HIMEA WHHLEES prEmy 2005—AL—103 (4)
IPSJ SIG Technical Report 2005711711

2 KO/NEVIEBIEEERZ & D E AL E W TE A E

KREE %
SRR R R ARG R 22 R

kiniwa@econ.u-hyogo.ac.jp

Abstract

U7 DERBEE I ZDN DR L 1 DOMERED LS &IH
REEGTH2, BNASHELZRET 2MER NP2 THhIT L L
SHILNTOTEMT VA U X LR ENTE, HEREZ LT Y
ALTRBREETICHWAT v F U P ICED < 250U MHIS T U
Molz, FRRTIERY R T— S DBRARBAICHL T (2 — 1/A)-1L
e OHELET VT U XLERRT 3, £ @RBELmA~y F
VTR FCTZRFRID (2 - 1/A)3EL7 VAU X LEEAL . AL 7 A
TVIHEDOIHEZET VI VX LR TR, EHICHENEL I
REXBTLREEAT 3,

HOZEM., 2iTES#E. SELU7 VT U XL

Approximation of Self-Stabilizing
Vertex Cover Less than 2

Jun Kiniwa
Department of Applied Economics, University of Hyogo
kiniwa@econ.u-hyogo.ac.jp

Abstract

A vertex cover of a graph is a subset of vertices such that each edge
has at least one endpoint in the subset. Determining the minimum
vertex cover is a well-known NP-complete problem in a sequential set-
ting. Thus only a 2-approximation solution based on a self-stabilizing
maximal matching has been obviously known until now. In this paper
we propose a new self-stabilizing vertex cover algorithm that achieves
(2 — 1/A)-approximation ratio, where A is the maximum degree of a
given network. We first introduce a sequential (2—1/A)-approximation
algorithm that uses a maximal matching with the high-degree-first or-
der of vertices. Then we present a self-stabilizing algorithm based on
the same idea, and show that the output of the algorithm is the same
as that of the sequential one.

self-stabilization, distributed vertex cover, approximation algorithm

1 Introduction

Self-stabilization is the most fundamental con-
cept of antomatic recovery in distributed sys-
tems. A lot of researchers have paid attention to
its fault tolerance. A transient fault is the fault
that only perturbs the system state, but not
the program code. Self-stabilizing algorithms
tolerate the transient fault in such a way that
the system eventually converges to a legitimate
state without any aid of external actions. Thus
the algorithms must be designed to run for
any initial system state. The execution of self-
stabilizing algorithms is guaranteed to repair
faulty states and to keep legitimacy thereafter.

Civen an undirected graph G = (V,E), a
vertex cover is a subset C' C V such that each
edge e € E has at least one endpoint in C. It
is often required to find the minimum C, while
it is known to be NP-complete[4]. Instead of
finding an exact solution, many approximation
algorithms have been developed[7,13,15,17].
Though the problem has been primary consid-
ered in sequential algorithms, it also has a wide
application to distributed systems, e.g., moni-
toring link failures[1], placement of agents[11],
and managing vector clocks[5]. The placement
of such agents or processes cannot be designed
in a centralized fashion for large-scale net-
works. So it is significant to obtain a good
approximation distributed algorithm. Further-
more, we would like to add the property of
fault-tolerance. Hence our chief concern is to
construct a self-stabilizing and as small vertex
cover as possible.

Some approximation techniques used in se-
quential algorithms cannot be applied to dis-
tributed algorithms because only local compu-
tation is allowed. There, however, seem to be
at least two applicable methods — a maxi-
mal matching and covering a high-degree ver-
tex first. A maximal matching M is a maxi-
mal set of edges with no two of them share
the same vertex. It is known that a set of both
endpoints of every edge in M form a vertex
cover with at most twice the optimum. On the
other hand, it is also well-known that the worst
example of the greedy method, i.e., covering
a high-degree vertex first, is O(logn) times as
Jarge as the optimum. We, however, do not of-

ten experience such worst cases when using the
greedy method. Instead, it sometimes works
better than the maximal matching approxima-
tion that always covers both endpoints of the
matched edges even if it is not necessary. Hence
we combine the greedy method with the maxi-
mal matching to ensure the approximation ra-
tio, that is, a maximal matching with the high-
degree-first order of vertices.

