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Constant Time Generation of Integer Partitions

Katsuhisa YAMANAKA!, Shin-ichiro KAWANO!,
Yosuke KIKUCHI*, and Shin-ichi NAKANO'

abstract In this paper we give a simple algorithm to generate all partitions of a positive |
integer n. The problem is one of basic problems in combinatorics, and have been extensively
studied for a long time. Our algorithm generates each partition of a given integer in constant
time for each without repetition, while known best algorithm generates each partition in
constant time on “average”. Also, we propose some algorithms to generate all partitions

of an integer with some property in constant time.

1 Introduction

It is useful to have the complete list of objects for a
particular class. One can use such a list to search for
a counter-example to some conjecture, to find the best
object among all candidates, or to experimentally mea-
sure an average performance of an algorithm over all
possible inputs.

Many algorithms to generate all objects in a par-
ticular class, without repetition, are already known
[B80, LNO1, LR99, M98, N02, R78, W86]. Many ex-
cellent textbooks have been published on the subject
[G93, KS98, K05, W89].

In this paper we consider the following generation
problem. For a positive integer n, a partition of n is a
sequence a1a: ...a, of nonnegative integers a; > az >
+++ 2> am such that n = a; + a2 + - + am. Let S(n)
be the set of all partitions of n. For instance, for n = 5
there are seven such partitions: 5, 41, 311, 2111, 11111,
32, 221. Thus |S(5)| = 7.

Actually we have two representations for a partition.
The representation above is called the standard rep-
resentation. The multiplicity representation denotes a
partition by each distinct integer with the number of
occurrences. For example 22111 in the standard repre-
sentation is 2x2+1x3 in the multiplicity representation.

To generate all partitions of an integer is one of the
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basic problems in combinatorics, since that arise fre-
quently in practice [A93, A76, F80, N71, Z98].

The number |S(n)| of partitions of an integer n is
given by the Hardy-Ramanujan-Rademacher asymp-
totic formula [A76, p.70].
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Many algorithms to generate all partitions of an in-
teger have been proposed. See [A93, A76, F80, F81,
M65, M70, N75, P79, R95, R77, S89, Z96, Z98]. Among
them, the algorithms given in [R95, Z98] is the most ef-
ficient. These algorithms generate all partitions of an
integer in standard representation in constant time for
each “on average”, without the output time. To design
an algorithm to generate all partitions in standard rep-
resentation in constant time for each (in worst case) is
still open [Z98].

On the other hand, all integer partitions of an in-
teger in multiplicity representation can be generated
in constant time for each without the output time
[A93, F81, N75).

In this paper we improve the best known results
[R95, Z98] and solve the open problem. Our algorithm
generates all partitions of an integer in standard repre-
sentation in constant time for each in worst case.

Therefore, the derived sequence of partitions of an
integer is a kind of combinatorial Gray code [J80, R93,
597, W89] for partitions of an integer. A Gray code
[RO0] is a cyclic sequence of all 2* bitstrings of length
k, such that each bitstring differs from the preceding
one in a small number of bit entries. A combinatorial
Gray code is a generalization of the Gray code.

In [Z98] two algorithms are proposed. They generate
all partitions of an integer in lexicographic and anti-
lexicographic order, respectively.
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Figure 1: The family tree Tg.

On the other hand, our idea is quite different from
theirs. The main idea of our algorithm is as follows.
We first define a rooted tree (See Fig. 1) such that each
vertex corresponds to a partition in S(n), and each edge
corresponds to a relation between two partitions. Then
with traversing the tree we generate all partitions in
S(n). Note that our algorithm outputs each partition
as the difference from the preceding one. With a sim-
ilar technique we have already solved some generation
problems for graphs [LNO1, N01, N02, NU04], and set
partitions [KNO05]. This paper extends the technique for
integer partitions.

