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概要 インターネット上の XML や HTML 文書等の半構造データの増大にともない、膨大な半構造データを

効率よく比較・照合するための手法や、複数の半構造データを統合するための手法が求められている。これまで

に半構造データのための様々な照合・結合手法が提案されているものの、これらの手法を統一的に記述するた

めのフレームワークが存在しなかった。そこで、本稿では、木の近似照合の意味論を木構造間のノード写像と

して定式化し、木構造間のノード写像が与えられたときに、その写像が属する近似照合のクラスを効率よく同

定するアルゴリズムを示す。このアルゴリズムは、クラスの同定過程で、2つの木構造が矛盾なく結合できるか

どうかを調べ、結合可能な場合は、実際に結合木を構成する。
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Abstract With the rapid growth of semistructured data such as XML and HTML documents on the Inter-

net, efficient methods for comparing, matching and integrating semistructured data are required. Although

there have been diversity of these methods recently, no comprehensive framework has been available. We

formulated a new framework of approximate tree matching in prior work. In this framework, the semantics of

approximate tree matching is defined as the conditions of node-to-node correspondences between two trees.

In this paper, we present two efficient algorithms for identifying a class of approximate tree matching from

the node-to-node correspondences. These algorithms provide methods for merging two trees based on the

node-to-node correspondences in the class identifying process if the two trees can be merged into one trees

consistently.

1. Introduction

A tree structure plays a significant role in the efficient

organization of information. In particular, the problem

of comparing tree structures emerges across a wide range

of applications in computational biology [1], image anal-

ysis [2], pattern recognition [3], natural language process-

ing, information extraction [4] from Web pages, and many

others.

Edit-based approaches provide a general framework in

comparing trees, measuring similarities, finding common

tree patterns, and merging trees. Tree edit distance [5], [6]

and alignment of trees [7] were both introduced as natu-

ral generalizations of string edit distance [8]. It is well
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known that alignment and edit are two equivalent no-

tions in strings [9], whereas both are completely different

in trees [7].

Although a dozen of tree edit methods have been pro-

posed [10] in various fields, no comprehensive mathemati-

cal analysis of these methods had been available. In prior

work [11], we have presented unifying semantics of ap-

proximate tree matching based on edit-based approaches.

This semantics is defined as the conditions of node-to-

node correspondences between two trees, called tree map-

pings. We have established the critical condition for

merging two trees based on tree mappings.

In this paper, we present an efficient algorithm for

identifying the tree mapping classes from tree mappings.

Moreover by the effect of the algorithm, we provide a

method for merging two trees.

In Section 2, we give basic notions on trees. In Sec-

tion 3, we review existing classes of approximate tree

matching based on the notion of tree mappings. In Sec-

tion 4, we show two algorithms for identifying classes of

tree mappings. In Section 5, we conclude this paper.

2. Preliminaries

In this section, we give some mathematical definitions

on trees.

Trees we consider in this paper are labeled rooted trees,

in which each node is labeled from a finite alphabet Σ.

An ordered tree is a tree in which the left-to-right order

among siblings is given. An unordered tree is a tree with

no order among siblings. We refer to unordered trees as

trees unless otherwise stated.

We denote by r(T ) the root of a tree T , and by T (x)

the maximum subtree of T rooted at a node x. An ances-

tor of a node is recursively defined as follows: an ancestor

of a node is either the node itself, or an ancestor of the

parent of the node.

We adopt a standard notation < to denote a strict

partial order, that is, for a non-empty finite set V , (1)

∀x, y, z ∈ V [x < y ∧ y < z ⇒ x < z], and (2)

∀x ∈ V [x 6< x]. We denote by x <= y that x < y or

x = y for all x, y ∈ V . We say that two elements x, y ∈ V

are comparable if x < y, x = y or y < x holds.

Definition 1. A rooted tree T = (V, <) is a nonempty,

finite, and strict partially ordered set with the maxi-

mum element r(T ) ∈ V called the root, and such that

{y ∈ V |x <= y} is a totally ordered set for every x ∈ V .

