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Abstract. We are concerned with a unified algorithm for extending classes of languages identifiable
in the limit from positive data. Let £ be a class of languages to be based on and X a class of finite
subsets of strings. The extended class of £, denoted by C(L, X), is defined by these £ and X. Then
we give a sufficient condition for C(L, X) to be identifiable in the limit from positive data and present
an identification algorithm for it. Furthermore, we show that some proper subclasses of C(L, X') are

polynomial time identifiable in the limit from positive data in the sense of Yokomori.

1 Introduction

In the study of inductive inference of formal lan-
guages, Gold [4] defined the notion of identifi-
cation in the limit and showed that the class of
languages containing all finite sets and one infi-
nite set, which is called a superfinite class, is not
identifiable in the limit from positive data. This
means that even the class of regular languages
is not identifiable in the limit from positive data.
Angluin [1] has given several conditions for a class
of languages to be identifiable in the limit from
positive data, and has presented some examples
of identifiable classes. She has also proposed sub-
classes of regular languages called k-reversible
languages for each k£ > 0, and has shown that
these classes are identifiable in the limit from pos-
itive data, requiring a polynomial time for updat-
ing conjectures [2].

From the practical point of view, the induc-
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tive inference algorithm must have a good time
efficiency in addition to running with only pos-
itive data. One may define the notion of poly-
nomial time identification in the limit in various
ways. Pitt [8] has proposed a reasonable defi-
nition for polynomial time identifiability in the
limit. By making a slight modification of his def-
inition, Yokomori [9] has proposed another defi-
nition for polynomial time identifiability in the
limit from positive data, and has proved that
a class of languages accepted by strictly deter-
ministic automata (SDAs) [9], which is a proper
subclass of regular languages, is polynomial time
identifiable in the limit from positive data.

An SDA is an extended deterministic finite
automaton, which is intuitively a state transition
graph in which the set X of labels for edges is
a finite subset of strings over an alphabet X/,
that satisfies the following conditions: for any
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x in X, there uniquely exists an edge (a pair of
states) whose label is x, and for any distinct la-
bels z1,x2 in X, the first symbol of z; differs
from that of x5. This SDA can be also repre-
sented by a pair (M, ) of a corresponding de-
terministic finite automaton M and a homomor-
phism ¢ : X* — X* such that X = p(X') for
some alphabet X/, where the language accepted
by M is in the class of Szilard languages of lin-
ear grammars [7]. That is, the class of languages
accepted by SDAs is the extended class of Szi-
lard languages of linear grammars. In a similar
way to this, some kind of language classes can be
extended.

In this paper, we are concerned with a uni-
fied algorithm for extending classes of languages
identifiable in the limit from positive data. Let £
be a class of languages over X’ to be based on and
X a class of finite subsets of strings over X', where
there exists a morphism ¢ : X* — X* for some
X € X. The extended class of £, denoted by
C(L, X), is defined by these £ and X. Kobayashi
and Yokomori [6] proved that for each k > 0, a
class C(Revy, Xp) of languages, where Revy, is a
class of k-reversible languages and X is a class
of codes [3], is identifiable in the limit from pos-
itive data. However, they have not shown the
identification algorithm for C(Revy, Xp), and it
is still unknown whether the time complexity of
the algorithm is polynomial in the sense of Yoko-
mori [9]. Here we give a sufficient condition for
C(L, X) to be identifiable in the limit from posi-
tive data and present an identification algorithm
for it. Furthermore, we show that some proper
subclasses of C(Revg, Xy) are polynomial time
identifiable in the limit from positive data.

2 Definitions

2.1 Basic Definitions and Notation

We assume that the reader is familiar with the
basics of automata and formal language theory.
For the definitions and notation not stated here,
see, e.g., [5].

A semigroup consists of a set S with a binary
associative operation defined on S. A monoid
M is a semigroup which possesses a two-sided
identity, where the identity element is denoted by
ey or simply by €. A morphism from a monoid
M into a monoid N is a function ¢ : M — N
which satisfies, for all my,mo € M, p(mimsg) =
p(m1)p(ms), and furthermore p(ep;) = en.