In this paper we first give a simple algorithm to gen-
erate all partitions of an integer n. Our first algorithm
generates each partition in constant time. By slightly
modifying the algorithm, we also give four more algo-
rithms to generate all partitions of an integer with some
property. Given an integer k, our second algorithm gen-
erates all partitions into at most k parts, and our third
algorithm generates all partitions into exactly k parts.
Each problem corresponds to one of the twelvefold way,
that is a 2 X 2 x 3 array of basic combinatorial prob-
lems [K05, St97). We also give two more algorithms.
If n = 1, then generating all partitions with/without
some property is trivial. Hence we assume n > 1 in this
paper.

The rest of the paper is organized as follows. Section
2 shows a tree structure among partitions of an integer.
Section 3 presents our first algorithm. The algorithm
generates each partition in S(n) in O(1) time on av-
erage. In section 4 we improve the algorithm so that
it generates each partition in O(1) time in worst case.
By slightly modifying the algorithm we give four more
algorithms to generate all partitions of an integer with
some property in Section 5 — 8. Finally Section 9 is a
conclusion.

Due to space limitation, several details and figures
are omitted and can be found in full draft available at
[Y04].

2 The Family Tree

In this section we define a tree structure among parti-
tions in S(n).

We define a partition A € S(n) of a positive integer
n as follows. Given a positive integer n, a partition
of n is an integers sequence A = ajaz...an, for some
m > 1 such that a; > a2 > -+ > am > 0and n =
a1 +az+---+an. Each integer is called as a part of A,
and they appear in nonincreasing order. If m =1 then
A = n holds. We call it the root partition of n.

Then we define the parent partition P(A) for each
partition A in S(n) except for the root partition as fol-
lows. Let A = a1az2...am be a partition in S(n), and
assume that A is not the root partition. We have the
following two cases.

Case 1: ap, = 1.

We define P(4) = (a1 + 1)az...am—1 by removing
am and adding one to a;. Note that the number of
parts of P(A) is one less than that of A.

Case 2: a,, > 1.

We define P(A) = (a1 +1)az...(am — 1) by subtract-
ing one from am, and adding one to a;. Note that the
number of parts of P(A) is equal to that of A.

A is called a child partition of P(A). Note that A has
the unique parent partition P(A), on the other hand
P(A) has at most two child partitions, say Case 1 child
and Case 2 child. We have the following lemma.

Lemma 2.1 If A € S(n) and A is not the root parti-
tion, then P(A) € S(n).

By the lemma above, given a partition A in S(n),
where A is not the root partition, repeatedly finding
the parent partition of the derived partition produces
the unique sequence A, P(A), P(P(A)), ... of partitions
in S(n), which eventually ends with the root partition.
By merging these sequences we have the family tree of
S(n), denoted by Tn, such that the vertices of T}, cor-
respond to the partitions in S(n), and each edge cor-
responds to each relation between some A and P(A).
For instance, Tg is shown in Fig. 1, where each solid
line corresponds to the relation with Case 1, and each
dashed line corresponds to Case 2.

3 Algorithm

In this section we give an algorithm to construct T, and
generate all partitions in S(n).

If all child partitions of a given partition in S(n) can
be generated, then T, can be constructed in a recursive
manner, and all partitions in S(n) can be generated.
How can we generate all child partitions of a given par-
tition?

Let A = a1az2...am(0 < m < n) be a partition in
S(n). We are going to give a method to compute all
child partitions of A.

We now need some definitions. Let A[m] be a par-
tition derived from A by subtracting one from a; and
adding one to a,. Intuitively A[m] is the possible Case



2 child of A. Also, let A[m + 1] be a partition derived
from A by subtracting one from a; and appending a new
part am+1 = 1. Intuitively A[m+ 1] isthe possible Case
1 child of A. Thus, A[m] = (a1 —1)az...am-1(am +1)
and A[m+1] = (a1 — 1)az .. . amam+1-

If A is the root partition A, = n then we can observe
that A, has only one child partition Ajm+1] = (n—1)1.
Otherwise we have the following three cases.

Case 1: a; = as.

In this case, a1 < a2 holds both in A[m] and A[m+1].
This means that neither A[m] nor A[m+1] is a partition
in §(n). Therefore A has no child partition.

Case 2: a1 > a2 and am—1 = am.

In this case am—1 < am holds in A[m], so A[m] is not
a partition, and A has no Case 2 child. On the other
hand A[m + 1] is a partition in S(n), and A[m + 1] is
the Case 1 child of A.