Unless otherwise stated, all trees we consider in this pa-

per are labeled, rooted and unordered trees. Although all

the definitions, propositions, lemmas and theorems stated

in this paper also hold for the ordered tree with no or

slight modification, this paper does not state all of them.

We call the elements of V the nodes of T , and denote

the set of all nodes in T by V (T ). An ancestor of x is

a node y such that x <= y. In particular, if x < y, then

y is called a proper ancestor. The parent of a node x

is the minimum node of the proper ancestors of x in T ,

and denoted by p(x). For a node x ∈ V (T ), we denote

by ch(x) the set of nodes {y ∈ V (T )|y < x and @z ∈
V (T ) such that y < z < x}, and refer to the elements of

ch(x) as the children of x. A leaf of a tree T is a minimal

node in V (T ).

We define the notion of least common ancestor as fol-

lows.

Definition 2. For any tree T = (V, <), a common ances-

tor of a set of nodes V ′⊂
=V is an element x ∈ V such that

y <= x for all y ∈ V ′. A common ancestor x of V ′ is the

least common ancestor of V ′ if, for any common ances-

tor x′ of V ′, x <= x′ holds. We denote the least common

ancestor of V ′ by lca(V ′), and lca({x, y}) by x‘y.

For a node x of a tree T = (V, <), we denote by T (x) the

subtree of T such that T (x) = (V ′, <T ′), V ′ = {y|y <= x},
and ∀x, y ∈ V ′[x < y ⇔ x <T (x) y].

3. Classes of Approximate Tree Match-

ing

In this section, we review a few important classes of ap-

proximate tree matching based on tree edit distance [10].

3. 1 Tree Mapping

The tree mapping is introduced by Tai [5] as a formu-

lation of edit distance for trees. We also refer to the tree

mapping as mapping if there is no confusion. A tree map-

ping depicts node-to-node correspondences between two

trees according to the structural similarity, or shows how

nodes in one tree are preserved after transformed to the

other (See Fig. 3(a)).

Definition 3 (Tai 1979 [5]). A tree mapping from a tree
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TAab dd d TBbd b d
Figure 1 An example of a tree mapping

TA to a tree TB is a set M⊂
=V (TA) × V (TB) such that,

for all (x1, x2), (y1, y2) ∈ M ,

（ 1）x1 <= y1 ⇔ x2 <= y2, and

（ 2）(only for ordered trees) x1 is to the left of y1 ⇔ x2

is to the left of y2.

The original definition of the tree mapping by Tai [5]

includes the condition x1 = y1 ⇔ x2 = y2 for all (x1, x2),

(y1, y2) ∈ M . We omit this condition since it is implied

by the condition (1).

We denote by M(TA, TB) the set of all possible tree

mappings from TA to TB . We simply denote M(TA, TB)

by M if the context is clear. Figure 1 illustrates an ex-

ample of a tree mapping.

We regard a set of tree mappings satisfying a condition

as a class of approximate tree matching. That is, for a set

of mappings M1 from a tree TA to a tree TB satisfying

a condition C1 and a set of mappings M2 from TA to

TB satisfying a condition C2, if C1 ⇒ C2, then M1⊂=M2,

and we say the mapping class C1 is a subclass of C2.

3. 2 Isolated-Subtree Mapping

Zhang et al. showed that the problem of finding an

optimal mapping for unordered trees is NP-complete [12].

To resolve this difficulty, Zhang introduced a new map-

ping called a isolated-subtree mapping [13], which runs in

polynomial time for unordered trees.

The isolated-subtree mapping originated from the

structure-preserving mapping due to Tanaka and

Tanaka [14]. Zhang gave a succinct condition of the tree

mapping instead of the condition by Tanaka and Tanaka.

