ,L_SL';I along 45 degree lines:
L) e {(z NE—jymodn =k}, s oon—1
Now, we define two n x n matrices D,,' (dH')) and DY ) (d‘ )) as follows:
d) = J k if (i,7) € L") with s is even,
I v 1k  otherwise,
a0 = k if (i,4) € Li‘, ) with s is even,
oo :
n-1-k  otherwise.
(+)

Figure 2 shows the two 5 x 5 matrices D and D‘r(,—) defined above. As is seen in the figure,
the same number is repeated along 45 (let_uee lines in the upper-digit matrix 4 and along —45
degree lines in the lower-digit matrix 3. So, it is called Diagonal Repeating.
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(4) 3 ) ) 3 :

Dy =|21403 D§’= 230411,
14032 12304
40321 41230

Figure 2: Two mutually orthog oml Latin squares l)(+) (left) and D( (right) generated by
Diagonal Repeating.

Lemma 4 Diogonal Repeoting produces two mutually orthogonal Latin squares.

Proof: Recall that n is odd. Then. for every two pairs (i.j) and (i', j'), (1,(-3) = (17(,+/ ) if and
only ifi+j =+ 47 mod n, and df;' = d:::;, if and only if i — j = ¢ — 5/ mod n. Hence, 1)7(‘,,+)
and D), ) are Latin squares. Moreover, the two sets L,‘;") and LE"') intersect at a single place for
every 8.t =0...., n—1, and thus, D57 and DS are mutually orthogonal. a

The following lenina shows that Diagonal Repeating can produce lower discrepancy matrices
than Alternating Diagoual Sequencing.

Lemma 5 The 2 x 2 discrepancy of D, = nDSP + DS and D), = nD{ D,(lH are 2n + 2.

Proof: By definition. we have

" 2n -1 1f (1.j)e L, 2, ( ) 2n -1 iz, J) € ,, )1
D};f)(Hi__,)) =93 2n-3 if(i,j)€ L::_v_)l. D;f)(R,f‘,-) =9 23 if(ij) e L), (M)
2n—2 otherwise, 2n — 2 otherwise.

Thus, the maximum and minimumn values of Dn(R )a are respectively (2n 1) xn+42n 1=
2n?+n—1and (2n - 3) xn+2n—3 = 2n2 —n — 3, and the same holds for D! (/ﬁm)q O

The discrepancy bound 2n + 2 achieved by Diagonal Repeating is much better than the
bound 4n done by Alternating Diagonal Sequencing. Unfortunately, this bound is not optimal.
In fact, we reduce the discrepancy bound further to 2n in the next section. Nevertheless, this
bound looks near optimal because of the following lemma establishing a lower bound 2 on the
2 % 2 discrepancy for matrices in the class Z,(n). In fact, the lemma shown a sironger result.

Lemma 6 Let k be any inleger such that 2 < k < n. If n and k are relatively prime, then the
k x k discrepancy of each A € Z,(n) is at least 2

Proof: Let 4 € Z,(n). Observe that each matrix element is included in exactly k2 different
k x k regions, and each integer between 0 and n — 1 appears exactly n times in A. Thus,

n-1 n:--l . (n — 1)
STSTARD) = RO 114 ne 1) xn= Wit i,

i=() j=()

The lemma is proven by contradiction.
Suppose the k x k discr epancy of Ais 0 for some A € Z,(n). It follows that that every k x k

region has the same sum k*(n — 1)/2. Define a row sum 7, i by rij=ai;+ -+ aij4e-1. In
terms of 75 js, we have Tijg+F g1+ +ripk-1y ~k2(7z—1)/’{01 ,j=0,1,...,n— 1, which
implies r;; = ri.5j. Since n and k are relatively prime, we have Ti0 = Ty == e = g g for

each i = 0,1,...,n, and thus, r;; = k(n — 1)/2 for each i,j = 0,1,....n — 1. By applying the
same argunmnts to clements of A, it follows that all the elements of tho matrix A are (n - 1)/2,
which contradicts to the assumption A € Z,(n).
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072543618 080880808 0 7118 53 44 27 62 9 80
725436180 TirririT1 7019 55 43 28 61 16 79 1

» W |2h4d81807 AIFTREEY: 0514601175 2 69

X H47 2 755353535 50 : 277 p

DG -+ Mg™ = | 436180725 | x O+ |ddddd4444| = |4051 381978 4 6r 55 29
361807254 535354533 32571475 5 66 23 4% 39

618072543 262626226 56 15 74 6 6524 47 38 33

180725436 FIFITI171 1673 7 64 25 46 37 34 55

807254361 080800808. 728 6326 43 36 35 34 17

Figure 3: Low discrepancy 9 x 9 matrix (discrepancy = 18).