From the sequential point of view, there
have been many approximation approaches,
depth-first search[15], a local-ratio theorem[17},
semidefinite relaxation[7], and a graph theoret-
ical algorithm[13]. However, Histad[9] recently
showed that there is no (7/6 — €)-approximation
algorithm for the problem for any € > 0 un-
less P = NP. From the distributed point of
view, there does not exist so much work for
the vertex cover problem. The significance of
this approach, however, has been continuing to
grow since large-scale networks, e.g., Internet,
mobile ad hoc and sensor networks emerged.
Recently, a 2-approximation (weighted) vertex
cover algorithm has been proposed[6]. The ap-
proximation ratio can be achieved by includ-
ing matched vertices when a maximal match-
ing is determined. As a part of the vertex
cover, algorithms for finding a maximal match-
ing were well-studied. The algorithmn presented
by Hanckowiack et al.[8] computes a maximal
matching in O(log?n) rounds, while the one
by Panconesi and Rizzi[14] in O(A + log* n)
rounds, where n is the number of vertices and
A is the maximum degree. A stabilizing max-
imal matching algorithm was also proposed
by Hsu and Huang[l2] and its performance
was re-evaluated[10, 16], then, the computation
model was recently sophisticated[2]. As far as
we know, no self-stabilizing vertex cover algo-
rithm with less than 2-approximation ratio is
known.

In this paper we develop a self-stabilizing
vertex cover algorithm with (2 — 1/A)-
approximation ratio, where A is the maximum
degree of a network. To introduce onr idea,
we first describe a sequential version of our
algorithm and derive its approximation ratio.
Next we state our self-stabilizing algorithm and
its correctness proofs. Then we claim that our

main algorithm converges to the same solution
as the one the sequential algorithm outputs.
The rest of this paper is organized as
follows. Section 2 states our self-stabilization
model. Section 3 describes a sequential approx-
imation algorithm to prepare for our main al-
gorithm. Section 4 presents our method that
finds as small a vertex cover as possible. Sec-
tion 5 proves the correctness of our algorithm.
Finally, Section 6 concludes the paper.

2 Model

Here we describe a model used in our discus-
sion. There are n processes P = {1,2,...,n},
where each process is identified by the hard-
wired unique name. A network consists of n
processes of finite state machines connected
arbitrarily with bidirectional communication
links, where each process ¢ € P has shared state
variables with a finite set of states X;. We as-
sume that transient faults sometimes occur at
the variables and the interval between faults
is sufficiently long compared to a stabilization
time. The global state of all processes is called
a configuration. The set of all configurations is
denoted by I' = 51 X Ty x --- x Xy,

A network is represented by a graph G =
(V,E), where V(= P) is a set of vertices (pro-
cesses) and F is a set of edges (communication
links). For convenience, we use the correspond-
ing terms process-link and vertex—edge inter-
changeably. A vertex ¢ € V is adjacent to an-
other vertex j and an edge e € F is incident to
i or j if there is an edge e = (4, 5). Each process
t is assumed to maintain a set of adjacent pro-
cesses N (i) correctly. Let N*(z) = {i} U N(:)
denote process ¢ with its adjacent processes.
The number of edges incident to vertex i is
called a degree (or particularly called a pure de-
gree), denoted by 0; < A, where A is the maxi-
mum (pure) degree of a graph G. We define an
identified degree d; as (d;,1) to make the degree
of a vertex unique. Then we say that dy < d;,
called dy, is lower than d; (or d; is higher than
di), if O, < 6; or (0 = i) A (k< 1). A vertex 1
with the highest (mazimum) degree means that
there is no vertex with higher degree in N (i) for

! We explicitly use the pure degree only in Lemma 1.

distributed algorithms, or in V\i for sequen-
tial algorithms. The lowest (minimum) degree
is similarly defined. When we just refer to a
degree without notice, e.g., high-degree-first, it
means the identified degree!.