Definition 4 (Zhang 1996 [13]). A tree mapping M is

isolated-subtree if the following condition holds: for all

(x1, x2), (y1, y2), (z1, z2) ∈ M , z1 < x1 ‘ y1 if and only if

z2 < x2 ‘y2.

T1
U1

x1
y1

z1 x2
y2

z2
x1

y1 z1 x2
y2

z2

M1
M2

T2
U2

x1
y1

z1 x2
y2

z2

M3

T3 U3

x1
y1 z1 x2

y2
z2

U4T4
M4

Figure 2 Examples of tree mappings: each shaded region

illustrates how the subtree rooted at x1 ‘ y1 is

mapped to the other by each mapping Mi (i ∈
{1, 2, 3, 4}). Only M1 is isolated-subtree, and the

others are not. M1, M2, and M4 are alignable, and

M3 is not.

We denote by MI the set of all possible map-

pings between two trees. This mapping was depen-

dently proposed by a few researchers, and called con-

strained, structure-preserving, structure-respecting as

well as isolated-subtree.

For a tree mapping M from T to U , let M1 and M2 be

two arbitrary subsets of M . Let Xi = {x|(x, y) ∈ Mi},
and Yi = {y|(x, y) ∈ Mi}, for i ∈ {1, 2}. An implica-

tion of the constrained mapping is that if T (lca(X1)) and

T (lca(Y1)) are disjoint, then U(lca(X2)) and U(lca(Y2))

must be disjoint as well, and vice versa.

As shown in Fig. 2, two disjoint subtrees T1(x1 ‘ y1)

and T1(z1) (note that lca({z1}) = z1) are mapped to two

disjoint subtrees U1(x2 ‘y2), and U1(z2). And the other

arbitrary disjoint trees are mapped to disjoint trees by

M1. Thus, M1 is constrained. On the other hand, two

disjoint subtrees U2(x2 ‘ y2) and U2(z2) are mapped to

two non-disjoint subtrees T2(x1 ‘y1) and T2(z1). In fact,

T2(x1 ‘y1) includes T2(z1). Thus, M2 is not constrained.

3. 3 Alignment of Trees

The alignment of trees was introduced by Jiang et al. [7]

as a natural extension of the alignment of strings. In con-

trast to the tree edit problem, the alignment of trees is

viewed as the problem of finding a common supertree

pattern of two trees. The definition of the alignment has

been given in an operational way [7], [15] as follows.

Definition 5 (Jiang et al. 1995 [7]). Let TA and TB be

two trees. An alignment of TA and TB is obtained by

first inserting nodes labeled with the null symbol λ into

TA and TB so that the two resulting trees T ′
A and T ′

B have

the same structure (i.e., they are identical if the labels are
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ignored), and then overlaying T ′
A on T ′

B .

Figure 3 illustrates an alignment of trees. We can con-

sider the tree mapping corresponding to the alignment of

trees in Fig. 3.

We introduce an important subclass of the tree homo-

morphism, called embedding, which is a mapping from a

tree T to a tree U such that it preserves the tree mapping

condition, and V (T )⊂=V (U).

Definition 6 (Embedding). Let T and U be two trees.

A homomorphism ϕ : T → U is an embedding if the

following conditions are satisfied: ϕ is injective, and

∀x, y ∈ V (T ) [ϕ(x) < ϕ(y) ⇒ x < y].

Definition 7. A tree mapping M from a tree TA to a

tree TB is an alignable if and only if there exists a triplet

(TC , ϕ, ψ) such that

（ 1）ϕ : TA → TC is an embedding,

（ 2）ψ : TB → TC is an embedding, and

（ 3）ϕ(x) = ψ(y) for all (x, y) ∈ M ;

TC

TA

M
//

ϕ
=={{{{{{{{

TB .

ψ
bbDDDDDDDD

We call (TC , ϕ, ψ) a union on M .

We showed the next theorem in [11].

