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概 要

本報告では，アドホック・ワイヤレスネットワークにおいて未知の位置に配置されたホストにメッセー
ジを送信する，エネルギー効率の良いオンラインプロトコルの設計について考える．まずこの問題を幾
つかの形に定式化したのち，それぞれについて競合比が最適となるオンラインプロトコルを提案する．
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Abstract

The paper considers the design of energy-efficient online protocols for the basic problem of message

transmission to hosts positioned at unknown distances in ad-hoc wireless networks. The paper formulates a

number of variants of this problem and presents optimally competitive algorithms for those variants.

1 Introduction

1.1 Background

We consider problems related to the design of

energy-efficient online message broadcasting pro-

tocols in ad-hoc wireless networks. Recent devel-

opments in portable wireless devices with limited

power resources have led to considerable interest

in problems involving the construction of energy-

efficient multicast trees in the network. Wireless

devices can control their transmission power in or-

der to save power consumption whenever the dis-

tance to the intended destination of the transmis-

sion is known. The attenuation of a signal with

power Ps is Pr = Ps

d(s,t)δ , where d(s, t) is the dis-

tance between hosts s and t, and δ ≥ 1 is the

distance-power gradient [3]. A message can be

successfully decoded if Pr is no less than a con-

stant γ. Therefore the transmission range of a

host s, namely, the maximum distance to which

a message can be successfully delivered from s, is

(Ps/γ)1/δ. Power control also has a positive effect

on reducing the number of transmission collisions

between nearby senders.

The problem studied here concerns a single

sender which has to transmit a message to a given

collection of receivers in an online setting, namely,

when the hosts do not know each other’s locations.

The goal is to specify a protocol for the sender al-

lowing it to directly broadcast the message to the

recipients and receive acknowledgements, while

minimizing the total transmission costs. By di-

rect broadcast we mean that the sender is required
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to transmit the message itself to every recipient,

namely, multi-hop delivery is not allowed. This

restriction may be relevant in situations when the

battery resources of the receivers is severely lim-

ited and it is desired to minimize their transmis-

sions, or when when the reliability of the hosts

is uncertain and only direct messages from the

source can be trusted.

1.2 Contributions

Using varying levels of transmission power is

important for energy-efficient communication. As

far as the authors are aware, there has been no

online algorithms with provable worst-case guar-

antees for energy-efficient broadcasting in ad-hoc

wireless networks.

The protocols proposed in this paper are based

on computing or estimating the distances from the

sender host to the receiver hosts in an energy-

efficient way. The most basic case is that of a

single sender and a single receiver. The generic

doubling protocol employed by the sender is based

on repeatedly transmitting the messages to in-

creasingly larger distances, until reaching the re-

ceiver. The behavior of this protocol depends on

the choice of the sequence of distances, and the

problem is to determine them so as to minimize

the overall power consumption. If a specific prob-

ability distribution may be assumed on the hosts,

the algorithm can be optimized [4]. This paper,

however, assumes an online setting in which no a

priori information is given about the distance from

the sender to the receiver. Therefore the worst-

case scenario should be considered. This motiva-

tion leads us to apply a competitive analysis to

the algorithm (cf. [2]). We compare the power

consumption of an algorithm with that of the op-

timal (infeasible) offline algorithm that knows the

distance d. We show that the optimal competitive

ratio for this problem is 3/2+
√

2, i.e., there exists

an online algorithm for the problem with this com-

petitive ratio, and no online algorithm has smaller

competitive ratio. The problem is somewhat sim-

ilar to the famous cow path online problem [1],

but setting the parameter of the algorithm is not

obvious.

Furthermore, we study the generalization of this

problem where there is more than one receiver.

This is a propoer extension of the cow path prob-

lem. For this problem we also propose a com-

petitive online algorithm and prove its optimality.

Interestingly, the competitive ratio of the general-

ized problem is the same, namely, 3/2 +
√

2. The

algorithm and its analysis appear in Section 4.

