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Abstract

In this paper, we consider the construction and maintenance of a cluster-based architecture for a sensor network;
with two atomic operations node-move-in and node-move-out which are performed by appearance and disappear-
ance of a node. In our proposed architecture, a deterministic broadcasting can be done in O(p) rounds. where p
is the number of clusters. We present a randomized algorithm for a node-move-in, and & deterministic algorithm
for a node-move-out operations, when nodes in the network are organized with total 1-hop data, which work in
expected O(g) rounds, and O(|T|) rounds, respectively, where g is the number of neighbors in the network of the
joining node, and T is a subtree of the architecture whose root is the leaving node. We also show that if nodes
in the network are organized with partial 1-hop data, node-move-in can be done in expected O(logg) rounds and
node-move-out can have a similar performance as the case of the total 1-hop data.

1 Introduction for the critical resources, such as power and radio fre-

quency band. A typical example is given by ‘wireless

A sensor network is a collection of sensor nodes,
where each sensor node has a sensor array, a control-
ing processor and a transimitter-receiver communica-
tion unit.

There is increasing interest in self-organizing multi-
hop wireless sensor networks composed of a large num-
ber of autonomous nodes communicating via radio
without any additional infrastructure. These nodes can
be static or mobile, and they are usually constrained as

sensor networks, where sensor nodes are usually irre-
placeable, and become unusable after energy depletion
or other failures. After the nodes (devices) of a sensor
network are deployed physically. a flat network topol-
ogy is formed in which a link exists between two nodes if
they are in each others communication range. In such a
flat network topology, there is no established structure
on which the nodes could take efficient communication.
Clustering is seen as the step to provide the flat sensor



network topology with a hierarchical organization. The
basic idea is that of breaking the network into physi-
cal proximity clusters which are smaller in scale and
usually simpler to manage by the nodes called as clus-
ter head. The subsequent backbone construction uses
the clustering induced hierarchy to form a structure
which mainly consists of cluster heads and provides the
communication between the clusters. The structured
network is functional in providing desirable properties
such as minimizing communication overhead, choosing
data aggregation points, increasing the probability of
aggregating redundant data, and minimizing the overall
power consumption [10]. Considering the mobility and
scalability, we need the operations such as nodes getting
out of and nodes joining into an existing network. Even
for stationary nodes, when battery is low, it must get
out and go to charge mode. Then, the charged nodes
should join back to the network once again. Therefore,
once a hierarchical clustering established, the mainte-
nance of the cluster organization turns to be crucial in
the presence of network topology changing.

Distributed clustering for a flat sensor network topol-
ogy G has been investigated in many literatures. Most
of the proposed protocols end up generating a cluster-
ing of G and a corresponding, backbone in which the
cluster heads forming a dominating set (DS) or an in-
dependent set (IS) of G [2-5,7,9]. A set is a DS of
G if any node of G is either the node of DS or is the
neighbor of a node of DS. A set is an IS of G if no
two nodes of the set are the neighbors in G. In most of
these distributed algorithms, the nodes need two hops
knowledge, i.e., the knowledge of the neighbors and the
neighbors’ neighbors which need O(n) time to get, to
establish a clustering structure of G. It is known that
finding a minimum DS (MDS) or a maximum IS of
a graph is an NP-complete problem. Therefore, find-
ing a clustering with the minimum number of clusters
is also an NP-complete problem. Sometimes, a sensor
network can be modeled by a wnit disk graph, where
an edge exists between two nodes iff the Euclidean dis-
tance of two nodes is at most 1. When G is a unit disk
graph, a cluster structure can be formed by selecting a
maximul IS (MIS) and then connect them to a back-
bone whose size is a constant times of MDS in O(n) -
O(n?) time [4,7,9]. In [3], a randomized algorithm is
presented to compute an asymptotically optimal MDS
(i-e., it finds a set of cluster heads but not connect them
to form a cluster structure) in polylogarithmic time.
This algorithm computes clustering but does not make
a backbone.

The comparative performance evaluation of these
above algorithms for clustering and backbone forma-
tion is shown in [10].