Theorem 1 (Kuboyama et al. [11]). For a mapping M

from a tree TA to a tree TB , there exists a union of TA

and TB if and only if M satisfies the following condition:

∀(x1, x2), (y1, y2), (z1, z2) ∈ M [x1 ‘ y1 < x1 ‘ z1 ⇒ y2 ‘

z2 = x2 ‘z2].

Proposition 2. The following two conditions are equiv-

alent.

• ∀(x1, x2), (y1, y2), (z1, z2) ∈ M [x1 ‘ y1 < x1 ‘ z1 ⇒
y2 ‘z2 = x2 ‘z2],

b
e

c
d

aTA

TB

g

f

d h

a T’B

g f

d h

a

b e

c d

aT’A

(b,λ)

(e,λ)

(c,g)

(d,d)

(a,a)

(λ, f )

(λ,h)

insertion
of

null nodes
overlay

Alignment of TA and TB

Figure 3 Example: An alignment of trees between TA and

TB

• ∀(x1, x2), (y1, y2), (z1, z2) ∈ M [x2 ‘y2 < x2 ‘ z2 ⇒
y1 ‘z1 = x1 ‘z1].

We call the tree mappings satisfying the above condi-

tion as alignable mappings, and denote by MA the set of

all possible alignable mappings between two trees.

3. 4 Topological Mapping

The following mapping condition is a slightly more con-

strained variant of the isolated-subtree mapping.

Definition 8. A tree mapping M is topological if the fol-

lowing condition holds: for all (x1, x2), (y1, y2), (z1, z2) ∈
M , x1 ‘y1 = x1 ‘z1 if and only if x2 ‘y2 = x2 ‘z2.

We denote MT the set of all possible topological map-

pings between two trees.

3. 5 Hierarchy of Tree Mapping Classes

The following relationship established among these

mapping classes [11], [15].

Theorem 3. MT ( MI ( MA ( M.

4. Class Identification of Tree Mappings

In this section, we propose two algorithms for identify-

ing the class of a tree mapping. Without loss of generality,

we assume henceforth that any tree mapping includes the

root-to-root correspondence.

4. 1 Decomposition of A Tree Mapping

We consider to reduce the class identification problem

into easier subproblems. First, we give the definition of

the decomposition of a tree as follows.

Definition 9 (Decomposition of a tree). For a tree

T = (V, <) and a node x ∈ V , T is decomposed at x

into T ′ = (V ′, <T ′) and T ′′ = (V ′′, <T ′′) if and only if

the following conditions hold.

（ 1）|V ′| >= 2, |V ′′| >= 2,

（ 2）V = V ′ ∪ V ′′, V ′ ∩ V ′′ = {x},
（ 3）∀x, y ∈ V ′[x < y ⇔ x <T ′ y],

∀x, y ∈ V ′′[x < y ⇔ x <T ′′ y].
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We denote the decomposition of T by T = T ′ ∪x T ′′ ( or

T = T ′ ∪ T ′′ if the node is not specified).

Next, we give the definition of the decomposition of a

tree mapping as follows.

Definition 10 (Decomposition of a tree mapping). For a

mapping M from a tree TA to a tree TB , and (x, y) ∈ M ,

M is decomposed into M ′, and M ′′ at (x, y) if and only

if the following conditions hold.

（ 1）|M ′| >= 2, |M ′′| >= 2, M = M ′ ∪ M ′′,

（ 2）TA is decomposed into T ′
A and T ′′

A at x,

TB is decomposed into T ′
B and T ′′

B at y,

（ 3）M ′ = M ∩ (V (T ′
A) × V (T ′

B)),

M ′′ = M ∩ (V (T ′′
A) × V (T ′′

B)).

For a mapping M from a tree TA to a tree TB , we de-

note {x|(x, y) ∈ M} and {y|(x, y) ∈ M} M |1 and M |2
respectively.