We assume a state-reading model for sim-
plicity, that is, each process directly reads
the shared variables of adjacent processes and
updates only the variables of its own. Each
process has a program of internal computa-
tions, “if Guard then Action”, or denoted by
Guard = Action. If Guard is true in a process
1, the process is said to be enabled. A transient
fault may perturb states of processes, where the
number of enabled processes may be more than
one. From the set of enabled processes EP C P,
a scheduler D-daemon (distributed daemon) se-
lects, or called activates, a non-empty set of
processes A C EP at a configuration c; €T.
An atomic step consists of reading the states
of adjacent processes, an internal computation,
and writing its own state. We say that Cjt1 18
reached from c; for such a transition of confign-
rations. An ezecution E is a sequence of config-
urations F = €05 Cl1y---5Cj,Cj41,- .. such that
cj+1 € I' is reached from ¢; € I'. The defini-
tion of round complexity[3] is as follows. The
first round e is the minimal prefix of an ex-
ecution F in which every process executes at
least one action. Let ¢’ be the suffix of E such
that E = ee’. The second round e” of E is the
first round of ¢/, and so forth. The daemon is
assumed to be fair, that is, every process is ac-
tivated infinitely often.

The state variables of each process contain
a pointer. The pointer points to one of adjacent
processes to make a matching. We say that pro-
cess 1 makes a proposal to k € N (i) if 7 points
to k, denoted by 7 — k, when &k does not point
to 1. Conversely, we say that process 1 accepts
a proposal of k € N (i) if 7 points to k against
the k’s proposal to 5. That is, i — k and k — 5
hold and are abbreviated to i + k. In that
case, we say that process ¢ is matched (with
process k) and it is denoted by i € Matched or
(¢,k) € Matched. If i € Matched, it is called un-
matched. A set of matched processes are parti-
tioned into two subsets, Proposer and Acceptor,

where processes in Proposer have made propos-
als and those in Acceptor have accepted them.
A vertex is said to be covered when it is con-
tained in the vertex cover C' C V, or otherwise
uncovered. An edge is said to be covered when
it is incident to some vertex in C.

3 Preliminaries

To introduce our self-stabilizing algorithm,
here we state an underlying sequential algo-
rithm. Our basic idea is partly based on a sim-
ple greedy approach : (1) take a vertex v with
the maximum degree and delete v with its all
incident edges, and (2) iterate this until there
are no edges left. Though the greedy method
seems to be usually good, its approximation ra-
tio is known to be O(logn) times the optimal
vertex cover in the worst case.

On the other hand, our idea is also partly
based on a 2-approximation algorithm that
makes use of a maximal matching. This ap-
proximation ratio is derived by the fact that a
vertex cover is always included in any maximal
matching. Since the algorithm always outputs
both the matched vertices, the approximation
is not good if the matching is close to the max-
jimum matching. The bounded approximation
ratio, however, is attractive to researchers.

Hence our method is to combine these al-
gorithms so that it usually works well with the
guarantee of the bounded worst case. Further-
more, we would like to achieve a better approx-
imation ratio than 2, which is known to be the
best one in a distributed setting[6]. First, we
construct a high-degree-first maximal match-
ing, where the vertex with the maximum de-
gree is matched first, and then cover the ver-
tex (one endpoint of the matched edge), and so
forth. Finally, we cover some vertices in order
to complete a vertex cover by using the infor-
mation of degrees.

Now we outline a sequential algorithm
VCover, in which we use some expressions
similar to the self-stabilizing algorithm. Let L
be a sorted list whose top is the vertex with the
maximum degree. A vertex v, the top element
of L, is iteratively selected. Since the selected
vertex v corresponds to the process making a

proposal, we call v a proposal verter and ex-
press v € Proposer. Likewise, the minimum de-
gree vertex v matched with the proposal vertex
v is called an acceptance vertez. We call the i-
th selected vertex in Proposer the i-th proposal
vertez.

1. Sort vertices into the high-degree-first or-
der and construct a list L according to the
order.
2. For each vertex v at the top of L, iterate
(a)-(c) (until no vertex can be selected):
(a) Select its adjacent vertex u with the
minimum degree and join (u,v) to a
matching.

(b) Cover the vertex v (not u).

(¢) Remove u and v from the list L.