Although many efforts have been made for establish-
ment of a hierarchical clustering on a sensor network,
the research for the maintenance of the cluster organi-
zation under the similar scenario is seldom seen. This
paper puts emphasis on the maintenance of the cluster-

ing structure of the sensor network. In this paper we
consider a sensor network in which the network topol-
ogy dynamically changes. We propose a novel cluster
structure on which two operations node-move-in and
node-move-out are.defined for maintaining the cluster
organization. Qur work is based on the following radio
network model [1]: each node has a distinct ID, nodes
transmit or receive message in each synchronized round,
and all nodes use a single radio channel without colli-
sion detection capability. In our distributed clustering,
the nodes of a flat network G are grouped into disjoint
clusters, and the backbone is a tree consisting of clus-
ter heads and gateway nodes (gateway nodes are used
to connect the heads). Furthermore, the backbone and
the clusters are combined into a tree which we call as
cluster-based network of G, denoted as CNet(G). Let n
be the number of the nodes in G and p be the number
of the clusters in our clustering. A CNet(G) has several
novel properties: (1) the backbone consists of at most
2p—1 nodes; (2) p is not larger than the smallest num-
ber of disjoint complete subgraphs of G, and so when
G is a dense graph, p < n; (3) a broadcasting on G can
be executed via the backbone in O(p) time (it needs
)(n) time on a flat network [8]); and (4) if G is a unit
disk graph, p < 5 x |[MDS]|.

In our clustering, when a CNet(G) is established,
each node has only one hop knowledge (i.e., each node
knows their neighbors in the backbone, CNet(G) and
G, respectively). We will show that a CNet(G) can
be established either in a static way which means that
all topological information are gathered somewhere and
the problem is solved there, or in a dynamic way which
means that each node solves the problem locally with-
out gathering all information, in O(n) time or in O(|E|)
time, respectively. The operations node-move-in and
node-move-out maintain the cluster structure for G
with the same properties when a node gets out of or
joins into G. We will show algorithms for these oper-
ations. Note that proofs of our lemmas and theorems
can be seen in [11].

Sometimes, nodes need only to know partial one hop
knowledge (nodes don't need to know all the neigh-
bors in G, but their neighbors in the backbone and
CNet(G)). We will also show algorithms for maintain-
ing such a structure. Our results are summarized in
Table 1. The emphasis’'of our algorithms is to keep
the clustering structure of the sensor network. The al-
gorithms to make the structure follows on it. Though
you may use a previous algorithm to make the cluster-
ing, you should check what information nodes have. In
a word, our clustering is not worse than a previous re-
sults, and the main point of this paper is to keep the
structure but to make it.



Table 1: Qur results
maintained operation completion
information time
1-hop, broadcast O(p)
partial 1-hop
1-hop node-move-in expected O(q)
node-move-out O(|T])
partial 1-hop [ node-move-in expected
O(log g)
node-move-out expected
O(|T| + r. logA)
O(T[+p+1¢)-

p : the number of the clusters in CNet(G).

q : the number of the move-in node’s neighbors in G.
T : the subtree of CNet(G) whose root is the leaving
node.

H : the subtree obtained from CNet(G)\T.

r : the number of border nodes in T that are connected
with nodes in H. :

A: the number of neighbors in H of a node in T.

t : the number of nodes that are 3-hop distance from
the border nodes in T

2 A Cluster-based Architecture
2.1 Definitions

We give definitions for some technical terms which
will be used throughout the paper. Let G = (V, E) be
a directed graph.

Bi-directional graph: A graph G is a bi-directional
graph if there is an edge from node u to node v, then
there is an edge from v to u.

Strongly connected component: A directed graph, in
which there exists at least one path from u to v for
any two distinct nodes u and v, is said to be strongly
connected. A strongly connected component C of a di-
rected graph G is a subgraph C = (V', E')(V' C V and
E’ C E) which satisfies that no node of G can be added
to C such that C is strongly connected.

Induced subgraph: The graph H = (U, F), whereU C V
and F is the set of all edges in G with both ends in U,
is called the subgraph of G induced by U, denoted by
G[U].