An alphabet X is a finite set of symbols. For
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any finite set S of finite-length strings over X/,
we denote by S* (respectively, ST) the set of
all finite-length strings obtained by concatenat-
ing zero (one, resp.) or more elements of S, where
the concatenation of strings v and v is simply de-
noted by uv. Note that the set S* (respectively,
S1) is the submonoid (subsemigroup, resp.) gen-
erated by S. In particular, X* denotes the set
of all finite-length strings over Y. The string of
length 0 (the empty string) is denoted by €. We
denote by |w| the length of a string w and by |S]
the cardinality of a set S. A language over X' is
any subset L of X*. For a string w € X*, alph(w)
denotes the set of symbols appearing in w. For a
language L C Y™, let alph(L) = Uyeralph(w).

2.2 Polynomial Time Identification in
the Limit from Positive Data

In this paper, we adopt Yokomori’s definition in
[9] for the notion of polynomial time identifica-
tion in the limit from positive data.

For any class of languages to be identified,
let R be a class of representations for a class
of languages. Instances of such representations
are automata, grammars, and so on. Given an r
in R, L(r) denotes the language represented by
r. A positive presentation of L(r) is any infinite
sequence of data such that every w € L(r) oc-
curs at least once in the sequence and no other
string not in L(r) appears in the sequence. Each
element of L(r) is called a positive example (or
simply, ezample) of L(r).

Let r be a representation in R. An algorithm
A is said to identify r in the limit from positive
data iff A takes any positive presentation of L(r)
as an input, and outputs an infinite sequence of
representations in R such that there exist »’ in
R and j > 0 so that for all ¢ > j, the i-th con-
jecture (representation) r; is identical to v’ and
L(r") = L(r). A class R is identifiable in the limit
from positive data iff there exists an algorithm A
that, for any  in R, identifies  in the limit from
positive data.

Let A be an algorithm for identifying R in
the limit from positive data. Suppose that af-
ter examining ¢ examples, the algorithm A con-
jectures some r;. We say that A makes an im-
plicit error of prediction at step ¢ if r; is not con-
sistent with the (i 4+ 1)-st example w;y1, i.e., if
wit1 & L(r;).

Definition 1.(Yokomori [9], pp.157-158, Defini-
tion 2) A class R is polynomial time identifiable
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in the limit from positive data iff there exists an
algorithm A for identifying R in the limit from
positive data with the property that there exist
polynomials p and ¢ such that for any n, for any
r of size n, and for any positive presentation of
L(r), the time used by A between receiving the i-
th example w; and outputting the i-th conjecture
r; is at most p(n, 23:1 |w;]), and the number of
implicit errors of prediction made by A is at most
q(n,l), where the size of r is the length of a de-
scription for r and | = Max{|w;| | 1 < j < i}.

O

3 Language Classes Extended
by Using Codes

In this section, we introduce language classes ex-
tended by using codes.

Definition 2. Let w € X* and X,Y C X*.
Any sequence (vy,va,...,v,) € (X*)" (n > 0)
such that w = vivg - - - v, is called a factorization
of w. Moreover, any sequence (x1,Z2,...,Ty) €
X"™ such that w = z129---2x, is called an X-
factorization of w. If w has an X-factorization,
ie, w € X* we say that X can factorize
w. Moreover, if any string in Y has an X-
factorization, i.e., Y C X*, we say that X can
factorize Y. O

Definition 3. A finite set X over X is said to
be a finite factorizing set iff, for any x in X, |z
is finite and |z| > 1. O

The next lemma follows from Definitions 2 and 3.

Lemma 1. Let X be a class of finite factoriz-
ing sets over X and § C X*. For any X € X,
it holds that X can factorize S U {e} iff X can
factorize S — {e}.