Next, suppose the k x k discrepancy of 4 is 1 for some A € Z,(n). Then, there are only two
different & x k sums Sg and §y with S; = Sy + 1. For £ = 0,1, we denote by R, the number of

have RSy + R1Sy = k*n%(n ~ 1)/2. From Ry -+ Ry =n? and 8; = Sy + 1, we have

Ry = kz'nj—(n 2. b_ n’Sp =n? (L:z——('n z b_ So) ,

Since n is odd and Sy is an integer, Ry is a multiple of n2, which contradicts 0 < Ry < n?. [

Observe from (1) that DI and DY) have 2 % 2 discrepancy 2, and according the theorem,
) [~ .V - . . e
D,(,,+’ and D% ) has the lowest 2 x 2 discrepancy among all matrices in Z,,(n).

4 Combined Strategy for Improving Discrepancy

We have presented two schema for generating low discrepancy matrices, i.e., Alternating Diag-
onal Sequencing and Diagonal Repeating. The discrepancy bound achieved is 2n <+ 2 for those
matrices in the class Zy(n) with n odd. In this section we propose yet another scheme, called
Modified Alternating Diagonal Sequencing, based on these two strategies to achieve a better
bound, 2n. /

Here we take DS or DY) as matrices for upper digits, each of which has the lowest 2 x 2
discrepancy among all matrices in Z,(n). Recall that all the elements on of D¢+ ( DS, resp.)
in the location given by 1.L§+) (1;,2‘) , tesp.) have the same value, s.

For lower digits, we take two matrices M{") = (mf;)) and M{) = (rn;J)) defined as follows:

i if (3,7) € LY such that s is odd and s < 51,
) _J e T G that s i o (n
m; i if (4,7) € Ly’ such that s is even and s >
n 11 otherwise,
) 1 if (1,7) Lg") such that s is odd and s < [},
mil =g if (1,5) € L{) such that s is even and s > 5]

n-1-1 otherwise.

By the definition of the matrix, all the numbers 0,...,n - 1 appear on the sct Lg’{") on the
matrix f\f,(,'r) for each ¢ = 0,....n-1. In the matrix 1\'[.,(1—), each set Lg—) contains all the integers
0...., n — 1. This proves the following lemma.

Lemma 7 The matric D' (D,(-L"') , Tesp.) is orthogonal to MY M, resp. ).

The lemma implies that the two n x n matrices n D,(),H + M}SH and n D,(f Yo }\/l,(;,_) belong to
Zy(n). Figure 3 shows a 9 x 9 matrix constructed in this way. In the following we show that
the 2 x 2 discrepancy of these two matrices are 2n. ‘
Recall from (1) that the largest and the smallest 2 x 2 sums are 2n — 1 and 2n— 3. For !\/I.,(,,+’

and M,([ ', we have the following lemma.



Lemma 8 The largest and smallest 2x 2 sums are 3n—3 and n— 1, respectively, in the matrices
M ,(1"‘ ) and M, ,(l )

Proof: let s= |[n/2]. By the <I( ﬁniLi«m the set L corresponds to the decreasing sequence
(n-1,....0). The sequence for L 1 is decreasing if s is odd and increasing otherwise. It follows
from the figure that the 2x 2 sumis 3n—3 at (n—1,s—1) if s is even and at (n—1, s) otherwise,
and that it ism— 1 at (n—1,s) il s is even and at (n — 1.5 + 1) otherwise. Careful case study
leads to the observation that they are in fact the largest and smallest 2 x 2 sums.