In-neighbors: Node u is an in-neighbor of node v, if
there is a directed edge from node u to node v.
Independent set: An independent set of G is a set
U C V in which no pair of nodes are adjacent in G.
Mazimal independent set (MIS): An independent set I
of nodes in a graph G such that no more nodes can be
added and it still be an independent set.

Dominating set: A set D(C V) of nodes is a dominating
set of G if any node in G is either in D or the neighbor
of a node in D.

Tree: A connected bi-directional graph such that it is
acyclic when all bi-directional edges are replaced with

undirected ones.

Unit disk graph: A graph G is a unit disk graph if for
each edge (u,v) € E, the Euclidean distance between u
and v is at most 1.

Since a bi-directional graph can be treated as an
undirected graph, in this paper, our networks are repre-
sented by undirected graphs, and the figure of a graph
and technical terms also follow it .(e.g. strongly con-
nected component — connected component).

2.2 Model of Sensor Netwoi_‘ké

The model of a sensor network G in this paper is as
follows:

o Nodes repeat transmissions and receptions in syn-
chronized fixed intervals, called rounds. In each
round, each node acts as either a transmitter or a
receiver.

A node acting as a receiver in a given round gets
a message .iff exactly one of its neighbors trans-
mits in this round. When more than one neighbor
transmits simultaneously in a given round, colli-
sion occurs and none of the messages is received in
this round. A node can not notice the occurrence
of a collision, i.e., there is no collision detection in
the network.

Each node knows its ID, which is distinct for every
node.

2.3 A Cluster-based Sensor Network
and Its Properties

Let G = (V, E) be a connected bi-directional graph.
A cluster of G is a star subgraph of G, where one node,
called @ cluster head, has an edge to each other node
called as cluster member, and no edge exists between
any two cluster members in the cluster. A clustering
of G is to partition G into node disjoint clusters. The
union of the clusters produced by a clustering of G is
denoted as C(G) = (V, Ec), where the edges of E¢ are
those between the cluster heads and their members. In
order to minimize the number of clusters, our cluster-
ing does not allow two cluster heads to be neighbors
with each other. In other words, the set of the cluster
heads in our clustering is a maximal independent set
in G. We consider a MIS such that a graph induced
by cluster heads (€ MIS) and the nodes with two or
more neighboring cluster heads is connected. Any two
cluster heads are jointed through one special cluster
member called gateway node which is in an intersection
of neighbors in G of two cluster heads.

Clustering provides a flat graph G to a hierarchical
organization. A backbone of G is a connected subgraph
of G formed by only the cluster heads and the gateway
nodes, where a gateway node must connect two or more
cluster heads. Since heads can not be neighbors with
each other, any edge in a backbone must be formed



between a cluster head and a gateway node. As G is a
connected bi-directional graph, a backbone must exist.
A backbone tree of G, denoted as BT(G) = (Var. ET),
is defined to be a spanning tree of a backbone of G (see
Fig.1).

redgein G

: edge in CNet(G)
: cluster head

: gateway node

: cluster member

ooe | |

Figure 1: G, BT(G), CNet(G)

Backbone tree BT(G) can be considered as a com-
munication highway on G. To see this, let u and v be
two cluster members, and h, and h, be their cluster
heads, respectively. If u wants to send message to v,
u first sends the message to its cluster head h,. And
h,, sends the message to h, via BT(G), then h, sends
the message to its cluster member v. A transmission
between a cluster head and its members is called local
transmission and a transmission between cluster heads
is called backbone transmission.

Now we use the backbone tree to connect the clusters
for forming a structured network on G. A cluster-based
network of G = (V,E) is a rooted tree CNet(G) =
(V, Egr U Ec) with one cluster head as a root, where
the edges of Epr come from the backbone tree and
the edges of Ec come from all the clusters (see Fig
1).. Since gateway nodes are also cluster members, we
call the cluster members which are not gateway nodes
as pure cluster members. In CNet(G) a pure cluster
member connects only with its cluster head.

Lemma 1. Let G be a bidirectional graph and BT(G)
be a backbone tree of G. If BT(G) has p cluster heads,
then it has at most 2p — 1 nodes.

