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Abstract. We introduce a new notion of “Voronoi diagram with neutral zone”. In contrast
to the ordinary Voronoi diagram to give a spatial tessellation, our new Voronoi diagram creates
regions around given points such that no pair of regions are adjacent to each other and this
enables to simulate more flexible patterns. We give a mathematical definition, and discuss
existence and its geometric/algorithmic properties.

@®)

1 Introduction

Voronoi diagram is one of the most popular struc-
tures in computational geometry. It is frequently
used as a mathematical model to represent a nat-
ural/artificial pattern created by a competitive
growth process where many bodies grow simulta-
neously to form a geometric structure together;
e.g., cell structure of biological tissue, crystal-
lattice structure, geographic/geological pattern,
economic/political regional equilibrium, and grav-
ity /electronic/magnetic field. There are several
variations of Voronoi diagrams, and their geomet-
ric properties and computational complexities are

widely studied [2, 3, 4]. A common feature of those
variations of Voronoi diagram is that they give par-
titions of space into regions (called Vorono: cells)
each of which is the dominating region of an input
point/object.

However, we sometimes observe in the nature
a geometric structure in which the union of cells
has a nonempty complement region (called neutral
zone in this paper) in the plane. We can regard
such a structure as a result of growth process in
which the growth terminates before the cell bound-
aries meet each other, and the termination is due
to some non-contact action of other regions. In
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this paper, we propose Voronoi diagram with neu-
tral zone (N-Voronoi diagram in short) to model
such a structure.

Fig. 1 shows an N-Voronoi diagram of seven
points, where six points among them form a regu-
lar hexagon and the remaining point is located at
the center of the hexagon. Note that none of the
points has infinite Voronoi region.

Figure 1: A “flower” obtained as an N-Voronoi Di-
agram.

We can explain the idea of defining an N-Voronoi
diagram by using the following story on equilib-
rium in the “age of wars”. Suppose that there are
n kingdoms that are hostile to each other. Each
kingdom has a territory around its castle (the po-
sition of the castle is given), and if its territory
is attacked by another kingdom, a troop departs
the castle to intercept. We assume that the in-
terception succeeds if and only if the troop arrives
the attacking point on the border of the territory
earlier than the enemy. However, an attacker can
confidentially move his troop inside his territory,
and the defense is only able to start when the at-
tacker departs from a point on the boundary of the
attacker’s territory. '

Naturally, if there is no neutral zone, there al-
ways exist two kingdoms sharing border, and peace

never comes. Our N-Voronoi diagram is a configu-
ration to give an equilibrium so that every kingdom
can guard the territory and no kingdom can grow
without risk of invasion by other kingdoms. We
prove existence and uniqueness of such an equilib-
rium for two points, and discuss the properties of
curves defining the N-Voronoi diagram. We also
discuss existence and give an algorithm for comp-
tuting an N-Voronoi diagram of n points in a plane
approximately.

2 Definition of Voronoi diagram
with neutral zone

Given a set X C R? and a point p € R%, we define
the dominance region domq(p, X) of p with respect
to X as the set of all points that are (non-strictly)
closer to p than X. That is,

. dom(p, X) = {z € R¢ : d(z,p) < d(z, X)},

where d(-,-) denotes the Euclidean distance.

We are given a set S = {p;.pa2.... .pn} of n
points in the space. A set {Ry, Ra,... , Ry} of re-
gions is called a Voronoi diagram with neutral zone
(N-Voronoi diagram) of S if R; = dom(p;,U;j%;R;)
foreachi=1,2,... ,n. R; is the N-Voronoi region
of p;, and denoted by Vor(p;).

Since an N-Voronoi region R; is represented as
an intersection of halfspaces Ngeu; R, dom(p;, q), it
is a convex set. They are clearly mutually disjoint.
However, although we define an N-Voronoi diagram
as above, neither its existence nor uniqueness is
obvious.

From now on, we focus on the case where d = 2;
that is, N-Voronoi diagram in the Euclidean plane.

3 N-Voronoi diagram of two
points

Let us ‘consider the case where S has only two
points. Even this case is nontrivial, and has an
interesting motivation [1]; namely, the problem to

draw equally-spaced curves between two points.