Proof: It can be proved by using the fact that
X can factorize € for any X. O

Definition 4. A finite factorizing set X over
X is said to be ambiguous iff there exists w € X
which has at least two distinct X-factorizations.
Otherwise, it is said to be unambiguous. More-
over, a class X of finite factorizing sets over X
is said to be ambiguous iff there exists X € X
which is ambiguous. Otherwise, it is said to be
unambiguous. O

If a finite factorizing set X over )/ is unambigu-
ous, X is also called a code ([3], p.38). Therefore,
a class of unambiguous finite factorizing sets is a
class of codes. Note that a code never contains
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the empty string . It is clear that any subset of
a code is a code. In particular, the empty set ()
is a code.

Definition 5. Let X be a class of finite factor-
izing sets over X and X € X a finite factorizing
set which can factorize S for some nonempty sub-
set S of X*. X is said to be the coarsest finite
factorizing set in X which can factorize S iff, for
any X’ € X which can factorize S, X’ can fac-
torize X. O

From Definitions 4 and 5, we have the following
lemma.

Lemma 2. Let X be a class of codes (i.e., a
class of unambiguous finite factorizing sets) over
2 and S a nonempty subset of X*. Then, there
exists at most one coarsest code in X which can
factorize S.
Proof: Suppose for the sake of contradiction
that there exist two distinct coarsest codes
X1, X9 in X which can factorize S. Since X7 is
the coarsest code which can factorize S, it holds
that S C X{ and X7 C X3 from Definition 5.
Similarly, it holds that S C XJ and X, C X7.
By symmetry, we may assume that X; — X5 # ()
from the assumption that X; # X5. For any
r € X1 — Xo, it holds that x € X2+ — X5 since
X7 € X5 and € ¢ X;. Therefore, x has an Xo-
factorization (v1,ve, ..., v,) such that n > 2 and
T = vy v, with v; € X9 for 1 < ¢ < n. For
every v; € Xo with 1 < ¢ < n, it holds that
v; € Xf since Xo C X7 and € ¢ Xs. Thus,
x has two distinct Xi-factorizations, which is a
contradiction since X7 is unambiguous. O
In Lemma 2, if S C X* for some code X € X,
then there exists the coarsest code Xg € X which
can factorize S (i.e., S C Xg C X7).

Berstel and Perrin [3] proved the following
proposition and corollary from the definition of a
code. They are useful for our later discussion.

Proposition 1.(Berstel and Perrin [3], p.38,
Proposition 1.1)  If a subset X of X¥'* is a code,
then any morphism ¢ : X* — X* which induces
a bijection of some alphabet X’ onto X is in-
jective. Conversely, if there exists an injective
morphism ¢ : X* — X* such that X = ¢(X),
then X is a code. O

Corollary 1.(Berstel and Perrin [3], pp.39-40,
Corollary 1.2)  Let ¢ : X' — X3 be an injective
morphism. If X is a code over X1, then ¢(X)is a
code over Y. If Y is a code over Xy, then p=1(Y)
is a code over . |
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Such an injective morphism ¢ in Proposition 1 is
called a coding morphism for X. In Corollary 1,
if Y = (X), then it holds that ¢ 1(o(X)) = X.

Let £ be a class of some languages over %’
and X a class of some finite factorizing sets over
Y. Now we define a new class of languages over
X, denoted by C(L, X), using these £ and X as
follows.

Definition 6. A class of languages denoted by
C(L,X)over X is defined as the class obtained by
the following procedure: (1) For every language
L € L over X', let X] = alph(L) (C X’). Note
that X is a code over X'. (2) For every finite fac-
torizing set X € X over X such that | X| = |X]|,
define a bijection ¢ of X} onto X. (3) For each
L € £ and ¢ : X" — X* such that X = ¢(X]),
a language ¢(L) € C(L, X) over X is defined as
o(L) = {p(w) € X* |we L}. 0

Let Lo be a language over Y and Y a code over
Y which can factorize Ly. That is, it holds that
Lo CY* C X* Let ¢ : X — X* be an injective
morphism. Since Y is a code over XY, it holds
that o 1(Y) is a code over %' from Corollary 1.
Since Y can factorize Lo, it holds that o1 (Lg) C
e~ HY*) = [~ }(Y)]" C Y. Therefore, the code
0~ YY) can factorize the language ¢ ~1(Lg).