Lemma 2. Let G be a bidirectional graph and CNet(G)
be a cluster-based network of G. The CNet(G) is a
spanning tree of G. :

Lemma 3. Let G be a bidirectional graph and pg be
the smallest number of disjoint complete subgraphs of
G. The number of the clusters in CNet(G) is at most

pG-

Lemma 4. Let G = (V, E) be a unit disk graph, and
MDS(G) be the minimum dominating set of G. The
number of the clusters in a CNet(G) is not larger than
5 x |MDS(G)|.

In the following sections, we will show how a flat
graph G can self-organize and self-maintain itself into

a cluster-based network CNet(G). Before we discuss
the algorithms, we first declare the data structure for
CNet(G) clearly.

A CNet(G) has two level structures: a set of clus-
ters, and a backbone tree which is used to connect the
clusters. Each node v in G maintains the information
described below:

e For each node v in CNet(G), it keeps a value v.stat
to denote v's status as a cluster head, a gateway -
node or a pure cluster member.

For each node v in G, it keeps a node v.prt and
a node set v.chd to denote who are its parent
and children in CNet(G), respectively. For root
r,r.prt = L, and for each pure cluster member m,
m.chd = 0.

e For each node v in G, it keeps a node set v.oneigh
to denote the neighbors of v in G except v.prt and
v.chd.

For each node v in the backbone tree BT (G) (i.e., v
is either a cluster head or a gateway node), it keeps
a set v.bneigh to denote who are its neighbors in
the backbone tree.

o For each node v in G, it keeps status of its known
neighbors in G.

We call above information as total 1-hop data. When
the information are maintained for each node v in G, it
is called that G is organized with total 1-hop data.

Hereafter we use v.neigh as a node set which rep-
resents neighbors of v in G, (i.e., v.neigh = {v.prt} U
v.chd U v.oneigh). :

We define two operations node-move-in and node-
move-out on a CNet(G).

e node-move-in: a new node v announces itself by
sending a message to join the existing CNet(G) and
the network re-organizes itself to a new CNet(G'),
where G’ is the graph obtained by adding v to G.

e node-move-out: a node v of CNet(G) announces
itself by sending a message to leave the existing
CNet(@), and the network re-organizes itself to a
new CNet(G'), where G’ is the graph obtained by
removing v from G.

Theorem 1. A CNet(G) can be formed statically and
dynamically in O(n) and O(Y.1, T(3)) time, respec-
tively, where T (i) is the number of rounds which node-
move-in operation requires for an i-node graph.

Since our randomized node-move-in algorithm which
runs in O(q) expected time will be mentioned in 4.1,
where ¢ is the number of neighbors of added node in
the existing network, a CNet(G) can be formed dynam-
ically in O(|E|) expected time.



3 Broadcasting

In this section, we present our broadcasting algo-
rithm using CNet(G).

In our algorithm, we use a broadcasting technique
shown in [1], and we call it as procedure Fulerian.

Eulerian(H) performs a broadcast on a bi-
directional graph H. A message called token starts
from the source node, visits every node and turns to
‘the source node. At the beginning, the token is in the
source node. It then visits each node in H from the
source node in depth-first order. When node v gets the
token, it sends the token with the message and its ID to
one of its neighbors which have not received the token
yet. If v has no neighbor which has not been visited
by the token yet, v returns the token to the node from
which it got the token for the first time. The movement
of the token forms an Eulerian cycle of H. It patrols
every node in H and returns to the source node finally.

Lemma 5. (1] Let H = (V,E) be a bi-directional
graph. If each node of H knows all its neighbors in
H, procedure Eulerian(H) completes broadcasting for
H in O(|V|) rounds. O

Our broadcasting algorithm BroadcastALG in
CNet(G) can be found in [11].

In our work a broadcasting in CNet(G) can be com-
pleted by performing Fulerian on BT(G).

Theorem 2. Let CNet(G) be a cluster-based network
of G, and p be the number of clusters in CNet(G). A
broadcasting on CNet(G) can be done in O(p) rounds.

Theorem 3. Let CNet(G) be a cluster-based network
of G, and p be the number of clusters in CNet(G).
The number of the nodes in G can be counted in O(p)
rounds.