3. If there is some uncovered vertex v &
Proposer which is adjacent to some uncov-
ered vertex u with a lower degree, cover the
vertex v.

The following lemma shows the perfor-
mance of VCover. Let Inc(i) be a set of inci-
dent edges to vertex i. The set Inc(i) is parti-
tioned into three disjoint subsets, i.e., Inc(i) =
0ld(i)U New(i) U Both(z), where | Old(i)| = m;
and |New(:1)UBoth(i)| = k;. Hence §; = m;+k;.
For simplicity, we denote New (i) U Both(i) by
E(i). The subsets are defined as

) ={
New(1) ={(z,7) | §; < ki} and
) ={(5,5) | kj < di, ki <05}

In other words, (¢,7) € Old(¢) is equivalent to
(i,j) € New(j) because k; < 0; < kj < 9
holds. Conversely, (i,7) € Old(j) is equiva-
lent to (3,7) € New(z). To estimate the per-
formance of VCover, an identical cost defined
below is given for (i,5) € Old(i) N New(j)
and (4,75) € New(i) N Old(j). On the other
hand, (i,j) € Both(i) is equivalent to (¢,7) €
Both(j), for which separate costs are given.

Lemma 1. The approzimation ratio of the al-
gorithm VCover is

Proof. The proof proceeds by assigning costs
¢;j and cj; to each edge (4, 7) € E(z) = New(i)U
Both(i), and then using the costs to derive
the relationship between the size of the opti-
mal vertex cover |C*| and the size of the out-
put |C| of VCover. The cost c¢;; is defined
as evenly distributing the cost of 1 over ev-
ery edge (¢,5) € E(i). Notice that any edge
(4,7) € Both(1)NBoth(j) has two separate costs
cij = 1/k; and ¢j; = 1/k;, while the other edge
(,7) € New(i) N Old(j) has the identical cost
cij = ¢ji = 1/k;.

We can construct the three subsets of edges
in the process of VCover. In most cases, the
edges covered for the first time by 7 belong to
E(7) because the high-degree-first ordered list
L is used. The only exception is that the edge
(4,) firstly covered by i may belong to New(5).
Since this case requires both 7 and j to be cov-
ered due to d; < kj, shifting the “firstly covered
vertex” to j unlike VCover, does not change
the number of covered vertices. Hence the sum
of the entire edge costs > (i.j)eE) ¢ij for all ver-
tex ¢ € V is equivalent to [C].

The sum of costs for k; edges in E(i) is
ki-1/k; = 1 (see Fig. 1). On the other hand, the
edge cost cj; = 1/k; for an edge (4,5) € Old(s)
is bounded by 1/4;. Since there are m; edges in
Old(z), the entire cost for Inc(i) is

2

(i.5)€Inc(d)

Thus we obtain
cr<y X

1€C* (1.5)€Inc(1)

1k | (¢ _i
<172 - %),

Cij

4 Self-Stabilizing Algorithm

Now we present our self-stabilizing algorithmn
SSVC. The SSVC is a distributed version of
the VCover stated above. To execute opera-
tions locally, some techniques are contained in
the algorithm.

First, each process has a variable color,
denoted by col, in order to construct the

high-degree-first matching. The color is defined
as the identified degree of a process if not
matched, and as the same color as that of the
proposal process if matched. If an unmatched
process can detect some adjacent, lower colored
processes, it makes a proposal to the miniimum
degree one. Thus the color determines whether
or not it can make a proposal. Even if more
than one processes concurrently make propos-
als to the same process ¢, the process i accepts
the proposal of the maximum degree process
J- Then process ¢’s color is boosted up to pro-
cess j’s one. Thus lower colored processes can-
not make proposals to 7 thereafter. After 7 has
been matched with j, the unmatched, proposal
processes must give up their proposals to . To
make it possible, we use a totally ordered de-
gree, i.e., an identified degree, for each process.

Second, every process that can make a pro-
posal is covered with respect to the vertex cov-
ering. Then the remaining covered processes
are determined as follows. Let i be a non-
proposal process. If every adjacent process k €
N(i) has been matched with j # ¢ and has
higher degree than i, process i is not covered.
Otherwise, 1 is covered.