Definition 7. Let £ be a class of some lan-
guages over X and X' C Y. We say that the
class L is closed under inverse coding morphism
iff, for any L € £ and any code X C X* which
can factorize L, it holds that ¢ (L) € £, where
@ : Y™ — X*is a coding morphism such that
X = p(X). O

Hereafter, we are only concerned with a class
C(L, X) of languages that satisfies the following
conditions 1 and 2.

Condition 1. The class £ of languages satis-
fies the following conditions: (1) £ is closed under
inverse coding morphism, and (2) £ is identifiable
in the limit from positive data. O

Condition 2. The class X of finite factoriz-
ing sets over Y satisfies the following conditions:
(1) X is unambiguous. (That is, X is a class
of codes.) (2) For any positive presentation of
S such that S C X for some X € X, there ex-
ists an algorithm for identifying the coarsest code
Xg € X which can factorize S in the limit. (This
algorithm is called an identification algorithm for
the coarsest code in X' in the limit from positive
data.) 0
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4 Identification Algorithm

Let Az be an identification algorithm in Con-
dition 1 and Ay an identification algorithm in
Condition 2.

The flow of the algorithm A, can
be written as follows, where the function
CONSTRUCT(r',w') receives a positive ex-
ample w’ of the target language L’ and a
representation 7’ for a language in £ as input,
and outputs an updated representation for a
language in £ obtained by modifying v’ from w’.

Identification Algorithm A,

Input: a positive presentation w), w), ...
target language L’ in L

Output: a sequence of representations ), rj,
..., where r/ (i > 1) is a representation for a
language L(r}) in £

of a

Procedure

begin
Sy :=0; X =0;
initialize () so that L(r{) = 0;
1:=1;

repeat (forever)

read the next positive example w;
Sh=5I_,U{wl}; X/ := X!, Ualph(w));
if w,e L(r,_;)then 7} :=7,_,
else r}:= CONSTRUCT(r,_;,w}) fi
output r};
1:=141

end

Moreover, the flow of the algorithm Ay can
be written as follows, where the function
UPDATE(X',w') receives a positive example
w’ € X for the target code X € X and a code
X' € X as input, and outputs the coarsest code
in X which can factorize X' U {w'}.

Identification Algorithm Ay

Input: a positive presentation w1, wo, ... of
X1, where X € X is a target code such that
X = ¢(X') for some X’

Output: a sequence of the coarsest codes X7,
Xo, ..., where X; (i > 1) can factorize {w1, wa,
ey wl}
Procedure
begin

Sp == @; Xy = @; X = @;

1:=1;

repeat (forever)
read the next positive example w;;
Si = Si1U{wi}; Y= X1 Ualph(w;);
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Xz' = UPDATE(XZ_l, wi);
output Xj;
1:=14+1

end

Now we present an identification algorithm
Ac(z,x) for aclass C(L, X) of languages that sat-
isfies Conditions 1 and 2. This algorithm is an
extended version of the above algorithms A, and
Ax. The algorithm Ac(. x) is given in the fol-
lowing.

Identification Algorithm A x)

Input: a positive presentation w1, wo, . .

target language in C(L, X)

Output: a sequence of pairs (r1, X1), (r2, X2),
. such that ¢;(L(r;)) € C(L, X)(i > 1), where

r; is a representation for a language L(r;) and

X; is a code such that X; = ¢;(X!) for a coding

.of a

morphism ¢; : X" — 2*
Procedure
begin
So:=0; Xo:=0; S):=0; X:=0;