4 Constructing  Cluster-based
Sensor Network Dynamically

In this section we describe our two algorithms
of node-move-in and node-move-out respectively on
CNet(G). The proposed cluster-based structure is al-
ways maintained after completing the operations of
node-move-in or node-move-out. Though we assume
that atomic operations cannot be performed simultane-
ously i.e., only one atomic operation can be performed
at a time, it is possible to schedule for two or more
simultaneous operations. When G is organized with
total 1-hop data, our first randomized algorithm for
a node-move-in operation and deterministic algorithm
for a node-move-out operation work in O(q) expected
rounds and O(|T'|) rounds, respectively, where ¢ is the
number of neighbors in G of the move-in node and
T is a subtree of CNet(G) with the leaving node as
root. When G is organized with partial 1-hop data, our

randomized algorithms for a node-move-in and a node-
move-out operations work in expected O(log g) rounds
and O(|T| + r - log A) rounds, respectively, where r is
the number of border nodes in T that has edges with
nodes in subtree H, and A is the number of neighbors
in H of anode in T', where H is the subtree of the archi-
tecture other than T. We also present a deterministic
node-move-out algorithm which work in O(|T| +p+t)
rounds, where ¢ is the number of nodes that are in 3-hop
distance from the border nodes in 7.

4.1 Node-move-in Algorithm

Let new be a node who wants to join a network
G = (V,E), and let G’ = (V U {new}, EU Epey) in
this subsection, where Ey.,, = {(u,new)|u is in trans-
mitting range of the node new, u € V}. Let |Epew| = g

What should be performed by node-move-in is to
decide the status of new and update the information
which the neighbors of new in G’ have.

To decide the status of new, new needs to know the
status of its neighbors. If there exist cluster heads in
the neighbors of new in G’, new selects one to be it's
head and itself becomes a pure cluster member. Else
if there are gateway nodes in its neighbors, new selects
one of the gateway nodes as its gateway and becomes
the cluster head of a new cluster. If there are no clus-
ter heads and no gateway nodes in its neighbors, new
becomes a cluster head and sets one neighboring pure
cluster member to be the gateway of itself. Based on
the status of new has decided, the neighbors of new up-
date their information. In no matter which cases, the
process affects only 2-hop neighbors of new in G’.

In order to determine the status of new and update
the information, it is sufficient that the neighbors of
new transmit their own IDs and status one by one. It
can be done by numbering the neighbors of new from 1
to g and transmitting their information in order of the
numbers.

Lemma 6. The neighbors of new can be numbered from
1to g in O(q) ezpected rounds, where q is the number
of neighbors of new in G’.

Our node-move-in algorithm move-in-1 can be seen
in [11].

Lemma 7. Let CNet(G) be a cluster-based network of
G. When G is organized with total 1-hop data, after an
ezecution of move-in-1 for a node new, G’ is organized
with total 1-hop data. O

Theorem 4. Let CNet(G) be a cluster-based network
of G, q be the number of neighbors of new in G', and p
be the number of clusters in CNet(G). When G' is or-
ganized with total 1-hop data, node-move-in of new can
be domne in O(q) expected rounds, and G’ is organized
with total 1-hop data.



In the execution of move-in-1 only the neighbors of
new, and neighbors of the neighbors of new in CNet(G)
receive a message caused by node-move-in. Hence,
node-move-in can be performed locally in only 2-hop
neighbors of new without changing status of other
nodes.

4.2 Node-move-out Algorithm

Here, we show our first node-move-out algorithm
called move-out-1. Let del be a node who wants to
leave from G and G’ be the graph after del leaves, that
is, G’ = G[V'\ {del}] in this subsection (“\” is substrac-
tion operator of sets). We assume that both G and G’
are connected. It is possible to judge whether G’ is
connected in O(|T|) rounds, where T = (V(T), E(T))
is a subtree of CNet(G) with the leaving node del as
the root (see Fig.2).