Here, equally-spaced means that a curve is the bi-
sector of its adjacent two curves (the input points
are also considered as curves). This problem occurs
in VLSI layout (personal communication with Dr.
Hiroshi Murata, Kitakyusyu University ), and if we
draw only one curve, it is the perpendicular bisec-
tor line to give the ordinary Voronoi diagram. We
can also draw three equally spaced curves, where
the center curve is the perpendicular bisector and
each of the other two curves is the bisector parabola
of a point and the center curve. However, if we
want to draw two equally spaced curves, we have
difficulty. Indeed, the problem of drawing of two
such curves is equivalent to the construction of the
N-Voronoi diagram on two points.

We use capital letters for representing planar
points in this section, since it is common in elemen-
tary Euclidean geometry. Suppose that two points
are located at P = (0,1) and @ = (0, —1). A curve
defined by a continuous function y = f(x) is de-
noted by C(f). C*(f) and C~(f) are the regions
defined by y > f(z) and y < f(z), respectively.
For a pair of curves y = f(z) and y = g(z), we
write f > g if f(z) > g(z) for any z.

Theorem 3.1 There exists a curve C(f) : y =
f(z) satisfying that C(f) is the bisector of P and
C(—f), and simultaneously C(—f) is the bisector

of Q and C(f).

We prove the existence of such an f by a con-
structive method. We define y = fi(x) to be the
z-axis and y = g¢1(z) to be the bisector of z-axis
and (0.1). We consider functions y = fi(z) and
y = gi(x) for i = 2.3... such that f;(z) is de-
fined as the bisector of y = —g;_1(z) and the
point P = (0,1), while g;(z) is the bisector of
y = —fi—1(z) and P. See Figure 2.

Lemma 3.2 (Monotonicity) ¢, > fi , fi >
fi-1, and g; < gi—1.

Proof Routine. O

@ P=(0.1)

_ Ty

y=-£.,(x)

= -g.i(x)

Figure 2: Curves in the iterative construction.

Lemma 3.3 (Tangent lines) y = fi(z) and y =
9i(z) are conver functions. Moreover, a tangent
line to C(f;) is given as the perpendicular bisector
of P and the nearest point A on C(—g;—1) from the
point to the tangent point T (see Figure 3). Anal-
ogous statement holds for a tangent line to C(g;).

Proof Since C(f;) is the bisecting curve of
C(—gi-1) and P, d(A,T) = d(T, P). Let us con-
sider the perpendicular bisector ¢ of P and A.
Consider any point B on ¢. Then, d(B,P) =
d(B,A) > d(B.C(gi-1). Thus, B is below or on
the bisector curve C(f;) of C(—g;—1) and P; that
is, B € C7(f;) UC(f;). This means that ¢ is the
tangent line. This also implies convexity. O

From the convexity. it is clear that f;(z) and
9i(x) are nondecreasing in the range z > 0.

Lemma 3.4 The functions fi(z) and g;(x) are dif-
ferentiable.

Proof We prove by induction on i. The func-
tions fi(z) and g;(z) are clearly differentiable. We
assume that g;_; is differentiable, and show that
fi(z) is differentiable. "It suffices to consider the
curves in the range z > 0, since the curves are
symmetric about y-axis.
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6.p=(0.1)

y=fi(x)

/ ".
; y=-fi.1(x)

/;;\(‘g“(x)

Figure 3: Tangent lines to the curves are bisectors.

Since y = —g;—1(x) is continuous, differentiable,
and concave, the angle 6(z) of the normal vector
of C(—gi—1(z)) is continuous and decreasing. Let
{(z) be the corresponding halfline normal to the
tangent line at (z, g;—1(z)) emanated from the tan-
gent point towards C*(—g;—1(z)). Then. no pair of
halflines cross each other. Thus, if we define B(x)
to be the nearest point on C(—g;—1(z)) from the
point- (z, fi(z)), the z-value of B(x) is increasing
and continuous. Thus, because of differentiability
of g;—1(z), the angle of the perpendicular bisec-
tor of B(z) and P is continuous. This means that
y = fi(z) is differentiable. (]

We denote the differential of f(z) by f'(z).
Lemma 3.5 Ifz > 0, gi(z) > f/(z).

Proof We prove by induction on i. See Figure 4
to get intuition. We can assume that g/_;(z) >
f!_1(z). Now, suppose on the contrary that there
exists points A = (g, fi(zo)) and B = (xo, g:(z0))
such that f/(zo) > gi(zo). Let C be the nearest
point on C(--g;—1) from A and let D be the nearest
point on C(—fi—1) from B. We claim that the
point D is located in the right halfplane of the line
PC. This means that the line PD has a largér

slope than PC, and hence perpendicular bisector
of PD has a larger slope than that of PC. Thus,
the tangent at B to C(g;) has a larger slope than
that to C(f;) at A.