Xg = @;
initialize g so that po(X)) = Xo;
initialize r so that L(rg) = 0;
1:=1;
read the next positive example w;;
while w; =¢ do
Si={ehs  Zi=0
Sii={e}; X :=0;
Xi=0; ¢i=pi1;
if L(ri—1)={e} then r;:=r;_;
else r;:= CONSTRUCT(r;—1,¢)
/* Call the function in Ag. */

b

fi
output (r;, X;) as a conjecture for a
language {c};
1:=141;
read the next positive example w;
od
repeat (forever)
Si = Si1U{w;}; Y= X1 Ualph(w;);
if w; # e then X;:= UPDATE(X;_1,w;)
/* Call the function in Ay. */
else Xz = Ay fi
if Xz 7& Xi—l then
let a set X/ be given as | X!| = | X;],
where X; C M,
let ¢; be a bijection of X! onto Xj;
W = o7 (S);
Sy :=0; reset () so that L(r() = 0;
J=1
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repeat
wy =7 H(wy); Wi=W —{wj};
Sti= 85 U{wih

if w’e L(r;_;) then r}:=7r_,
else 7’ := CONSTRUCT( Th_1, W)
/* Call the function in Ag. %/
fi
ji=7+1
until W =10; /«Wheni=j—1,
it holds that S! = 7 (S;). */
T =T
else
U= pi= i
wy = i (wy);

S’ =S, U{wl};
/* It holds that S! = ¢;1(S;). =/
if w) e L(r;_1) then T =T
else r; := CONSTRUCT (r;—1, w})
/* Call the function in Az. %/

fi

fi

output (r;, X;) as a conjecture for a

language i (L(r;));

1:=1+ 1;

read the next positive example w;

end

From Definition 6, for any language L € C(L, X),
we can show that L = (L) for some L' € L
and some bijection ¢ of X}, onto X, where
Y;, = alph(L) (C 2') and X € X. The
algorithm AC(E, x) outputs a sequence of pairs
(ri, X;) (1 = 1,2,...) such that L; = p;i(L(r;)) €
C(L,X), where L; O S; = {wy, we,...,w;}, X/ =
alph(p;1(S;)) and X; = ¢;(X!). Note that the
algorithm A¢ (. x) needs only a positive presenta-
tion wy, wa, ... of a target language L € C(L, X).

4.1 Correctness of the Identification
Algorithm

In the case where the target language in C(L, X)
is {e}, the algorithm A x) outputs the con-
jecture (r, X) such that L(r) = {¢} and X = (.
Next we are concerned with a target language
L, € C(L,X) such that L, # 0 and L, # {e}.
From Definition 6, a target language L, can be
denoted by L, = ¢.(L%) for some L' € £ and
some coding morphism ¢, : X — X* such that
X, = w*(EL/*) for some X, € X over X, where
Yy, = alph(L}) (€ 2).

The next lemma comes from the algorithm

Ax.
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Lemma 3. Suppose that o.(L,) # 0 and
o«(L) # {e}. For any positive presentation of
o«(L.) — {e}, the algorithm Ay identifies the
coarsest code X, (r7) € X which can factorize
@« (L) in the limit.

Proof: Since p.(L,) # 0 and ¢.(L.) # {e},
©«(L,)—{e} is anonempty set such that ¢, (L)—
{e} € X7 for some X € X. Then, from
Lemma 2, there uniquely exists the coarsest code
Xy, (1)—{ey € X which can factorize . (L) —
{e}. Therefore, for any positive presentation of
@«(L,) — {e}, Ax identifies X, (11)_fs} in the
limit. Thus, from Lemma 1, X (L)~ {e} s iden-
tical to the coarsest code X, (/) which can fac-
torize . (L.). 0

Lemma 3 assures that there exists a large enough
number N7 such that, for each ¢ > N7, X; in
the algorithm Ag (. x) is identical to the coarsest
code X, (11y. Since X and ¢; in A¢(c vy are
not updated any more for ¢ > Ni, we may let
Y= X and ¢’ = ¢;. Then, the followings hold.

(1) From the above assumption, X, € X’ can
factorize @.(L.). For any X' € X which can
factorize @.(L.), X' can factorize the coarsest
code X, (1) from Definition 5. Therefore, X,
can factorize X (1.

(2) ¢ is a bijection of X’ onto X, (11)-

Furthermore, we may assume that X’ C .
Then, the next key lemma holds.