We wuse a shared variable col; €
{(0j,5) | 1 < 8; < A, j € P} represent-
ing process i’s color, and col; = (4;,4) when
© is unmatched. Each process 7 has a variable
cover; € {true, false}, representing a covered
process when cover; = true, which may not be
shared.

The SSVC is formally described as follows.

definition of sets

Low; = {k € N(1) | colj < col;}
High, = {k € N (i) | col; < col;}
Other; ={k € N(i) | k — j # i}
o .
dmin(1) k| kg},%.-dk}
dmaz (i) = {k ax di, k—1
(i) = (k | mas de, ki)
Notice that dmin(7) is the minimum degree ver-
tex among the lower colored vertices adjacent
to ¢, and that dmaz(i) is the maximum degree
vertex among the higher colored adjacent ver-
tices that point to 1.

high-degree-first matching

(VE € N(?) : i # k) A(col; # di) = col; :=d; (a)
(3k € N(5) : i & k) A (col; # max(di,dx)) = col; := max(d;,d) (b)

Admaz(s) : (dmaz(i) = i) A (i 4 dmaz(i)) = i = dmaz(i) ; coli = dymen(ij ;
cover; := false (c)

dk € High, : (i o> k)A(k A1) =1 — null; col; :=d; ;
cover; := false (d)
(3dmaz () : (dmaz(i) $ 7))

A(Fdmin(i) : (¢ /A dmin(s))) = ¢ = dmin(s) ; cover; := true (e)

non-proposal covered vertices

(Vk € Other; : (di < di) A cover:)
V(3k € Other; : (dx < d;) A (—cover;)) = cover; := —cover;

(f)J

Proof. (by contradiction) Suppose that there
is some edge e = (7, j) whose both ends are not
covered. Then neither of them has executed (e).

N\

Each statement above is informally ex-
plained in what follows.

(a) Every wrong color of unmatched processes
is corrected.

(b) Every wrong color of matched processes is
corrected.

(c) The proposal of a process with the (locally)

maximum degree is accepted if at least one

proposal is made.

A proposal to a higher colored process is

discarded.

If a process is not pointed by any higher de-

gree process and is adjacent to some lower

colored processes, it makes a proposal to

the minimum degree process among them.

If a process 7 is adjacent to only processes

with pointing others and ¢ has the minimum

degree among them, it is not covered. Con-

versely, if such a process does not have the

minimum degree, it is covered.

(d)
(e)

5 Correctness and Properties

To show that SSVC is deadlock-free, we intro-
duce the following predicate. When VC is true,
it means the system reaches a legitimate con-
figuration.

VC=(Ve=(1,j) € E:
(cover; = true) V (cover; = true))
Lemma 2. If VC is false, there exists at least

one process which can apply some rule in
SSVC.

There are two cases.

(1)

Neither 7 nor j is in Matched :

Since d; < dj or d; < d; holds, the higher
degree process between ¢ and j can execute
(e).

Either 7 or j is in Matched :

Suppose that 7 is matched and j is not.
If di < dj, then (3 € Other; : (di <
dj) A (ncover;)) in (f) is true for process
4. Otherwise, the same rule is applied to
process .

Therefore, every edge is eventually covered. 0O

To show that SSVC converges to a le-

gitimate configuration, we define the follow-
ing pseudo-legitimate states and use the proof
method of convergence stairs.

Eligible = {1 | Low; # ¢},
Lowest = {1 | Vk € Other; : d; < di}

P1 = (Vi & Matched : (col; = d;))

A(V(i, k) € Matched : (col; = max(d;, di)))

P2 = P1A (Vi € Eligible : (i ¢ dmin(i))

A(cover; = true))

P3 = P2 A (Vi € ~Proposer :

(~Lowest : (cover; = true)

ALowest : (cover; = false)))

Lemma 3. PI eventually holds.

Proof. Let 1 be a process in ~Matched. If 3
has a wrong col;, that is, col; # d;, then
it is corrected by (a). Suppose that 7 moves
from ~Matched to Matched. If several processes
in High; point to 7, then ¢ selects the pro-
cess dmaz (i) with the maximum degree among
them and sets col; to the same degree as
dmaz (%) by (c). Conversely, if 5 is pointed by a
process k € Low;, 1 just points to k but col;
remains unchanged. Thus V(i,k) € Matched :
(col; = max(d;, dy)) holds.