The rest of the paper is organized as follows. In

Section 1.3 we discuss the model employed in the

paper. Section 2 formally presents our problems

and algorithms. Section 3 establishes the compet-

itive ratio for the single receiver case. In Section 4

we propose algorithms for multiple receiver case.

1.3 Model

The model considered in this paper is the fol-

lowing. Each host has a unique id and a global

clock, and they can schedule their transmission

time in a collision-free manner. Messages are al-

ways delivered correctly to the destination. Below

we justify our rational for using this model, and

particularly the assumptions of synchronous com-

munication and failure-freedom.

Let us first discuss our assumption of a syn-

chronous communication model. Note that this

model is a reasonable approximation under some

natural timing assumptions and assuming the

availability of time-out mechanisms. The prob-

lem can also be considered in the alternative asyn-

chronous communication model, in which no as-

sumptions are made concerning the timing and

operation rates of the participants. However, in

this model there is no way to limit the number

of times that collisions occur between messages

sent by receivers. As a result, no online algorithm

can achieve a constant competitive ratio. In con-

trast, in a synchronous model it is possible to use
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the global clock in order to schedule the hosts in

a collision-free manner as follows. Assume that

each host has a unique id. Without loss of gen-

erality assume also that the sender has id 1 and

the receivers have id’s 2 to n. Suppose that the

sender broadcasts a message at time t + 1. Then

each receiver with id i sends an acknowledgment

at time t+i if it receives the message. Because the

sender knows which receivers have sent acknowl-

edgements, in the next round the sender can send

the list of id’s of receivers that have received the

message in the last round. Each receiver can now

determine the time to send an acknowledgment to

advance the completion time by using only that

information. As our criterion is to minimize the

total power consumption, and time efficiency is

ignored, this scheduling is sufficient. Clearly, if

the problem requires optimizing both the power

consumption and the delivery (completion) time,

then other schedulings should be considered.

Similarly, our focus on the failure-free model

(where messages are always delivered correctly to

the destinations) stems from the fact that in a

model allowing arbitrary message loss, the worst

case competitive ratio cannot be bounded. The

development of suitable models for studying fault-

tolerant variants of the problem is left for future

research.

2 Problems and algorithms

The generic protocol employed by the sender s

in the case of a single receiver t is given in the

following procedure.

Procedure SendMessage(t,msg)

1: i ← 1; f ← true

2: while f do

3: Transmit 〈msg, pi〉 with power pi.

4: Wait.

5: if received acknowledgment from t then

6: f ← false;

7: end if

8: i ← i + 1;

9: end while

The algorithm is illustrated in Figure 1.

Clearly, the behavior of any algorithm for the

sender can be specified as a sequence of increas-

ing power costs {pi}, for i = 1, 2, . . ., and hence

its performance depends on the choice of this se-

quence. An algorithm A succeeds on the first

step J such that (pJ/γ)1/δ ≥ d. For lack of

distance information, the receiver will rely on

the information contained in the received mes-

sage and transmit its acknowledgement with the

same power. The cost of algorithm A is thus

cost(A) =
∑J

i=1 pi + pJ where the second term is

for the acknowledgment. Therefore the problem

is to determine this sequence so that the overall

power consumption is minimized.

s

t

3 751

8

図 1: Illustration of the doubling algorithm. Numbers represent transmission times, with the transmission

range doubled by the sender s at each round until reaching the receiver t.
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We assume an online setting in which no a priori

information is given about the distance from s to

t, and a worst-case scenario should be considered.

We compare the power consumption of an algo-

rithm with that of the optimal offline algorithm

that knows the distance d. This offline algorithm

sets pi = γdδ; then it terminates at the first step

and its energy consumption is minimized, hence

its cost is cost∗ = 2γdδ. Of course this is impossi-

ble to achieve online in the absence of knowledge

on the distances, and our aim is to reduce the cost

of our algorithm as much as possible. The prob-

lem is formalized as follows.