Lemma 4. The language ¢'~!(¢.(L})) isin L.
Proof: Since ¢, is a bijection of X, onto
X, and X, can factorize X, (r), it holds that
e (Xpur) © e (X)) = (e (X)) =
(EL;)*- Let X' = QDII(XW*(L;)). Since Xgo*(L;) is
the coarsest code which can factorize . (L), it
holds that X' is a code over X7, from Corollary 1
and that L, = o, (.(L)) € ¢, (X 1)) =
(e (X, (10)) (= X™), ice., X' can factorize L.

In the algorithm ACSE’X)’ it holds
that ¢ ~(pu(LL) S @M X)) =
(@ HXp,))* = ™ since @, (L) C

(X (ry))" and X, (1) = ¢'(&7).

Let ¥ = ;' o ¢'. Then, it holds that
Y(X) = ¢l o (&) = elHe'(E) = ol
Xo.11)) = X',

Since L, € £, X' is a code which can fac-
torize L (i.e., L, C X™), and v is a bijec-
tion of X/ onto X' (i.e., X' = (X)), it holds
that ¢»~}(L.) € £ from Condition 1. Therefore,
we have that @'~ (¢.(LL)) = ¢~ o @.(LL) =
(7" 0 @) MIL) =N (1) € L. .

ged

A sequence @' ~!(wy), o " (wa),... is a positive
presentation of ¢'~!(p.(L%)) corresponding to a
positive presentation w1, wo, ... of p.(L.). Since
¢ L(p«(L,)) € L from Lemma 4, the algorithm
Ar identifies '~ (¢«(L%)) in the limit from pos-
itive data. That is, there exists a large enough
number Ny such that, for each i > Ny, r; is identi-
cal to 7 such that L(7) = ¢'~1 (. (L.)). Then, for
each time where i > N, A¢( 1y outputs a pair of
7 and X, 11y such that X, 1) = ¢'(%'). Thus,
we have that ¢/(L(7)) = ¢'(¢'"H(ps(LL))) =
e«(L)), where @.(L.) is the target language.
Then, we have the next theorem.

Theorem 1. The class C(£, X) of languages
that satisfies Conditions 1 and 2 is identifiable in
the limit from positive data. |

Note that Theorem 1 assures that there exists a
large enough number Ny such that, for each i >
Na, 0i(L(r;)) = p«(L.), but it does not neccesar-
ily hold that L(r;) = L., Xj = X1, (= alph(L))),
X; = X, and ¢’ = @,.

4.2 Time Analysis of the Identification
Algorithm

Suppose that a sequence w1, wo, . .
presentation of the target language in C(L, X)
that satisfies Conditions 1 and 2. Let S; =
{wi,wa,...,w;} and S! = {¢'Hw;) | w; €
S; —{e}, 1 < j <i} for each i > 1.

[ Time for Updating a Conjecture | The
time used by Ac(z x) between receiving the i-th
example w; and outputting the i-th conjecture
(ri, X;) for a language ¢;(L(r;)), where X; =
i(X!) and X! = alph(S]), is mainly given by
the total time for computing the following three
processes: (1) the function UPDATE(X;_1,w;),
(2) the process computing the set S/, and (3) the
functions CONSTRUCT (7;_;, S}) forall 1 < j <
i. The above processes (1) and (2) depend on the
properties of the class X', while the process (3) de-
pends on the properties of the class £. The time
for computing the process (1) corresponds to the
time used by Ay for updating a conjecture X;.
The time for computing the process (2) is equal
to the time for computing X;-factorizations of
wj for all j (1 < j <i). And then, the time for
computing the process (3) corresponds to the to-
tal time used by A, between receiving the first
example gol_l(wl) and outputting the ¢-th conjec-
ture 7.

[ The Number of Implicit Errors | In the
learning process of A¢ (., x), whenever X; # X;_1,

. is a positive
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a set X/ and a bijection ¢; are computed over
again using by an updated code X;. In this case,
for each 7, the number of updating conjectures
ri (1 < j <) in Ag(g,xy is bounded by the num-
ber of implicit errors of prediction made by A,.
Therefore, the number of implicit errors of pre-
diction made by A¢ (., x) is bounded by the num-
ber of implicit errors of prediction made by A,
multiplied by that of prediction made by Ay.