Case 3: a1 > a3 and am—1 > am.

We have two subcases.

Case 3(a): m =2 and am-1 —am = 1.

In this case am-1 < am holds in A[m], so A[m] is not
a partition, and A has no Case 2 child. On the other
hand A[m + 1] is a partition in S(n), and A[m + 1] is
the Case 1 child of A.

Case 3(b): Otherwise.

In this case A[m] is the Case 2 child of A, and A[m+1]
is the Case 1 child of A.

For instance, for A = 431 in S(8), A[3] = 332 and
A[4] = 3311, and they are the two child partitions of
A. Based on the case analysis above, now we give an
algorithm to generate all partitions.

Procedure find-all-children(4 = ajas - - - an)
{ A is the current partition.}
begin
01  Output A {Output the difference from the
preceding partition.}
02 ifa; > a3z then
03 begin
04 find-all-children(A[m + 1))
{Case 2, 3(a) and 3(b)}

05 if am-1 > am and (m > 2 or am—1 — am > 1)
then
06 find-all-children(A[m]) {Case 3(b)}
07 end
end

Algorithm find-all-partitions(n)
begin
01  Output the root partition A, = n
02 find-all-children(4 = (n — 1)1)

end

Theorem 3.1 The algorithm uses O(n) space and runs
in O(|S(n)|) time.

Thus, the algorithm generates each partition in O(1)
time “on average”. In the next section we improve the
algorithm to generate each partition in O(1) time “in
worst case”.
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Figure 2: A combinatorial Gray code for S(8).

4 Modification

The algorithm in Section 3 generates all partitions in
S(n) in O(]S(n)|) time. Thus the algorithm generates
cach partition in O(1) time “on average”. However,
after generating a partition corresponding to the last
vertex in a large subtree of T, we have to merely re-
turn from the deep recursive call without outputting any
partition. This may take much time. Therefore, each
partition cannot be generated in O(1) time in worst
case.

However, a simple modification [NU04] improves the
algorithm to generate each partition in O(1) time. The
algorithm is as follows.

Procedure find-all-children2(A, depth)

{ A is the current partition, and depth is the depth
of the recursive call.}

begin

01  if depth is even

02  then Output A
{before outputting its child partitions.}

03  Generate child partitions by the method in
Section 3, and recursively call find-all
-children2 for each child partition.

04  if depth is odd

05 then Output A
{after outputting its child partitions.}

end

One can observe that the algorithm generates all par-
titions so that each partition can be obtained from the
preceding one by tracing at most three edges of T,,. Note
that if A corresponds to a vertex v in T, with odd depth,
then we may need to trace three edges to generate the
next partition. Otherwise we need to trace at most two
edges to generate the next partition. Note that each
partition is similar to the preceding one, since it can
be obtained with at most three operations. See Fig. 2.
Thus, we can regard the derived sequence of the parti-
tions as a combinatorial Gray code [J80, R93, S97, W89]
for partitions.

5 Partitions into at most &k

parts
In this section we give a method to generate all parti-

tions into at most k parts.
Let S<x(n) be the set of all partitions into at most k
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Figure 3: The family tree T5.

parts. Since each part is positive, n > k holds. Clearly
all such partitions are in T, but with other partitions.
By removing other partitions in Ty, the family tree T¥
of S<x(n) can be defined. Note that, after the removing,
T remains to be connected (since the number of parts
of P(A) is always less than or equal to A), and T has
the same root partition as T},. For instance T is shown
in Fig. 3.

Now, given a partition A in S<k(n), we can generate
all child partitions of A in S<x(n) as follows.

Procedure find-all-children3(A = aia2- - am,
k)
{ A is the current partition.}
begin
01  Output A {Output the difference from the
preceding partition.}
02 if a1 > a2 then

03 begin
04 if m < k then
05 find-all-children3(A[m + 1])
06 {Case 2, 3(a) and 3(b)}
06 if am-1 > am and (m > 2 or am-1 — am > 1)
then
08 find-all-children3(A[m]) {Case 3(b)}
09 end
end

The above algorithm can be also modified so as to
generate each partition in constant time in worst case,
as we have shown in Section 4.