On the other hand, let i be a matched pro-
cess with k. If i has a wrong col;, that is,
col; # max(dy,d;), then it is corrected by (b).
Suppose that (i,k) has changed from Matched
to ~Matched. If k changes its pointer to an-
other process, then col; is reset to d; (if neces-
sary) by (d). Thus Vi ¢ Matched : (col; = d;)
holds.

After every process has been activated, P1
is satisfied. a

Lemma 4. P2 eventually holds.

Proof. (by induction) Suppose that P1A-P2
holds. Hence every information about col is
true. Let K = {i1,42,...,4}, where d;;, >
di, > -+ > dj,, be a set of processes such
that « € K belongs to Eligible and k € N* (i) :
k # dmin(k). Let j represent dmin(i;) for sim-
plicity. Without loss of generality, we assume
that iz ¢ j (= dmin(iy)) and d;, > d;. Since
i1 # dmin(iy), 71 eventually points to 7, that
18, 11 = J, and cover;, := true by rule (e).
Since colj = coly, < col;,, rule (c) can be
applied to j. Thus 73 + j holds and 4; is re-
moved from K. At this time, col; :=d;; and
thus col; > col;, holds. Then by rule (d),
2 = null holds. If Low;, is not empty, i3 can
select dmin(ip) from Low,,.

Notice that if Low; becomes empty for some
¢ € K, such 7 is automatically removed from
K. Since the same argument holds for any
ij,%5+1 € K as long as they belong to Eligi-
ble, the lemma follows by induction. a

Lemma 5. P3 eventually holds.

Proof. Suppose that P2 A =P3 holds and that
some process ¢ in —Proposer A —Lowest has

cover; = false. Then the portion (Ik €
Other; : (dy < d;) A (—cover;)) in rule (f) will
correct such process i. Next suppose that some
process 1 in " Proposer A Lowest has cover; =
true. Then the portion (Vk € Other; : (d; <
di) A cover;) in rule (f) corrects such an error.

a

Let My be a matching eventually deter-
mined by SSVC. The following theorem shows
the efficiency of our method.

Theorem 1. SSVC is a self-stabilizing dis-
tributed vertez cover algorithm whose stabiliza-
tion time is | M| + 2 rounds.

Proof. For the j-th round, the j-th highest-
degree vertex makes a correct proposal and the
(4 — 1)-st proposal is accepted. Hence, a max-
imal matching is completed in the (|M,| + 1)-
st round. Since non-proposal vertices, which
have some adjacent lower degree vertices, lo-
cally know the necessity of being covered, they
are covered in the (|M;| + 2)-nd round. O

We show Lemmas 6 and 7 which claim the
output of our self-stabilizing algorithm is equiv-
alent to that of the sequential one.

Lemma 6. Let M, be a matching determined
by VCover. We claim

M, = M,.

Proof. (by induction) Let i be the k-th pro-
posal vertex, and i¥ € N (i) the matched ver-
tex with 44 in VCover. Since i! is the vertex
with the minimum degree in N(i;), the edge
(1,1}) belongs to M,. On the other hand, 4;
makes a proposal to il by rule (e) in SSVC.
Then the proposal is eventually accepted irre-
spective of whether i} has already matched or
not. Hence the edge (i1,1}) also belongs to M,.

Suppose that every vertex {i1,...,i} in
SSVC has the same edge {i},...,i*} as in
VCover. Further suppose that (ix4+1,75+!) be-
longs to M,. Then i¥+! is the vertex with the
minimum degree in N(ig41). In SSVC, if g4y
has made a proposal to ¢} € {i},...,4*}, it will
reject the proposal and then i, will eventu-
ally select the vertex with the minimum degree
by rules (d) and (e). Since the vertex with the

minimum degree in N(ix41) is uniquely deter-
mined, the edge (ix41,i¥*!) will also be con-
tained in M. O

Lemma 7. Let C; and C, be sets of vertez
cover determined by SSVC and VCover, re-
spectively. We claim

Proof. By Lemma 6, C; = C, holds with re-
spect to Proposer in M, and M,. The remain-
ing covered vertices are uniquely determined by
only degree information, which is equivalent in
two algorithms. Thus C; = C), also holds in the
remaining portion. O

By Lemmas 1 and 7, we obtain the follow-
ing theorem.