Problem Broadcast+Ack-2 (BA2): There is

a sender s and a receiver t at distance d ≥ 1,

which is unknown. The sender runs an algorithm

A to send the message. Once it is delivered, the

receiver should return an acknowledgment. The

goal is to minimize the total power consumption

for the sender and the receiver.

Competitiveness: The competitive ratio of algo-

rithm A is ρ(A) = sup{cost(A)/cost∗} where the

supremum is taken over all inputs.

The problem studied in this paper is to deter-

mine the sequence {pi} that minimizes the com-

petitive ratio. For this problem, we use the fol-

lowing simple algorithm.

Theorem 2.1 The optimal competitive ratio for

problem BA2 is ρ = 3
2+

√
2, i.e., for problem BA2,

there exists an online algorithm whose competi-

tive ratio is ρ, while there is no online algorithm

whose competitive ratio is smaller than ρ.

The proof is given in Section 3.

Furthermore, the following generalization of

problem 1 (BA2) is a propoer extension of the cow

path problem where we consider the case there is

more than one receiver.

Problem Broadcast+Ack-n (BAn): There are

n hosts in the region, including a sender s and n−1

receivers r1, . . . , rn−1 at different distances from

s. The input can be specified as a configuration

〈n̄, d̄〉 where n̄ = (n1, . . . , nk), d̄ = (d1, . . . , dk),

∑k
i=1 ni = n − 1 and di < di+1 for 1 ≤ i ≤ k. In

this configuration, the n−1 receivers are organized

so that there are ni receivers at distance di from

s, for 1 ≤ i ≤ k. The sender knows n, but does

not know the groupings nor the distances. The

sender should broadcast a message to all the re-

ceivers and get acknowledgments from all of them.

The goal is to minimize the total power consump-

tion for the sender and the receivers.

For this problem we also propose an online al-

gorithm of optimal competitive ratio.

Theorem 2.2 For problem BAn, there exists an

online algorithm with competitive ratio 3
2 +

√
2,

and there is no online algorithm with competitive

ratio smaller than 3
2 +

√
2.

The algorithm and its analysis appear in Sec-

tion 4.

3 Proof for single receiver

case

In this section we prove Theorem 2.1. First we

show an upper bound of the competitive ratio of

algorithm DA[β].

Proposition 3.1 The doubling algorithm DA[β]

achieves the competitive ratio β(2β−1)
2(β−1) for the

problem BA2. ut

Proof: Let d denote the distance between the

sender s and the receiver t. If the algorithm

DA[β] terminates at step J , then necessarily

(βJ−1/γ)1/δ < d ≤ (βJ/γ)1/δ. The cost of DA[β]

is
J∑

i=0

γβi + γβJ =
γ(βJ+1 − 1)

β − 1
+ γβJ ,

while the optimal cost is at least 2γβJ−1. Hence

the competitive ratio is at most β(2β−1)
2(β−1) . ut

By letting β = 1 + 1√
2
, the competitive ratio is

at most 3
2 +

√
2. We now show Theorem 2.1 which

gives a lower bound of the competitive ratio.
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Proof of Theorem 2.1: Proposition 3.1 guar-

antees the existence of an online algorithm whose

competitive ratio is 3
2 +

√
2. Thus, we now con-

centrate on showing that a lower bound on the

competitive ratio for problem BA2 is 3
2 +

√
2.

Let us consider an online algorithm A∗ which

achieves the optimal competitive ratio c ≤ 3
2 +

√
2.

The output sequence of algorithm A∗ (namely,

the sequence of transmission powers used by the

sender) is denoted by x1, x2, . . .. Note that for

any integer n ≥ 2, one must consider a sce-

nario where the receiver t is positioned at dis-

tance xn−1 + ε from the sender s, for an arbitrar-

ily small ε. On such scenario, the optimal cost is

2xn−1 +2ε, whereas the online algorithm incurs a

cost of x1 + x2 + · · ·+ xn−1 + xn + xn. Therefore,

by the definition of the competitive ratio, we have

the inequalities

x1 + · · · + xn−1 + xn + xn ≤ 2c(xn−1 + ε) (1)

for any integer n ≥ 2 and for arbitrarily small

ε > 0. Since A ≤ B + ε for every ε > 0 implies

A ≤ B, we have from inequality (1) that

n−1∑

i=1

xi + 2xn ≤ 2cxn−1 (2)

for any integer n ≥ 2. These inequalities yield

new necessary conditions as follows. First, taking

(2) with n = 2 we have

x2 ≤
(

c − 1

2

)
x1, (3)