We have the following theorem.

Theorem 5.1 One can generate all partitions of an in-
teger n into at most k parts in O(1) time for each.

6 Partitions
parts

into exactly &k

In this section we give an algorithm to generate all par-
titions into exactly k parts.

Let S=r(n) be the set of all partitions of n into exactly
k parts, where n and k are positive integers and n >
k holds. There is the following simple correspondence
between S=x(n) and S<k(n — k).

If k = n, then S=,(n) contains exactly one partition.
In this case generating all partitions in S—n(n) is trivial.
Hence we assume n > k in this section.

1
1
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Figure 4: Ferrers diagrams for partitions 332 and
54221.

A partition in S<x(n — k) can be computed from a
partition in S=x(n) as follows. Let A be a partition
in S—¢(n), and B be a partition obtained from A by
subtracting one from each part of A. Since A has exactly
k parts, B has at most k parts. Hence, B is in S<x(n —
k).

Conversely, a partition in S=x(n) can be computed
from a partition in S<i(n — k) as follows. Let B be a
partition in S<x(n — k). Let b be the number of parts
of B. Let A be a partition obtained from B by adding
one to each part of B and then appending k — b new
parts with value 1. Since A has exactly k parts, A is in
S=k(n).

Thus, there is a bijection between S=i(n) and
S<k(n — k), and by slightly modifying the algorithm in
Section 5, we can also generate all partitions in S—x(n).

‘We have the following theorem.

Theorem 6.1 One can generate all partitions of an in-
teger n into ezactly k parts in O(1) time for each.

7 Restricted partitions

In this section we give two methods to generate all “re-
stricted” partitions.

Given two positive integers n and h (n > h), a re-
stricted partition is a partition of an integer n whose
largest part is no greater than h. Let R(n, k) be the set
of all restricted partitions.

Our first method is based on a correspondence be-
tween R(n,h) and S<i(n), where S<i(n) is the set of
all partitions into at most h parts.

To show the correspondence, a diagrammatic repre-
sentation of partitions is very useful. In this represen-
tation the parts are arranged in order, with the largest
part first, and each part is represented by a column of
the appropriate number of boxes. For example, Fig. 4
shows the diagrams of two partitions 332 and 54221.
Such a diagram is called a Ferrers diagram.

Now, a partition B in S<,(n) can be computed from
a given partition A in R(n, h) as follows.

First the number of boxes on the lowest row in the
Ferrers diagram of A is defined as the first part of B.
Next the number of boxes on the second lowest row
in the Ferrers diagram of A is defined as the second
part of B. Similarly we can define every part of B.
Thus a partition B can be computed from A. This
correspondence is illustrated in Fig. 5. Now we show
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that B is in S<p(n). The number of parts of B is at
most h, because the largest part of A is no greater than
h. Also, the sum of all parts of B is equal to n. Thus
B is in S<n(n).

Conversely, by the method above, a partition A in
R(n, h) can be computed from a given partition B in
Sgh(n).

Thus, there is a bijection between R(n,h) and
S<n(n). Therefore, with a modification. we can regard
the algorithm in Section 5 also as the generating algo-
rithm of R(n,h).

Now we give our second method. The method is
based on the family tree. We define a new family tree
among partitions in R(n,h). Again with traversing the
family tree, all partitions in R(n,h) can be generated,
as shown in Section 3.

Let A = aia2...am be a partition in R(n,h). A
satisfies h > a1 > a2 > - >am >0andn=a; +az +

--+am. We define, as the root partition of R(n, h), the
partition with the minimum number of parts in R(n, h),
as follows. If n is a multiple of h, then the root partition
comsists of 7 parts with value h. Otherwise, the root
partition con51sts of | %] parts with value h and one
more part with value n — h|%].

We define the parent partition P(A) for each parti-
tion A in R(n,h) except for the root partition as fol-
lows. Let A = aias...aiGi41...am be a partition in
R(n,h). Assume that A is not the root partition, and
h=a1 =az =+ = a; > ai4+1 holds for some i. Note
that, since A is not the root partition, A has at least
two parts with value less than h, and i + 1 < m holds.
Note that i = 0 implies A has no part with value h.