Theorem 2. The approzimation ratio of
SSVC is 2 - 1/A. O

6 Conclusion

We proposed a self-stabilizing algorithm for
finding as small a vertex cover as possible in
distributed systems. It has a wide application
to the placement of agents or facilities in net-
works. The obtained approximation ratio is at
most 2 — 1/A. It is interesting that the prior-
ity of vertices generates the same output as a
sequential algorithm.

Acknowledgement

The author would like to thank Prof. Ken-
saku Kikuta for useful discussions and help-
ful comments. This work was partially sup-
ported by Grant-in-Aid for Scientific Research
((C)17510131) of the Ministry of Education,
Science, Sports, and Culture of Japan.

References

[1] Y.Bejerano and R.Rastogi, Robust monitoring of
link delays and faults in IP networks, In Proceed-
ings of the IEEE INFOCOM , March (2003).
S.Chattopadhyay, L.Higham and K.Seyffarth, Dy-
namic and self-stabilizing distributed matching,
In Proceedings of the 21st Annual ACM Sympo-
sium on Principles of Distributed Computing, July
(2002) 290-297.

(2

[3] S.Dolev, A.Israeli and S.Moran, Uniform dynamic
self-stabilizing leader election, IEEE Transactions
on Parallel and Distributed Systems. 8(4) (1997)
424-440.

[4] M.R.Garey and D.S.Johnson, Computers and
intractability. a guide to the theory of NP-
completeness, Freemann (1979).

[5] V.K.Garg and C.Skawratananond, On timestamp-
ing synchronous computations, In Proceedings of
the IEEE International Conference on Distributed
Computing Systems (ICDCS’02) , July (2002).

[6] F.Grandoni, J.K6nemann, and A.Panconesi, Dis-
tributed weighted vertex cover via maximal match-
ings, In Proceedings of the 11th International
Computing and Combinatorics Conference (CO-
COON’05), August (2005).

[7] E.Halperin, Improved approximation algorithms
for the vertex cover problem in graphs and hyper-
graphs, SIAM Journal on Computing 31(5) (2002)
1608-1625.

M.Hanékowiak, M.Karonski, and A.Panconesi, On
the distributed complexity of computing maximal
matchings, SIAM Journal on Discrete Mathemat-
ics 15(1) (2001) 41-57.

[9] J.Hastad, Some optimal inapproximability results,
Journal of the ACM, 48(4), (2001) 798-859.

S.T.Hedetniemi, D.P.Jacobs, and P.K.Srimani,
Maximal matching stabilizes in time O(m), Infor-
mation Processing Letters 80 (2001) 221-223.

T.A.Hegazy, A distributed approach to dynamic
autonomous agent placement for tracking moving
targets with application to monitoring urban en-
vironments, Ph.D. Thesis, School of Electrical and
Computer Engincering, Georgia Institute of Tech-
nology (2004).

S.-C.Hsu and S.-T.Huang, A self-stabilizing algo-
rithm for maximal matching, Information Process-
ing Letters 43 (1992) 77-81.

H.Nagamochi and T.Ibaraki, An approximation
of the minimum vertex cover in a graph, Japan
Journal of Industrial and Applied Mathematics 16
(1999) 369-375.

A.Panconesi and R.Rizzi, Some simple distributed
algorithms for sparse networks, Distributed Com-
puting, 14, (2001) 97-100.

C.Savage, Depth-first search and the vertex cover
problem, Information Processing Letters 14(5)
(1982) 233-235.

G.Tel, Maximal matching stabilizes in quadratic
time, Information Processing Letters 49 (1994)
271-272.

R.Bar-Yehuda and S.Even, A local-ratio theorem
for approximating the weighted vertex cover prob-
lem, Annals of Discrete Mathematics, 25 (1985)
27-46.

[8

(10]

(11]

(12]

[13)

(14]