Suppose that the claim is false, and D is on the
left of the line PC. The slope of PB is larger than
that of PA, and because of convexity the slope of
DB is larger than that of CA. This means that
the perpendicular bisector of PD has a larger slope
than that of PC. Thus, the tangent at B is steeper
than that at A, and contradicts to our assumption
that f/(z0) 2 g!(z0). O

y=f(x)

y=-f,(x)

= -gi.(x)

Figure 4: Comparison of tangent slopes.

Lemma 3.6 Ifz >0, gj(z) < g/_,(z) and f/(z) >
fio1(@).

Proof The argument is same as the one in the
previous lemma. a

Lemma 3.7 Consider an interval [—c,c] of x for
any fized constant ¢ > 0. Then, the series of
functions (g;)i=12,.. and (f;)i=12,... uniformly con-
verges to continuous functions g{z) and f(z) in
this interval.

Proof We show the uniform convergence of
(gi)i=12. ., since that for (f;)i=1,2, . is analogously



proven. Since g;(z) = (x% + 1)/2, it follows from
Lemma 3.2 that g;(z) < g1(c) = (2 +1)/2, thus it
is uniformly bounded. Moreover, from Lemma 3.6
and the convexity, |gi(z)] < g¢i(¢) = ¢ Thus,
we have Lipschitz condition with the uniform con-
stant c¢." Although the rest of the proof is routine
(Ascoli-Arzela’s theorem [5] Th.9.8), we will give
it for reader’s convenience. For any given constant
¢ > 0, we should show that there exists a natural
number N such that |g;(x) — g;(z)| < € for any
i>j > N for any z € [—c,c]. We take dee™! +1
values —¢ = p; < p2 < ... < pym = cin [—¢,(]
such that they subdivide the interval evenly into
subintervals of length ec™!/4. In each point z in
a subinterval [pg, pr+1], 19i(x) — gi(pk)| < €/4 be-
cause of the Liphshitz condition. For each point py,
because of monotonicity and boundedness, there is
Ni > 0 such that |g;(pk) — 9;(pk)| < €/2 for any
i>j > Np. Weset N = max;<k<m Nk to have
our assertion. a

Now, in order to prove the theorem, it suffices to
show that g(z) = f(z). Clearly, the curve C(g) is
the bisector of P and C(—f), whereas C(f) is the
bisector of @ and C(—g).

We can assume that c is sufficiently large such
that g(c) > 1. Let us consider a satisfying g(a) =
1, and consider the interval [0,a]. We first show
that f(z) = g(z) in [0,a]. Then, by using the bi-
section property, symmetry and convexity, we will
show g(z) = f(z) in the wider interval [—c, ¢|.

Lemma 3.8 g(z) = f(z) in the subinterval [0,a).

Proof

Figure 5 illustrates the idea of the proof. It is
clear that g(z) > f(z). Since gi(z) > fl(z) > 0
in (0. a], gi(z) — fi(z) is nondecreasing, and hence,
g(z) — f(z) is nondecreasing in the interval [0, a].

Now, assume that A = (a,g(a)) and A’ =
(a. f(a)) are different. Let the nearest point from
Aony = —f(z) be B=(b—f(b)). We can see
that b < a, since the line AB must be normal to

the decreasing curve y = —f(z). Since C(g) is

the bisector of P and C(—f), PA = AB. Since
f(a) < g(a) =1, PA' > PA. Now, draw a parallel
(and same length) segment £ to AB from A’. Be-
cause of nondecreasing property of g(z) — f(z), £
intersects the curve y = —g(z). This means that
the distance ¢ between A’ and the curve y = —g(z)
is at most AB, while § = PA’ > PA = AB. This
is contradiction. 0

Figure 5: Distance from A’ becomes shorter than
the length of ¢

Proposition 3.9 f(z) = g(x).