‘We have the following two cases.

Case 1: a,, = 1.

We define P(A) = aiaz...ai(ai+1 + 1)...
removing a, and adding one to ai41.
Case 2: a, > 1.

We define P(A) = a1a2...ai(ai+1+1) ... (am —
subtracting one from a, and adding one to a; 1.

A is called a child partition of P(A). Note that, in
both cases, P(A) # A holds since the added part a4 is
different from the removing/subtracting part am. Thus
we have the following lemma.

Lemma 7.1 If A € R(n,h) and A is not the root par-
tition of R(n, h), then P(A) € R(n, h).

By the lemma above, similar to Section 3, we have
the (new) family tree of R(n,h), denoted by Ty . For
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Figure 6: The family tree Ty 4.

instance, T1o,4 is shown in Fig. 6. Each vertex of Tio,4
corresponds to each partition in R(10,4), and each edge
of Tho,4 corresponds to each relation between some par-
tition in R(10,4) and its parent partition.

Now we give an algorithm to construct T,, and
generate all partitions in R(n,h). Given a partition
A =ai10a2...0i6i41...am in R(n, h), all child partitions
of A can be computed as follows.

We need some definitions. Let A[i, m + 1] be a par-
tition derived from A by subtracting one from a; and
appending a new part am41 = 1. Let A[i +1,m+ 1] be
a partition derived from A by subtracting one from a; 4,
and appending a new part am4+1 = 1. Let Afi,m] be a
partition derived from A by subtracting one from a; and
adding one to am. Let A[i+1,m] be a partition derived
from A by subtracting one from a;+1 and adding one to

am. Thus, A[‘i, m+1] =aiaz... (af—l)ai.;.l e GmAmA1,
A[i + 1,m + 1] = alaz,..ai(a,q.l — 1)...amam+1,
A[i,m] = a1ag... (ai — l)ai+1 Ce (am + 1), and A[’i +
1,m] =aiaz...ai(ai+1 —1)...(am +1). It is clear that

only those four are the candidates of child partitions of
A. Note that if ¢ = 0 then A[i, m + 1] and A[i, m] are
not defined. '

Now we give a method to generate all child partitions
of A.

If A is the root partition A, = hh---hr, where
r=mn—h|}], then we can observe that there are the
following four cases.

Case 1: ¢ = 0.

Since i = 0, A[i,m + 1] and A[, m] are not defined.
Also, since A[i + 1,m] = A,, it is not a child partition
of A;. On the other hand, Afi + 1, m + 1} is a partition
in R(n, h). Thus, A, has one child partition.

Case 2: i >0and r =0.

In this case, since a;4; is not defined as a part of A,
A[i +1,m + 1] and A[i + 1,m] are not defined. Since
Ali,m] = A,, it is not a child partition of A,. On the
other hand, A[i,m + 1] is a partition in R(n, h). Thus,
A, has one child partition.

Case 3: i >0and r =1.




Since ai41 < @iy2 in Afi+1, m+1], it is not a partition
in R(n,h). Also, since A[i + 1,m] = A,, it is not a
partition in R(n,h). We have two subcases.

Case 3(a): a; —aiy1 =1 (a; = 2).

Since a; < ai41 in A[i,m], it is not a partition in
R(n, k). On the other hand, Afi, m+ 1] is a partition in
R(n,h). Thus, A, has one child partition.

Case 3(b): a; —ait1 > 1.

A[i, m+1] and A[i, m] are partitions in R(n,h). Thus,
A, has two child partitions.

Case 4: i>0andr>1

We have two subcases.
Case 4(a): a; —aiy1 = L.

Since a; < ait1(= am) in A[i,m], it is not a partition
in R(n,h). Also, since A[i + 1,m] = A,, it is not a
partition in R(n, k). On the other hand, A[i,m+1] and
Ali + 1,m + 1] are partitions in R(n,h). Thus A, has
two child partitions.

Case 4(b): a; —ai+1 > 1.