Figure 2: CNet(G), a subtree T and connected compo-
nents in T

Our node-move-out algorithm is executed when del
wishes to leave from the network. If del is a pure clus-
ter member, it sends I’'mLeaving message and simply
leaves from the network. Otherwise, the node-move-
out algorithm works as follows: First, we consider the
case where del is not the root of CNet(G). The case
where del is the root is described later. If del is a cluster
head or a gateway node, CNet(G) is divided into two
subtrees. One is the tree T with del as the root (not
including the root in CNet(G)), and one is the tree H
with the root of CNet(G) as the root. The algorithm
move-out-1 removes del from T', and adds other nodes
of T to H so that the resulted tree is CNet(G').

Let C;( = 1,2,...) be the connected components of
G[V(T) \ {del}] (Fig.2). H always changes and grows
larger each time when a node in T is added to. H.

The edges in G between T and H are used-in order
to add the nodes of T' to H. By using node-move-in op-
eration described in the previous section, the nodes in
T can be merged into H. Each node already knows its
neighbors in G and their status in CNet(G), therefore,

a node-move-in operation can be performed determin-
istically in O(1) rounds. First, del calls Eulerian(T)
to wake up each node of T. Whenever the waken node
v € C; has an edge connected with H, v moves to H
by move-in-1, then v calls Eulerian(C;) and each node
in C; moves to H following v by move-in-1 one by one..
The above process will be repeated until all of the nodes
in T other than del are moved to H.

Here we describe about an exception, when del is a
root of CNet(G). If del.bneigh # 0, electing a cluster
head which is connected with del by a gateway node and
setting it to a new root of CNet(G), our algorithm in
the general case can be used. Otherwise del is the only
cluster head in CNet(G), select one node in del.neigh
becomes the new root of CNet(G'). The new root calls
Eulerian(G[V \ {del}]) and a cluster-based network is
constructed sequentially by repeating node-move-in for
the node with token. .

Our first node-move-out algorithm move-out-1 can
be seen in [11].

Lemma 8. Let CNet(G) be a cluster-based network of
G. When G 1is organized with total 1-hop data, after an
ezecution of move-out-1 for a node del, G’ is organized
with total 1-hop data. O

Theorem 5. Let CNet(G) be a cluster-based network
of G, p be the number of clusters in CNet(G) and T
be the subtree of CNet(G) with the leaving node del as
root. When G is organized with total 1-hop data, node-
move-out of del can be done in O(|T|) rounds, and G’
is organized with total 1-hop data.

Only nodes in T, their neighbors in G and neighbors
of them in G receive messages during execution of move-
out-1. Hence, node-move-out can be performed locally
without changing other part of CNet(G).

4.3 Trade-off of Time and Information

In this subsection, we consider networks where node-
move-in operations are performed more frequently than
node-move-out operations. We reduce the amount of
information each node maintains in order to reduce the
running time of node-move-in algorithms. If node v
does not maintain oneigh, the neighbor list of v in G,
node-move-in operation will be faster. Given a graph
G, when v.stat, v.prt, v.chd, v.bneigh (called partial
1-hop data) are maintained. for each node v in G, we
say that G is organized with partial 1-hop data.

4.3.1° Node-move-in Algorithm' with Less In-
formation

~ Let new be a node who wants to join a network, and
let G’ = (VU{new}, EUE,.,) in this subsection, where
Eew = {(u, new)|u is in transmitting range of the node
new, u € V}. Let |Epew| = g. Operation node-move-in
has been already described in subsection 4.1. First, a



node new who wants to join a network confirms whether
there is a cluster head in its neighbors in G’ and if not
any, whether there is a gateway node in them. Then
new elects a leader of them and sets its status.

After status of new is decided, the neighbors of new
update their information according to the status. In no
matter which cases, the operation does not affect other
than the neighbors of new and the neighbors of them
(i.e., 2-hop neighbors) like move-in-1.

Here we show how to check the status of the neigh-
bors of new in G'. One leader is first elected from the
neighbors of new in G’. If the leader is not a cluster
head, the leader and new’s neighbor cluster heads in
G’ send their IDs in one round. Assume that every
node v € S, S = {the leader (not a cluster head)} U
{neighbor cluster heads of new in G'}, sends its ID at
some round t. If new receives an ID at round ¢, it means
|S| = 1, ie., S contains only the leader, and there is
no cluster head in neighbors of new in G’. Else if new
receives no ID at round ¢, |S| > 2, i.e., there exists at
least one cluster head. new can also check about gate-
way nodes similarly. Then, if there are neighbor cluster
heads, new elects a leader from them, else if there are
gateway nodes, new elects one leader from them, else
new elects one leader from neighbor pure cluster mem-
ber, and updates its status and then the information
are maintained.