By (3) and using (2) with n = 3, we similarly have

2cx2 ≥ x1 + x2 + 2x3 ≥ 2

2c − 1
x2 + x2 + 2x3,

that is,

x3 ≤
(

c − 1

2
− 1

2c − 1

)
x2.

Repeating this argument, we get the inequalities

xi+1 ≤ αixi, (4)

with the coefficients αi defined as

αi = c − µi

2
(5)

where

µi =

{
1, if i = 1,

µi−1/αi−1 + 1, if i ≥ 2.

Equation (5) can be simplified as

αi = c +
1

2
− c

αi−1
, (6)

for any integer i ≥ 2. Note that αi > 1 holds for

any integer i by (4) and xi ≤ xi+1.

We now show that this αi is a Cauchy sequence,

namely, αi+1

αi
≤ 1. Indeed,

αi+1

αi
− 1 =

1

αi

(
c +

1

2
− c

αi

)
− 1

= −c

(
1

αi
−

c − 1
2

2c

)2

+
(c − 1

2 )2 − 4c

4c
.

Recall that c ≥ 1 and c ≤ 3
2 +

√
2, by the prop-

erty of the competitive ratio and Proposition 4.1,

respectively. In this range, (c− 1
2 )2 − 4c ≤ 0, thus

αi+1

αi
≤ 1, and αi is a Cauchy sequence. Therefore,

αi converges to some value α, which by (6) must

satisfy

α = c +
1

2
− c

α

and its discriminant satisfies

D =

(
c +

1

2

)2

− 4c

=

(
c − 3

2
−

√
2

)(
c − 3

2
+

√
2

)
≥ 0.

As c ≥ 1, the right term in the product is posi-

tive. Hence the left term must also be positive,

implying c ≥ 3
2 +

√
2 and thus yielding the desired

lower bound on the competitive ratio. ut

4 Handling multiple re-

ceivers

In this section we consider the case the sender

must send the message to more than one receiver.
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4.1 Equal distance receivers

First we consider the easier special case where

all the receivers are at the same distance from the

sender. That distance is unknown to the partici-

pants.

Problem Uniform-Broadcast+Ack-n:

(UBAn): There are n hosts in the area, of which

one is the sender, s, and the other n − 1 are re-

ceivers, r1, . . . , rn−1. The receivers are all at the

same distance d from the sender, but the sender

does not know this distance. The sender should

broadcast a message to all the receivers and get

acknowledgments from all of them. The goal is

to minimize the total power consumption for the

sender and the receivers.

Note that this problem is identical to problem

BA2 if n = 2. For this problem we claim that the

doubling algorithm has optimal competitive ratio.

Proposition 4.1 For problem UBAn, fixing β =

1 + 1√
n
, the competitive ratio of Algorithm DA[β]

is at most 1 + 2√
n

+ 1
n .

The proof is similar to that of Proposition 3.1.

We now show an asymptotically matching lower

bound.

Proposition 4.2 For problem UBAn, there is

no algorithm with competitive ratio smaller than

1 + 2√
n

+ 1
n .