5 Examples of Applications

We shall show some examples of applying this
algorithm to pairs of some class of languages and
that of codes in the followings.

Let M = (Q, X,0,qo, F) be a deterministic
finite automaton (DFA, for short), where @Q is
the finite set of states, X' is the finite set of input
symbols, § : Q x X — Q is the transition function,
qo (€ Q) is the initial state, and F (C Q) is the
set of final states. For any nonnegative integer k,
a string u € X* is said to be a k-leader of a state
q € Q of M iff [u] = k and there exists a state
p € @ such that 0(p,u) = q. At first, we define
the following languages.

Definition 8. A DFA M is said to be a re-
stricted strictly deterministic automaton (RSDA,
for short) iff, for any a € X, there exists at
most one pair of states (p,q) € @ x @ such that
d(p,a) = q. The language accepted by an RSDA
M is said to be a restricted strictly reqular lan-
guage (RSRL, for short). O

Definition 9. Let k be a positive integer. A
DFA M is said to be a k-definite DFA (k-DDFA,
for short) iff, for any pair of distinct states ¢
and ¢ in @, there exists no string that is a k-
leader of both g; and ¢s. The language accepted
by a k-DDFA M is said to be a k-definite reqular
language (k-DRL, for short). O

Let RSR, DR, and Revy be the class of RSRLs,
the class of k-DRLs for each k£ > 1, and the class
of k-reversible languages [2] for each k& > 0, re-
spectively. From Definitions 8 and 9, we can show
that for each k& > 1, the following relationships
hold: RSR C DRy C Revg. Therefore, these
classes are identifiable in the limit from positive
data. Furthermore, we can prove the following
lemma.

Lemma 5. All of the classes RSR, DRy for
any k > 1, and Rev for any k£ > 0 are closed
under inverse coding morphism.

a0

Proof: We shall show that RSR is closed un-
der inverse coding morphism.

For any L € RSR, there exists an RSDA
M = (Q, X,6,qo, F) such that L(M) = L. For
any code X C X* which can factorize L, it
holds that L C X*. Let X’ be an alphabet
such that X = ¢(X') for some coding morphism
¢ : X — X*. Then, it holds that ¢~1(L) C
o HX") = (p7H(X))* = X'*. Therefore, there
exists a minimal DFA M’ = (Q', X", ¢, ¢, F’)
such that L(M') = ¢~ '(L(M)). Note that,
for any w € X", it holds that w € L(M’) iff
p(w) € L(M).

Suppose for the sake of contradiction that
M' is not an RSDA. Then, for some a € X',
M’ has a pair of transition functions 6’(p1,a) =
@ and 0'(p2,a) = ¢o such that p; # ps or
@1 # 2. Since M’ is minimal, it holds that
L(p1) # L(p2) or L(q1) # L(g2). Let up,us €
X’ be strings such that ¢'(g(,u1) = p1 and
8 (g, u2) = p2. And let v1,v9 € X' be strings
such that 6’(q1, v1), 8’ (g2, v2) € F'. Then, it holds
that ujavi,ugavy € L(M'). Therefore, in the
RSDA M, it holds that ¢(uiavi),p(usave) €
L(M). Then, there exist 71,72 € @ such
that 6(qo, p(u1)) = 71 and d(qo, p(uz)) = 7ro.
Furthermore, there exist si1,s2 € @ such that
d(r1,p(a)) = s1 and d(re,¢(a)) = so. Since
pla) € X C Xt and M is an RSDA, it
should hold that r{ = r9 and s; = s9. There-
fore, 8(go, p(u1)) = (g0, p(u2)) = 71 and &(qo,
p(u1a)) = d(qo. p(uza)) = s1.