Proof f(z) (resp. g(z)) is the bisector of —g(z)
(resp. —f(z)) and P. We have already shown that
f(z) = g(z) on [0,a]. Let a; be the supremum of
values b such that the z-coordinate of the point
on C(—g) nearest to (b, f(b)) lies in [0,a]. Then,
clearly f(z) = g(z) on [0,a1]. The line through
(a, —f(a)) and (a1, f(a;) must be normal to y =
—f(z). and let p > 0 be the slope of the line.
Now, assume that f(z) = g(z) on [0, q;] for an
a; > a1. Then we claim that f(z) = g(z) on [0,a; +
2p‘1]. If we define a;41 = a; + 2p_1, the sequence
ai (i=1,2,... ) is increasing and tends to infinity.
Thus, we have f(z) = g(z) if the above claim holds.
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For proving the claim, it suffices that the z-value
of the nearest point T' = (zr,yr) on C(—g(z))
from S = (zs,ys) = (a; + p, f(a; + p)) is in [0, a;).
Clearly, zr > a, thus the slope of the line ST is

smaller than p, because of concavity of y = —g(z).
Now, ys — yr > 1 — (—1) = 2 sincé a; > a. Thus,
zg —zp > 2p7 L. m|

Now we have proven existence of regions satisfy-
ing the condition of Voronoi diagram with neutral
zone; indeed, they are C*(f) and C~(—f). More-
over, we have the uniqueness as follows:

Corollary 3.10 For any given pair of points in
the plane, the Voronoi diagram with neutral zone
uniquely ezists.

Proof Since the statement is invariant under rota-
tion, translation and scaling, we can assume that
the points are P = (0,1) and @ = (0,—1). Let
Vor(P) be the neutral-Voronoi region for P. We
can prove by induction that C*(g;) C Vor(P) C
C*(f;) for each i = 1,2,.... Thus, C*(g) C
Vor(P) C C*(f), and hence Vor(P) = C*(f).
a

3.1 Behavior at infinity

For every point (z,f(z)) on C(f), let
(t(z),—f(t(z)) be the unique nearest point
on C(—f). By definition, the distance between
(z, f(z)) and (t(z), — f(t(z)) equals to the distance
between (z, f(z)) and P = (0,1). Thus,

(tx) — &) + (f(t(2)) + f(2)? = 2 + (f(x) — 1)*.
(1)

and since (¢(z), —f(t(z)) is the nearest point,
t(z) -z + (f(z) + f(t(@)f (t(x)) = 0. (2)

where f’ is derivative of f. It is easy to see that
f'(t(z)) is nondecreasing. Furthermore, we have
the following:

Lemma 3.11 f'(t(z)) < 1.

Proof Suppose on the contrary that f'(t(a)) > 1
for a value a > 0. Since C(f) is convex, f'(a) > 1.
On the other hand, the slope of the line segment
s connecting A = (a, f(a)) and T = (t(a), f(t(a))
is less than 1, since it is normal of C(—f) at T.
Thus, s lies above C(f) in the neighbor of A, and
intersect with C(f) at a point B = (b, f(b)) for
an b < a. It is easy to observe that PB > TB
contradicting the definition of f. d

Since both of functions ¢t and f’ are nonde-
creasing, f'(t(z)) converges, and also we have
limg o f'(z) > 1. Thus, two possible cases can
be considered for the behavior of f at  — oo.
Case 1: limy_o f'(z) = 1 and f(z) = = ~ ox),
or Case 2: lim;_,o f'(z) > 1, t(z) converges to a
constant ¢, and C(f) approaches from above to the
perpendicular bisector of P and (¢, —f(c)). We do
not know which is the correct one currently.

4 General case

We can characterize the N-Voronoi diagram of a
given set S as a fixed point of an operator. Let R
be the set of all n-tupples R = (R, Ra,... . Rp)
of sets with p; € R;. We define a partial order <
on R by component wise inclusion. We define an
operator D : R — R; the i-th component of D(R)
is the dominance region of p; with respect to the
set UjzRj. We let Fiz(D) = {R € R,D(R) =
R}. denote the set of all fixed points of D. By
definition, R is an N-Voronoi diagram of S if and
only if it is an element in Fiz(D).

Theorem 4.1 For any point set S, Fiz(D) # 0.

The proof of the above theorem uses the follow-
ing well-known theorem in functional analysis (See
(6] Th.3.3), which is an infinite-dimensional version
of the famous Brauer’s fixed point theorem.

Theorem 4.2 (Schauder’s fixed point theorem)

Let Z be a Banach space and let K C Z be a

nonempty, compact, and conver set. Then, any



continuous operator ' : K — K has at least one
fized point.

We represents R as a set of radial functions, in-
troduce a measure in the set R, and define a convex
set K to apply the above theorem. We omit it in
this version.