Since A[i+1, m] = A, it is not a partition in R(n, h).
On the other hand, A[i,m + 1], Al + 1,m + 1] and
A[i,m] are partitions in R(n,h). Thus A, has three
child partitions.

Note that the root partition A, in R(n,h) has at
most three child partitions. For instance, A, = 442
in R(10,4) has three child partitions A[2,4] = 4321,
A[3,4] = 4411 and A[2, 3] = 433.

If A is not the root partition, then we have the fol-
lowing four cases.

Case 1: ¢ =0 and ai4+1 = ai42.

Since a1 < a2 holds in both Afi+1,m+1) and Afi +
1,m], they are not partitions in R(n,h). Also, since
i =0, Afi,m + 1] and A[i, m] are not defined. Thus A
has no child partition.

Case 2: ¢ > 0 and ai+1 = @it2.

Since ai+1 < ai+2 holds in both A[i +1,m + 1] and
A[i+1,m), they are not partitions in R(n, h). We have
two subcases.

Case 2(a): am-1 > am.

A[i, m+1] and A[i, m| are partitions in R(n, k). Thus
A has two child partitions Afi, m + 1] and A[i, m].
Case 2(b): am-1 = am.

Since am-1 < am holds in A[z, m], it is not a partition
in R(n,h). On the other hand, A[i, m + 1] is a partition
in R(n, h). Thus A has one child partition A[z, m + 1].
Case 3: i = 0 and ai+1 > ait2.

Omitted. See [Y04].

Case 4: i > 0 and ai+1 > aiq2.
Omitted. See [Y04].
Based on the above cases, the algorithm is as follows.

Procedure
find-all-children4(A = a1a2...6iGi+1...am)
{A is the current partition.}
begin
01  Output A {Output the difference from the
preceding sequence. }
02 ifi>0and ai41 = air2 then {Case2}

03  begin
04 find-all-children4(A[i, m + 1])
{Case2(a) and (b)}

05 ifam-1>anm then
06 find-all-childrend(A[i,m]) {Case2(a)}
07 end :

08 elseifi=0anda;1; > ai;2 then {Case3}

09 begin

10 find-all-childrend(Afi + 1, m + 1])
{Case3(al), (a2) and (b)}

11 if am—1 > am
and (m > 205 Gi41 — Gig2 > 1) then
12 find-all-children4(A[i+1,m]) {Case3(a2)}
13 end
14 elseifi >0 and aiy1 > aiy2 then {Cased}
15 begin

16 find-all-childrend(A[i, m + 1])
{Case4(al), (a2) and (b)}

17 find-all-childrend(A[: + 1, m + 1})
{Case4(al), (a2) and (b)}

18 if am—1 > am then
19 begin
20 find-all-children4(A[:, m])
{Case4(al) and (a2)}
21 ifm-—1>2or Ai41 — Qj42 > 1 then
22 find-all-children4(A[:i + 1, m])
{Case4(a2)}
23 end
24 end
end

Algorithm find-all-partitions4(n, h)
begin
01  OQutput the root partition A, = hh...hr
02 ifi=0then {Casel}
03 find-all-children4(A[i + 1, m + 1))
04 elseifr =0 then {Case2}
05 *  find-all-childrend(A[i, m + 1])
06 elseifr=1then {Case3}
07 begin
08 find-all-children4(A[:, m + 1])
{Case3(a) and (b)}

09 ifa; —ai41 > 1 then
10 find-all-childrend(A[i,m]) {Case3(b)}
11  end

12 else begin {Case4}

13 find-all-children4(A[i, m + 1])
{Case4(a) and (b)}

14 find-all-children4(A[i + 1, m + 1))
{Case4(a) and (b)}

15 ifa;, — Ait1 > 1 then
16 find-all-children4(A[i,m]) {Case 4(b)}
17 end

end

By modifying the above algorithm as we have shown
in Section 4, we have the following theorem.
Theorem 7.2 One can generate all partitions n



R(n, h) in O(1) time for each.