Our node-move-in algorithm move-in-2 and
SelectWinner procedure which is used to elect a
leader in move-in-2 are described in [11]

In SelectWinner procedure, all nodes receiving
AddMe message toss a coin [t'] (j = 1,2,...) times
to select a single winner, where t is going to be deter-
mined later. If “head” comes, the nodes are in the race,
otherwise keep silent.

O(log q) times of tossing are expected until a winner
is decided, where ¢ is the number of the neighbors of
new (see [11]).

Lemma 9. Let CNet(G) be a cluster-based network of
G. When G 1is organized with partial 1-hop data, af-
ter an ezecution of move-in-2 for a node new, G’ is
organized with partial 1-hop data.

Theorem 6. Let CNet(G) be a cluster-based network
of G, q be the number of neighbors of new in G’, and p
be the number of clusters in CNet(G). When G is orga-
nized with partial 1-hop data, node-move-in of new can
be done in O(log q) ezpected rounds, and G’ is organized
with total 1-hop data.

A joining of a node can be locally performed like

move-in-1.

4.3.2 Node-move-out Algorithm with Less In-
formation

Here, we show two different algorithms for the node-
move-out operation, when the nodes in the network

have partial 1-hop information. First, we describe
our randomized move-out-2R algorithm for the oper-
ation. The deterministic algorithm move-out-2D is de-
scribed later in this subsection. Our move-out-2R is
very similar to move-out-1 with few differences. Since
the nodes know their neighbors in CNet(G) only, even
after Eulerian(T) is performed a node in T do not
know whether it has any edge (or edges) with H or
not. Therefore, when Eulerian(G[V]\V(H)\ {del}) is
called, in order to find an edge with H, the waken node
u in T sends JoinM e message. Upon receiving the mes-
sage, nodes in H that have received the message and the
leader (the node that has sent the wake up call in pre-
vious round acts as a leader for next two rounds) sends
their ids and status to u. If u receives message in cur-
rent round, u knows that it does not have any neighbor
in H, therefore continues Eulerian(G[V]\V (H)\{del})
to find an edge with H. Otherwise, u along with nodes
in H that have received JoinMe message from u invoke
move-in-2, where u acts as new. Once a node v € C;
moves to H, it calls Eulerian(C;) and each node in
C;, moves to H by the last step of move-in-1 one by
one, except the border nodes in T that follow u which
is mentioned above.

Lemma 10. Let CNet(G) be a cluster-based network
of G. When G is organized partial 1-hop data, after an
ezecution of move-out-2R for a node del, G' is orga-
nized with partial 1-hop data. [m}

Theorem 7. Let CNet(G) be a cluster-based network
of G, p be the number of clusters in CNet(G) and T be
the subtree of CNet(G) with the leaving node del as root.
When G s organized with partial 1-hop data, node-
move-out of del can be done in ezpected O(|T|+r-log A)
rounds, and G’ is organized with partial I-hop data,
where r is the number of border nodes in T that has
edges with pure cluster member nodes in subtree H of
CNet(G), and A is the number of neighbors in H of a
node in T'.

Now, we describe our deterministic node-move-out
algorithm move-out-2D. Our move-out-2D algorithm
works as follows: first del calls FEulerian(T), by
which nodes in H that are connected with the bor-
der nodes in T know their position. Next, del calls
Eulerian(BT(G)). During this process, if a cluster
head and (or) a gateway node have received any mes-
sage during Eulerian(BT(G)) they transmit their ids
and status, else each cluster head node in H when
receives the token during Eulerian(BT(G)) asks its
members to inform their ids and status one by one,
where a node transmits iff it has received a mes-
sage(s) from at least one node in T during Eulerian(T),
otherwise keeps silent. Therefore, after finishing
Eulerian(BT(G)) all nodes in T that have edges with
H can learn about all of their neighbors in H and can
move to H easily when it receives the wake up call dur-
ing Eulerian(G[V]\ V(H) \ {del}) later. Once a node



u € C; moves to H, it calls Eulerian(Cj;) and each
node in Cj, moves to H by the last step of move-in-1
one by one. .