Proof: The proof of Theorem 2.1 can be easily

extended to the general case. Similar to inequali-

ties (4) and (5), albeit with different α, we have:

xi+1 < αixi

where

α1 = c − 1

n
,

αi = c − 1

n
+ 1 − c

αi−1
,

for any integer i ≥ 2. The sequence αi is again a

Cauchy sequence because c ≥ 1 and c ≤ 1+ 1
n + 2√

n

hold by the property of the competitive ratio and

Proposition 4.2, respectively. Thus we have

α = c − 1

n
+ 1 − c

α
,

which implies c ≥ 1 + 1
n + 2√

n
. ut

4.2 Variable distance receivers

Next we consider the general Problem BAn as

stated in Section 1, where the n − 1 receivers are

placed at different distances from the sender. If

the configuration 〈n̄, d̄〉 is known to all the hosts,

then the solution is trivial (the sender transmits

once, reaching all the receivers, and each receiver

transmits its acknowledgement using the minimal

power required). However, in case the configura-

tion is known only to the sender (but not to the

other hosts), computing the optimal cost is not

obvious. Nevertheless, it can be computed as fol-

lows.

Proposition 4.3 In case the configuration 〈n̄, d̄〉
is known to the sender, the optimal cost for prob-

lem BAn can be computed in linear time.

Proof: Given a configuration 〈n̄, d̄〉, we can re-

strict the distances chosen by the sender s for mes-

sage transmission to the set {d1, . . . , dk}, i.e., the

transmission powers can be specified from among

pi = γdδ
i for i = 1, . . . , k. The schedule of s’s

broadcast can be represented as an ordered set Y

of indices corresponding to the distance to which

the sender s transmits the message. For exam-

ple, using the schedule Y = {1, 3, 6}, the sender

s transmits the messages to distances d1, d3 and

d6. Given a schedule Y , for each 1 ≤ i ≤ k, the ni

receivers at distance di from s will receive the mes-

sage for the first time on round m(i, Y ) = min{j |
j ≥ i, j ∈ Y }, and thus use power pm(i,Y ) for the

acknowledgement. Hence for any schedule Y , the

total cost of broadcast (including acknowledge-

ments) is cost(Y ) =
∑

i∈Y pi +
∑k

i=1 nipm(i,Y ).

Subsequently, the goal of this problem is to find a

schedule Y ∗ that minimizes cost(Y ∗).
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The computation is based on a recursive for-

mula for the cost function. Suppose that the

sender s transmits the messages to an l-th dis-

tance in the schedule Y for 〈n̄, d̄〉. Then the cost

function is expanded as

cost(Y ) =




∑

i∈Y

i≤l

pi +

l∑

i=1

nipm(i,Y )




+




∑

i∈Y

i>l

pi +
k∑

i=l+1

nipm(i,Y )


 .

Since the left and right parts in this equation

use disjoint index sets, we have

OPT (〈n̄, d̄〉) = min
l=1,...,k

{OPT (〈n̄, d̄〉(1,l))

+OPT (〈n̄, d̄〉(l+1,k))},

where 〈n̄, d̄〉(a,b) denotes 〈(na, . . . , nb), (da, . . . , db)〉
and OPT (〈n̄, d̄〉(a,b)) denotes the optimal energy

consumption for 〈n̄, d̄〉(a,b). Based on these obser-

vations, we can construct a dynamic programming

algorithm as follows. Denote the set of indices

from i to k by Si = {i, i + 1, . . . , k}. For every i,

we look for the schedule Yi which minimizes the

energy consumption for 〈n̄, d̄〉 over all schedules

Y ⊆ Si. Note that Yk = {k} and Y1 = Y ∗. One

can easily verify that

Yi =

{
Yi+1 ∪ {i}, if cost(Yi+1) > cost(Yi+1 ∪ {i})
Yi+1 otherwise,

which yields a dynamic programming algorithm

for solving static BAn in linear time. ut

It is easy to show the following.

Proposition 4.4 For problem BAn, there is no

algorithm with competitive ratio smaller than 3
2 +√

2.

Proof: Let us consider a scenario where n − 2

receivers are positioned near the sender and one

receiver is very far away. Then the optimal total

cost is dominated by the power required to trans-

mit the message to the farthest receiver and for

that receiver to transmit its acknowledgment. By

Proposition 4.2 for n = 2, 3
2 +

√
2 is also a lower

bound for BAn. ut

Next we consider an upper bound for the prob-

lem BAn. We propose the following algorithm.