The proof for M) proceeds similarly. (]

In order to show the 2 x 2 discrepancy of nl)(” + I\'IH) and 1‘:/)(1_) + I\J,(,v-). let us introduce
the concept of bad elements. Let T be any matrix in the class 7Z,(n). An (i,7) element of T is
called good if the 2 x 2 sum T’ (.Rf-‘j)‘ is equal to 2n — 2. All other clements are called bad. If all
the elements are good then the 2 x 2 discrepancy of the matrix is 0. We denote a set of all bad
elements of T by Bad(T).

Observation 9 All the bad elements of the 7nai7 ices | ),([H and D,(f) have been located before,
that is, Bad(DSY) € L, 0 L and Bad(DS) < 1), url).

Lemma 10 The distributions of bad elements are disjoint between D,(;'") and 1\[,([” and also
between DY and MY . That is. Bad(DSP)n Bad(M{T) = 0 and Bad(DS )1 Bad(MS™) = 9.

Proof: Recall the definition uf the matrix MY Matrix elements are arranged increasingly
. . . (+ . . .
or decreasingly in each line Lt ) and increasing sequence and decwmﬂng one appear alternately.

(+

Only illegularity happens between the two lines L? 21 and L{ﬂ /2 . More precisely, for any

(7. j) such that R, (2) ’1(L‘ ¢ ) R IL( - ),] 1) = B, the four elements in F{( consist of ¢, 14, n -1~

/) = 2n 2. This also

k2%
+) +)
ety ULy UL, .

Thus, from Observation 9, we have Bad(D,,f )i Bad(M',(,"")) = if n > 5. The remaining proof
is symmetric. [

(t+1), and i+1, V\hth nnphcx that the element (4, j) is good since 7\[,(l+ )(R

implies that all the bad elements of M4t ) are included in the union L

2

Theorem 11 The 2 dmme’panru of the two matrices n /)(+) + 1\/.7',(,*) and 77,1'),(,_) + M,(l—) are
2n for any odd integer n > 5.

Proof: Let us show the 2 x 2 discrepancy of nI)H) + M, and that of nl),(,,_) + ME) can
be shown in the same way. According to Lemma 10, for each (i, 7), we have the following three
Ccases.
e Suppose (i.j) € Bn,d(D,(,Jr;) and (4,7) ¢ Bna’(MH)_ Then, from (1), the 2 x 2 sum in
nD,‘,“ + M”) at (1.7) is at le(wt (2n —-3)xn+(2n-2) = 2n? —n — 2 and at most

o Suppose (i,7) € I-J(I,d(M,’;H) and (i,7) ¢ Bad(.l),(,,ﬂ). Then, from Lemma 8, the 2 x 2 sum
1. . N
in nD," j\f[,(L') at (1,7) is at least (2n ~2) «n+ (n~ 1) = 2n ~n — 1 and at most
(2n —2) x n- (3n ~ 3) = 2n 4 n — 3.

e Suppose (i.7) ¢ Iiad(])}f)) U /}nd(/\[,,H) Then, the 2 x 2 sum in n/)(Jr + M,(f) at (i.7)
is exactly (2n —2) x n+ (2n — 2) = 2n? — 2. :
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Hence, the 2 x 2 discrepancy of nD5T + M) is at most (2n? +n—2) - 2nt —n - 2) = 2n.
Indeed, cach (i.j) € Lil”z achieves a 2 x 2 sum in nDSY + MY with value 202 +n — 2, and
each (1, ) € L('}'_)1 achieves a 2 X 2 sum in nDS{") ]\1,(;") with value 2n? - n — 2. Therefore, the

n

2 x 2 discrepancy of DS M) s 2n. [

5 Conclusions

In this paper we have devoted to minimizing the discrepancy against a family of 2 x 2 regions.
The region size may be too small for practical application to digital halftoning. We could define a
combined discrepancy measure, that is, sum of discrepancy bounds for several families of regions
such as Dy, (P) + Dy, (P) + - + Dy, (P). What is know so far is that there is no matrix P for
which the combined discrepancy bound Dy, (P) + D3, (P) is zero.

One technical open problem is to prove optimality of the discrepancy hound 2n we have
established in this paper. It is not so easy even for a small value of n. For example, when n is
five, we liave 24! ditferent matrices to check.
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