Let R<k(n,h) be the set of all partitions in R(n, h)
into at most k parts. Also, similar to Section 5, all
partitions in R<k(n,h) can pe generated. Note that, if
h-k < n, then there is no partition in R<x(n, h).

We have the following theorem.

Theorem 7.3 One can generate all partitions in
R<i(n, h) in O(1) time for each.

8 Doubly restricted partitions

Given three positive integers n,h,l (n > h > 1), a dou-
bly restricted partition is a partition of n whose largest
part is no greater than h and smallest part is no less
than [. Let R(n,h,l) be the set of all doubly restricted
partitions.

In this section we give a method to generate all par-
titions in R(n, h,1).

Let R—m(n, h,l) be the set of all partitions in
R(n, h,l) into exactly m parts. First we show a method
to generate all partitions in R=,(n,h,l). This method
is used as a subroutine to generate all partitions in
R(n, h,l).

Let A = aja2...an, be a partition in R=n(n,h,l).
By subtracting ! from every part of A, A = (a1 —
l)(az — 1)...(ar — 1) is derived, where r is the num-
ber of parts of A whose value is larger than {. Note that
the number of parts of A may be less than m. Clearly
A'isin Rem(n —ml, h —1), where R<pn(n—ml, h —1)
is the set of all restricted partitions into at most m
parts. Conversely, A can be derived by adding { to ev-
ery patt of A" and appending (m — r) parts with value
Ito A'. Thus, there is a bijection between R—n,(n, h,!)
and R¢n(n—ml h —1).

The algorithm in Theorem 7.3 can be modified to
generate each partition in the multiplicity representa-
tion. The modified algorithm generates each partition
in R<m(n — ml, h — 1) in constant time. We have the
following lemma.

Lemma 8.1 One can generate
R-m(n, h,l) in O(1) time for each.

Next we show that, by repeatedly using the algorithm
in Lemma 8.1 for m = [}],[}] = 1,...,[%], all par-
titions in R(n, h,l) can be generated in constant time.
Note that, if (b — )| 2| < n — [ %] then, R(n,h,1) has
no partition. The algorithm generates each partition in
the multiplicity representation.

The algorithm in Lemma 8.1 first outputs the root
partition of R—n(n,h,l), then outputs each partition
in R=m(n. h,l) in constant time for each, and finally
outputs the last child partition of the root partition.
Actually, after that, the algorithm generates the root
partition again in constant time, but does not output it
again. So all we need to show is that, after the root par-
tition A of R—mm(n, h,l) is generated (again), the root
partition B of R—n_1(n, h,l) can be generated in con-
stant time.

all partitions in

Now we show that B can be computed from A in
constant time. Let s and ¢ be the remainders of nf:—";l

and ﬁ, respectively. Assume

A= hxmp+(s+l)x1+Ixmy, ifs>0
T lh xmp+ 1 xmy, if s =0,

where m, and m; are the number of parts with value
h and [, respectively. B can be computed from A as
follows. First we remove the last part with value [.
Next, by using the removed part, we construct as many
parts with value h as possible. Formally, B is as follows.

hx(mh+[h ,J+1)+(s +1) x

Hox (mu - |35 - 2), xfz—t—f>1
hx (mn+ | 75] +1)
+lx(m, [z -1), if s =1

hox (mn+ 7))+ (s +1) x 1
Hox (m = [55] - 2)
fo< st <lands=0

hx (ma+ [575]) + (s +1) x 1
+lx(m[—Lﬁj—1

if0< 4 <lands>0

hx (ma + |75])
+x (m— [75] - 1), if &£ =0,

\
where s is the remainder of =

In the above method, if partitions are represented in
standard representation, B can not be generated from A
in constant time. Because at least | 74 | parts of 4 may
be changed to generate B. Since we use the multiplicity
representation in this section, we can generate B from
A in constant time.

‘We have the following theorem.

Theorem 8.2 One can generate all partitions in
R(n, h,1) in O(1) time for each (in the multiplicity rep-
resentation).

9 Conclusion

In this paper we have given five simple algorithms to
generate all partitions with some property. We first
define a family tree such that each vertex corresponds
to each partition with the given property, then output
each partition in constant time by traversing the family
tree.
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