Definition 11. Let M be a mapping from a tree TA

to a tree TB . A trimmed tree of T with M is a tree

T ′
A = (VT ′

A
, <T ′

A
) such that

（ 1）V0 = M |1,
Vi = {x‘y|x, y ∈ Vi−1},

VT ′
A

=
∞
[

i=0

Vi,

（ 2）∀x, y ∈ VT ′
A

[x < y ⇔ x <T ′
A

y].

We define T ′
B as well as T ′

A.

Definition 12 (Simplicial mapping). Let M be a map-

ping from a tree TA to a tree TB , T ′
A and T ′

B trimmed

trees of TA and TB on M respectively. We decompose M ,

T ′
A and T ′

B recursively as follows until the decomposition

is not applicable.

（ 1）decompose M , for each (x, y) ∈ M ,

（ 2）decompose T ′
A and T ′

B at x and y respectively.

We denote the resulting set of mappings by S(M) =

{M1, . . . , Mn}, and we say each Mi ∈ S(M) for i ∈
{1, . . . , n} as a simplicial mapping. We denote decom-

posed trees of T ′
A, T ′

B corresponding to Mi by Ai, Bi

respectively.

By the definition of simplicial mappings, it is obvious

that, for trees Ai and Bi corresponding to a simplicial

mapping Mi, Mi|1 and Mi|2 do not include any inner

node (i.e., a node which is neither the root nor a leaf) of

Ai and Bi respectively.

We show an important property on simplicial map-

pings.

Proposition 4. For a mapping M and the simplicial

mappings M1, . . . , Mn ∈ S(M), for all i ∈ {1, . . . , n}, Mi

is alignable if and only if M is alignable.

Before proving this proposition, we show the next

lemma which plays an important role in the proof of this

proposition.

Lemma 5. x <= x′ ∧ y <= y′ ⇒ x‘y <= x′ ‘y′, and

x‘y < x′ ‘y′ ⇒ x‘y <= x′ ∨ x‘y <= y′

We omit the proof since it is not hard to see.

Proof of Proposition 4. If M is alignable, it is trivial

that every simplicial mapping of M is also alignable. So

we show that M is alignable if every simplicial mapping

of M is alignable.

For a mapping M from TA to TB , let Mi be a sim-

plicial mapping of M , and Ai and Bi corresponding

trees of Mi for i ∈ {1, . . . , n}. Now we assume that

(a1, b1), (a2, b2), (a3, b3) ∈ M satisfies a1 ‘ a2 < a1 ‘ a3.

Further, let (ā, b̄) be an element of M such that ā ∈ M |1 is

the minimum node satisfying ai <= ā for any i ∈ {1, 2, 3}.
Note that b̄ ∈ M |2 is also the minimum node such that

bi <= b̄ for any i ∈ {1, 2, 3}.
Now for di = |{(a, b) ∈ M |ai < a <= ā}|, we prove

b1 ‘b3 = b2 ‘b3 by induction on d = max{d1, d2, d3}.
It is trivial if d = 1. Therefore we assume d >= 2. For all

i ∈ {1, 2, 3} such that d = di, let (a′
i, b

′
i) be an element of

M such that a′
i < ā and bi < b′i < b̄. For all i ∈ {1, 2, 3}

such that d < di, let (a′
i, b

′
i) = (ai, bi).

First, we claim that a′
1 ‘ a′

2 < a′
1 ‘ a′

3. By Lemma 5,

either a1 ‘ a2 = a′
1 ‘ a′

2 or a1 ‘ a2 ∈ {a′
1, a

′
2} holds.

On the other hand, a′
i < a1 ‘ a3 <= a′

1 ‘ a′
3 holds by

the choice of ai for some i ∈ {1, 2, 3}. It follows that

a′
1 ‘a′

2 < a′
1 ‘a′

3. Therefore, the hypothesis of the induc-

tion implies b′1 ‘b′3 = b′2 ‘b′3.