Theorem 8. Let CNet(G) be a cluster-based network
of G, p be the number of clusters in CNet(G) and T
be the subtree of CNet(G) with the leaving node del
as root. When G s organized with partial 1-hop data,
node-move-out of del can be done in O(|T| + p + ¢)
rounds, and G' is organized with partial 1-hop data,
where t is the number of nodes in H that are 3-hop
distance from the border nodes in T.

5 Conclusions

In this paper we have proposed a new architecture
of sensor networks in which broadcasting can be done
in O(p) rounds. In order to support dynamic changes
of the architecture we used two operations node-move-
in and node-move-out. To add a new node, we have
presented two different randomized algorithms working
in expected rounds O(g) and O(logg). To remove a
node, our algorithms work in rounds O(|T]), and in
expected rounds O(|T'|+r-log A) and in rounds O(|T'|+
p+1t), depending on the network information available
to the nodes. The simulation will be done in our final
version.

Acknowledgement

This -work is supported in part by grant ARO
W911NF-04-2-0049, U.S.A., the Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific Re-
search(C), 17500036, and for Young Scientists (B),
16700010, 2004 and the Telecommunication Advance-
ment Foundation in 2005.

References

(1) B.S. Chlebus, L. Gasieniec, A.M. Gibbons, A. Pelc,
and W. Rytter. Deterministic  broadcasting in ad hoc
radio networks. Distributed Computing 15, pages 27-
38, 2002.

[2] D. Dubhashi, A .Mei, A. Panconesi, J. Radhakrishnan,
A. Srinivasan, Fast distributed algorithms for (weakly)
connected dominating sets and linear-size skeletons,
Proceedings of the 14th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. T17-724, 2003.

[3] F. Kuhn, T, Moscibroda, T. Wattenhofer, Initializing
Newly Deployed Ad Hoc and Sensor Networks, in Pro-
ceedings of 10 Annual International Conference on Mo-
bile Computing and Networking (MOBICOM), 2004.

[4] 1. Chlamtac, A. Farago.; A new approach to the design

and analysis of peer-to-peer mobile networks, Wireless

Networks, vol. 5, no. 3, pp. 149-156, 1999.

[5] J. Wu and H. Li, On calculating connected dominating
set for efficient routing in ad hoc wireless networks,
Telecommunication Systems, vol. 18, no. 1/3, pp. 13~
36, 2001.

6

K. Nakano and S. Olariu. Randomized initialization
protocols for radio networks. Handbook of wireless net-
works and mobile computing, pp.195-218, 2002.

[7] P.-J. Wan, K. M. Alzoubi, and O. Frieder, Distributed
construction of connected dominating sets in wireless
ad networks, ACM/Kluwer Mobile Networks and Ap-
plications, MONET, bol. 9, no.2, pp. 141-149, 2004.

[8] R.Bar-Yehuda, O. Goldreich, and A. Itai, On the time-
complexity of broadcast in radio networks: an expo-
nential gap between determinism and randomization,
Journal of Computer and System Science, no. 45, pp.
104-126, 1992.

©

S. Basagni, Distributed clustering for ad hoc networks,
Proceedings of the 1999 International Symposium on
Parallel Architectures, Algorithms, and Network, pp.
310-315, 1999.

[10] S. Basagni, M. Mastrogiovanni, C. Petrioli, A perfor-
mance comparison of protocols for clustering and back-
bone formation in large scale ad hoc networks, The 1st
Internatinal Condérence on Mobile Ad-hoc and Sensor
Systems, pp.70-79, 2005.

m

Jiro Uchida, Islam A.K.M. Muzahidul, Yoshiaki
Katayama, Wei Chen, and Koichi Wada, Construction
and Maintenance of a Cluster-based Architecture for
Sensor Networks, to appear in ‘Hawai Int’l Conference
on System Sciences, 2006.