Define the parameter βk = 1 + 1√
k

for every

k ≥ 2.

Algorithm 2(Dynamic Doubling Algorithm)

ProcedureDDA(n,msg)

p ← γ;

while n > 1 do

Transmit 〈msg, p〉 with power p.

Wait.

l ← #received acknowledgment packets;

n ← n − l;

p ← βnp;

end while

Note that each receiver sends exactly one ac-

knowledgment for a particular message msg.

To prove Theorem 2.2, we now show that Algo-

rithm DDA achieves a competitive ratio of 3
2 +

√
2

for problem BAn.

Proof of Theorem 2.2: A lower bound of 3
2+

√
2

is shown in Proposition 4.4. We show that Algo-

rithm DDA has the same competitive ratio. Let

p∗i (i = 1, 2, . . . , l) be a sequence of transmission

powers used the sender s in the optimal cost al-

gorithm. If a receiver ri receives the message, it

sends an acknowledgment with power p∗k where k

is the minimum index such that p∗k ≥ γd(s, ri)
δ.

Note that because a message from s is delivered to

multiple hosts the receivers do not know the exact

distance to the sender. Therefore the optimal cost

is identical to that of the following instance:

There are ni receivers at distance di

for i = 1, 2, . . . , l where di satisfies

p∗i = γdδ
i .

On the other hand, the cost of any online algo-

rithm for the original instance is at most the cost

for the new instance, it is enough to show the

claim for the latter instance. For this instance,

Algorithm DDA first uses β = 1 + 1√
n
. Then the

ratio of the cost to send to hosts with distance
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d1 to the optimal cost is at most β2/(β−1)+n1β
n1+1 .

From Proposition 4.1 this value is minimized if

β = 1 + 1√
ni

, and it is increasing as β decreases.

Therefore its maximum value is achieved if β =

1 + 1√
n
, and it is upper bounded by 1 + 2√

n
+ 1

n ,

which is no greater than 3
2 +

√
2.

Next Algorithm DDA uses β = 1+ 1√
n−n1

. Be-

cause the transmission power for the first step

is larger than γ, the maximum ratio is at most

1+ 2√
n−n1

+ 1
n−n1

, which is again no greater than
3
2 +

√
2. For the rest of the execution of the algo-

rithm we always have the maximum ratio smaller

than 3
2 +

√
2. ut

Problem BAn corresponds to the following prob-

lem:

Problem Weight-Broadcast+Ack-n

(WBAn): There are one sender and k receivers

r1, . . . , rk. The receivers are at different and un-

known distances from the sender, and ri needs

power niγdδ to send a message to a host with

distance d. The problem is to minimize the to-

tal power consumption for the sender and the

receivers. Therefore we can handle the case of

individual power consumption rates (i.e., where

each host has a multiplicative weight defining its

power consumption) in the same framework.

The competitive ratio can be further improved

if some information is known about the distances

of receivers.

Proposition 4.5 Consider problem BAn assum-

ing that the grouping vector n̄ is known in ad-

vance, while the distance vector d̄ is unknown.

In this setting, the competitive ratio of Algorithm

DDA is 1 + 2√
nk

+ 1
nk

.

Proof: Consider the scenario where the last nk

receivers are very far and all the other receivers

are positioned near the sender. The algorithm will

reach all the receivers except for the farthest group

and get their acks in one step, and from that point

on, it will behave like Algorithm DA[γnk
]. ut

5 Concluding remarks

Using multiple levels of transmission power is

important for energy-efficient and collision-free

communication. As far as the authors know,

there has been no online algorithms with provable

worst-case guarantees for energy-efficient broad-

casting in ad-hoc wireless networks. Our algo-

rithm for sending a message to a receiver with un-

known distance has the optimal competitive ratio
3
2 +

√
2. Our algorithms for broadcasting a mes-

sage to multiple receivers also have optimal com-

petitive ratio. Interestingly, the competitive ratio

of both problems are the same. We believe that

our algorithms can potentially be made practical

for actual wireless networking.
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