Next, we claim bi ‘ b3 = b′i ‘ b′3 for any i ∈ {1, 2}. By

Lemma 5, if bi ‘b3 < b′i ‘b′3 holds, then b′i ‘b′3 ∈ {b′i, b′3}
holds. Thus, either b̄ <= b′i or b̄ <= b′3 holds, a contradic-

tion to the choice of bi and b̄. Then, we have the claim

bi ‘b3 = b′i ‘b′3 for any i ∈ {1, 2}.
Finally, we conclude that b1 ‘ b3 = b′1 ‘ b′3 = b′2 ‘ b′3 =

b2 ‘b3.

Intuitively, we can see that if a union of Ai and Bi ex-

ists on every simplicial mapping Mi, a union of TA and

TB also exists on M .

Proposition 6. For a mapping M and the simplicial
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mappings M1, . . . , Mn ∈ S(M), for all i ∈ {1, . . . , n}, Mi

is isolated-subtree if and only if M is isolated-subtree.

Proof. We assume that a1 < a2 ‘a3 holds for a1, a2, a3 ∈
M |1, and show b1 < b2 ‘b3.

In the rest of proof, we use the following notations.

• ā ∈ M |1 is the minimum node of TA such that

a2 ‘ a3 <= ā. When b̄ ∈ M |2 is the node of TB such

that (ā, b̄) ∈ M , b̄ is also the minimum node such

that b2 ‘b3 <= b̄.

• For any i ∈ {1, 2, 3}, a′
i ∈ M |1 is the maximum node

of TA such that ai <= a′
i < ā. When b′i ∈ M |2 is

the node of TB such that (a′
i, b

′
i) ∈ M , b′i is also the

maximum node such that bi <= b′i < b̄.

We have a′
1 < a′

2 ‘a′
3. In fact, if we assume a′

1
>= a′

2 ‘a′
3,

then it follows that a′
1

>= ā since it contradicts the defini-

tion of a′
1. Note that both a′

1 and a′
2 ‘a′

3 are comparable

because both nodes are ancestors of a1.

Therefore, we have b′1 < b′2 ‘ b′3 since every simplicial

mapping is isolated-subtree. Furthermore, by Lemma 5,

b2 ‘ b3 = b′2 ‘ b′3 holds since otherwise we have either

b̄ <= b′2 or b̄ <= b′3, a contradiction to the choice of b̄.

Thus, we have b1 <= b′1 < b′2 ‘b′3 = b2 ‘b3.

4. 2 Top-Down Algorithm

For a mapping M from TA to TB and the simplicial

mappings M1, . . . , Mn ∈ S(M), by Proposition 4 and 6 it

suffices to check the class of Mi for each i ∈ 1, . . . , n. So,

we show a bottom-up algorithm for identifying the class

of M by assuming that M is a simplicial mapping from

TA to TB in the rest of this paper.

Let M be a simplicial mapping {(r(TA), r(TB)),

(a1, b1), . . . , (an, bn)}, where ai and bi are all leaves of

TA and TB respectively. This algorithm which we show

in this section is available for unrooted trees as well as

rooted trees. In this case, a simplicial mapping is repre-

sented as {(a1, b1), . . . , (an, bn)}, where ai and bi are all

leaves of TA and TB respectively.

The algorithm performs two scans. One is the prelimi-

nary scan, which is optional and performed only when it

is necessary, and the other is the class identification scan.

a ) Preliminary Scan. For any x ∈ V (TA) ∪ V (TB),

by Σx we denote {i|ai <= x} if x ∈ V (TA), and {i|bi <= y}
if x ∈ V (TB). Then, for any i ∈ Σx and j ∈ Σp(y)\Σx (we

assume x ∈ V (TA)), the node p(x) is identical to ai ‘sj .

TA
TB

M

B3A3

A1

A2

B1

B2

Trimming

Decomposing
into Simplicial Mappings

TA’ TB’

M3

M2

M1

Figure 4 An example of decomposition of a tree, and simpli-

cial mappings

The time complexity of calculating Σx is linear to the

size of the trees. In fact, the following algorithm visits a

node of V (TA) no more than twice to calculate Σx for all

x ∈ V (TA).