We note that the uniqueness of the fixed point is
not obtained from Shauder’s fixed point theorem,
although we believe that N-Voronoi diagram for a
given point set is unique.

5 Algorithms

Even for the two-point case, the bisector y = f(z)
seems to be a non-rational function. Thus, it seems
to be hard to compute the N-Voronoi diagram pre-
cisely in an algebraic model. Thus, we compute
an approximate N-Voronoi diagram, where we fix
a small constant ¢ > 0 and compute a family
of convex regions R; (¢ = 1,2,...,n) such that
1- E)d(.’E,U]';é;‘RJ‘) < d(z,p;) < d(III,U]'¢iR]') for
every point z on the boundary of R;.

5.1 Iterative Construction Scheme

We use the operator D defined in the previous sec-
tion. Starting from PO = § = {p;.pa,... ,pn},
we define P*+1) = D(P*). Note that P() is the
ordinary Voronoi diagram. We have

PP < P2 < ... <R<= <P < Pif
N-Voronoi diagram R exists. Thus, if we find
k such that (1 — e)d(a:,u#,»Rfk)) < d(z,p) <
d(z, U]-#,RJ(-%)) for each 1 = 1,2,...n, we can out-
put P(k) = {RE%), Rg%). ... R%*} as an approxi-
mate N-Voronoi diagram of S.

If the distances d(p;,p;) between input points
satisfies that ed(p;, p;)/6 is sufficiently larger than
the precision for computing nearest distance of
curves considered in our algorithm, we can check
the above termination condition if P(¥) converges
to the real N-Voronoi diagram.

-

-9

Figure 6 shows P° (input points), P! (ordinary
Voronoi diagram), and P? together with the output
N-Voronoi diagram (drawn by using bold lines).

Figure 6: An approximate N-Voronoi diagram and
some curves generated during runtime of our algo-
rithm.

5.2 Difficulty on designing efficient al-
gorithms

For an ordinary Voronoi diagram on n sites, if we
draw bisectors between all pairs of input sites in-
dependently, the skeleton (i.e., union of boundary
polygonal curves of regions) of the Voronoi dia-
gram is a subset of the union of bisectors. This
feature holds for almost all variants of Voronoi dia-
grams, such as furthest neighbor Voronoi diagram,
Voronoi diagrams of lines and convex objects, and
the power diagram. This enables to design O(n?)
time algorithm for constructing those Voronoi di-
agrams provided that bisectors between two cites
can be computed in O(1) time.

Since we have investigated the two-point case
precisely, if we use the bisector computation of two-
points as a black box, it seems that we can also de-
sign an O(n?) time algorithm for the N-Voronoi
Unifortunately, this argu-
Fig. 7 shows

diagram on n points.
ment does not apply to our case.
an N-Voronoi diagram of three points to give us a
counterexample.

7_
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Suppose on the contrary the argument above
can be correctly applied to this case. Let A be
the left site and B and C be two sites in the
right (B is above C). Let Cap be are bound-
ing curves of N-Voronoi region of A in the two-
points set {A, B} without considering the third
point C. We analogously define Cga,Cpc etc.
The Voronoi region of V(A) should be equal to
V(A) = H(A,B) N H(A,C), where H(A, B) and
H(A,C) are regions bounded by the curve Cap
and Cac, respectively. In other words, H(A, B)
is the N-Voronoi region of A in the two-points set
{4, B}.

Let P be the rightmost point on the boundary
of V(A). It must have images one on Cp4 and
the other on Cc4. Since it is on Cpgy4, the nearest
point Q on Cpy satisfies that d(A4, P) = d(P,Q).
Now, if the above argument holds, @ must be
on the boundary of the N-Voronoi region V(B)
or V(C) in the three-points set. However, in
the configuration of the figure, @ is in the region
(H(B,A)UH(C,A))\ (V(B)UV(C)) to give con-
tradiction. Indeed, the boundary curve of V(A) is
piecewise linear in a neighborhood of its rightmost
point, and V(A) is strictly larger than V(A).

Figure 7: N-Voronoi Diagram with non-pairwise
effect.

6 Concluding Remarks

There are several open problems: Uniqueness and
a constructive proof for the existence of N-Voronoi
diagrams, analysis of convergence of algorithms.
time complexity analysis in terms of dependence on
n, and extension to N-Voronoi diagrams of general
objects. Also, the n-equally spaced curve problem
has been only solved for the case n = 1,2, and 3.
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