In the case where p; # po, by symmetry, we
may assume that for some z € Y™ z € L(p;)
and z € L(p2). Then, it holds that u1z € L(M")
and ugz ¢ L(M'). Therefore, it holds that
o(urz) € L(M) and ¢(ugz) ¢ L(M). Since
p(u1z) € L(M) and 06(qo, p(u1)) = (qo, p(u2)),
it holds that ¢(ugz) € L(M). This is a contra-
diction.

In the case where ¢1 # g2, by symmetry, we
may assume that for some z € Y™ 2z € L(qq)
and z & L(g2). Then, it holds that ujaz €
L(M') and ugaz ¢ L(M'). Therefore, it holds
that ¢(ujaz) € L(M) and ¢(ugaz) ¢ L(M).
Since ¢(ujaz) € L(M) and d(qo,p(uia)) =
0(qo, p(uga)), it holds that p(usaz) € L(M).
This is a contradiction.

Therefore, M’ is an RSDA. Thus, RSR is
closed under inverse coding morphism.

In a similar way to this, we can prove that all
the classes DRy, for any £ > 1 and Rewvy for any
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k > 0 are closed under inverse coding morphism.
O

Thus, all of the classes RSR, DR, for any k > 1,
and Revy, for any k > 0 satisfy Condition 1 from
Lemma 5.

For a string w € X', firstchar(w) (respec-
tively, lastchar(w)) denotes the first (last, resp.)
symbol of w. Then, we define the following
classes of codes.

Definition 10. Let X be a code over X.
X is called a strict prefirx code (respectively,
a strict suffiz code) iff, for any pair of dis-
tinct elements x1,z9 € X, it holds that
firstchar(zy) # firstchar(xs) ( lastchar(zy) #
lastchar(xs), resp.). O

Let SP, 8§ be the class of strict prefix codes,
and that of strict suffix codes, respectively.

We can show that the class C(RSR, SP) of
languages coincides with the class of strictly reg-
ular languages [9]. Also, since RSR coincides
with the class of Szilard languages of linear gram-
mars [7], the function CONSTRUCT(r}_,,w})
in Agrsg can be written as almost the same
procedure CONSTRUCT(4;) in [9], p.166 ex-
cept X! is used instead of T;. When Agrsg
receives wi, wh, ..., w} as input, the total time
for updating conjectures of Arsgr is bounded
by O(U§~:1|w;-|). Furthermore, the number of
implicit errors of prediction made by Arsr is
bounded by O(|%'|). In a similar way to this
analysis, we can show that the total time for
updating conjectures of Apg, for each k > 1
is bounded by O(U§~:1|w;~|) and the number of
implicit errors of prediction made by Apg, is
bounded by O(|X'|F+1).

And then, the function UPDATE(X;_1, w;)
in Asp is the same as the procedure
UPDATE(T;—1,w;) in [9], p.164. In a simi-
lar way to [9], we can prove that this function
outputs the coarsest code which can factorize
{wy,wa,...,w;}. Therefore, the class SP sat-
isfies Condition 2. Similarly, we can show that
the class 8§ also satisfies Condition 2. When
Asp (respectively, Ass) receives wi, wo, ..., w;
as input, the time used by Asp (Ass, resp.) for
updating conjectures is bounded by O(|X|I?),
where [ = Max{|w1], |wal, ..., |w;|}. The number
of implicit errors of prediction made by Agsp
(Ass, resp.) is bounded by O(|X|1).

Summarizing the above results, we have the
next theorem.

0 8d

Theorem 2. The class C(RSR,SS) of lan-
guages, which is incomparable to the class
C(RSR,SP), is polynomial time identifiable in
the limit from positive data. For each k > 1, the
class C(DRy, SP) (C(DRy, SS), respectively) of
languages is polynomial time identifiable in the
limit from positive data when we regard k to be
a constant. O

6 Conclusions

We have been concerned with a unified algorithm
for extending classes of languages identifiable in
the limit from positive data. When the extended
class C(L, X) of languages satisfies Conditions 1
and 2, C(L,X) is identifiable in the limit from
positive data. Then, we have presented an iden-
tification algorithm Ag, yy for the class C(£, X')
of languages in question.
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