（ 1）For each ai ∈ M |1,
（ a）Set x ← ai.

（b）Set Σx ← Σx ∪ {i}.
（ c）If x |= r(TA) and Σp(x) |= ∅, then set

x ← p(x) and go to (2).

（ 2）Scan all the nodes x ∈ V (TA) from the leaves to

the root and set Σx ←
S

y∈ch(x)
Σy.

b ) Class Identification Scan. Let x ∈ V (TA) be a

maximal node such that Σx ( {1, 2, . . . , n} and Σx |= ∅.
Further, let y ∈ V (TB) be the minimum node such that

Σy = {1, 2, . . . , n}.
We employ the following notations.

• ∆ = {1, 2, . . . , n} \ Σx.
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• Mx = {(ai, bi)|i ∈ Σx}.
• M∆ = {(ai, bi)|i ∈ ∆}.

Given a simplicial mapping M , the following procedure

identifies M into the classes of the alignable, isolated-

subtree and topological mappings and the other.

（ 1）The flags of Alignable, Isolated-Subtree, and

Topological are initialized by true.

（ 2）Identify the class of Mx. The preliminary scan is

skipped, and the result is set to the all flags.

（ 3）Identify the class of M∆. The preliminary scan is

skipped, and the result is set to the all flags.

（ 4）Set all the flags as false when Σz ∩ Σx = ∅ and

Σz ∩ ∆ = ∅ for some child z ∈ ch(y).

（ 5）Set Isolated-Subtree and Topological as

false when either of the following conditions

holds:

（ a）Σz ( Σx, and Σz |= ∅ for some z ∈ ch(y).

（b）Σz |= Σu and Σz ∩ Σu ∩ ∆ |= ∅ for some

z ∈ ch(y) and u ∈ ch(x).

（ 6）If M is a rooted simplicial tree mapping, set Topo-

logical←false when either of the following con-

ditions holds:

（ a）There exists z ∈ ch(r(TA)) such that Σz =

{1, . . . , n} and y = r(TB).

（b）There does not exist z ∈ ch(r(TA)) such that

Σz = {1, . . . , n} and y < r(TB).

We omit the proof of the correctness of this top-down

algorithm due to the space limitation. This algorithm

runs in polynomial time to the sizes of trees.

4. 3 Bottom-Up Algorithm

A node whose children are all leaves is called cherry.

Consider a mapping M− = M \ {(r(TA), r(TB))} =

{(a1, b1), . . . , (an, bn)} such that M is a simplicial map-

ping from TA to TB with uniquely numbering each el-

ement of M , and we henceforth denote M− simply by

M . For L⊂=V (TA) ∪ V (TB), we denote {(a, b) ∈ M |a ∈
L ∨ b ∈ L} by M [L]. Moreover, let M(L) denote

{b|(a, b) ∈ M [L]} if L⊂=V (TA), and let M(L) denote

{a|(a, b) ∈ M [L]} if L⊂=V (TB). We denote by chL(x)

the set of all leaves in ch(x).

Now we can show a bottom-up algorithm for class iden-

tification as follows:

（ 1）The flags of Alignable, Isolated-Subtree, and

Topological are initialized by true.

（ 2）Select a cherry x with the minimum number of

leaves from V (TA) ∪ V (TB).

（ 3）Set x′ ← lca(M(ch(x))).

（ a）If x′ is also a cherry and M [ch(x)] =

M [ch(x′)] holds, then remove all the nodes in

ch(x) and ch(x′), and let M ← M\M [ch(x)].

Moreover, let M ← M ∪ {(x, x′)} if x ∈
V (TA), and let M ← M ∪ {(x′, x)} if x ∈
V (TB).

（b）If M [ch(x)]⊂=M [chL(x′)] holds, then remove

all the nodes in ch(x) and M(ch(x)), add

a new node x∗ as a child of x′, and

let M ← M \ M [ch(x)]. Moreover, let

M ← M ∪ {(x, x∗)} if x ∈ V (TA), and let

M ← M ∪ {(x∗, x)} if x ∈ V (TB). Set

Isolated-Subtree←false, and Topolog-

ical←false.

（ c）If M [ch(x)] ) M [chL(x′)] holds, then set all

flags as false.

（ 4）Go to (2) if |M | >= 2 holds.

（ 5）Set Topological←false unless both TA and TB

are truncated into trivial trees.

This algorithm runs in polynomial time to the sizes of

trees, and in linear time if the maximum number of chil-

dren is bounded.

4. 4 Correctness of Bottom-Up Algorithm

By T 〈L〉, we denote a tree obtained by replacing a set

of leaves L in a tree T with a new node. For a mapping

M from TA to TB , we denote a mapping from TA〈L〉 to

TB〈M(L)〉 as follows:

M〈L〉 = M \ M [L] ∪ {(a∗, b∗)},

where we assume that (a∗, b∗) is an element of M added

in the bottom-up algorithm.

We have the following lemma from Lemma 5.

Lemma 7. For a node x in a tree T , let y ∈ chL(x) and

z 6∈ chL(x) in the tree T 〈chL(x)〉. Then, y ‘ z = y∗ ‘ z

holds, where y∗ is a node replacing chL(x).

Proof. We have x <= y ‘z since y is a leaf, and a child of

x. It follow from Lemma 5 that y ‘z = y∗ ‘z holds.

Now we ready to prove the correctness of the bottom-up

algorithm.

Theorem 8. M is an alignable mapping from a tree

TA to a tree TB if and only if, for a cherry x ∈
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V (TA) ∪ V (TB) with the minimum number of leaves,

M [ch(x)]⊂=M [chL(lca(M(ch(x))))] holds and M〈ch(x)〉 is

an alignable mapping.

Proof. Now we assume without loss of generality that

a ∈ V (TA) is a cherry with the minimum number of leaves

in V (TA) ∪ V (TB) and |ch(a)| >= 2. Let a1 ∈ ch(a), and

b ∈ p(b1).

It suffices to show that M [ch(a)]⊂=M [chL(b)] holds if M

is alignable. The other part of the statement is obvious

by Lemma 7.

First, we assume that LB(b) = {bi|bi < b ∧ bi is a leaf}
holds. Then, we show that M [ch(a)]⊂=M [LB(b)] holds by

deriving a contradiction under the assumption bi 6< b for

bi ∈ M(ch(a)).

M [LB(b)] \ M [ch(a)] |= ∅ holds due to the minimal-

ity of |M [ch(a)]|. Hence, for (aj , bj) ∈ M such that

bj ∈ LB(b) \ M(ch(a)), we have a1 ‘ ai < a1 ‘ aj and

b1 ‘bi > b = b1 ‘bj . This contradicts that M is alignable.

It is straightforward from M [ch(a)]⊂=M [LB(b)] that

M [ch(a)]⊂=M [chL(b)] holds.

As in the proof of Theorem 8, we can show the following

theorem.

Theorem 9. M is an isolated-subtree mapping from

a tree TA to a tree TB if and only if, for a cherry

x ∈ V (TA)∪V (TB), M〈ch(x)〉 is an isolated-subtree map-

ping, and M [ch(x)] = M [chL(lca(M(ch(x))))].

These two theorems guarantee the correctness of the

bottom-up algorithm.

5. Conclusion

In this paper, we have presented two efficient algo-

rithms for identifying the class of given tree mappings.

By these algorithms, we can determine whether two trees

can be merged into one tree based on a tree mapping.

Moreover, these algorithms provide methods for merging

two trees in a top-down and a bottom-up manner. That

is, we have provided a theoretical framework for merging

two semistructured data such as XML and HTML docu-

ments. As future work, we plan to apply our framework

to an actual data set of semistructured data for merging

similar documents.
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