20060 AL 1050 70
g 200603017

goooOoooooooooooo
IPSJ SIG Technical Report

P2P > AT LT BT DMERIFH T —F LT AT L
Z MWz H C#EISRIRR TR

STk REN OKF@EE AR R
KBRS HEFLEHIER

P — AW TIE, HILWP 2 PRRBETFETHD, HOHELWIRRTIE (APSP) 28%75. A
SP SIIMHEHNTEI—F L3 AT A (PWQS) ZHWEHREZFECEDE, YIRMARILEEZBLZDHDT
HD. KX TIEASP SOEHL TV Ay = EMENR/NTH S I EZ2EHTS. £z, P ATA
OIS 5720, P AT LAND) —RERED/NT A=Y EHETEHTINTY XLERET 5.
S5, ASPSEHETIINTUXAIDNTI I al—2 a3 z2EML, ASPSITED Ay —8M
ENHREND Z &, HETINTVZLIEID T AT LAAD) —R ENEWEETHETRETHDHZ L%

REET 5.
An adaptive searching protocol in Peer-to-peer systems
based on Probabilistic Weak Quorum System
Yu Wu Taisuke Izumi Fukuhito Oosita Hirotsugu Kakugawa Tosimitsu Masuzawa
Graduate School of Information Science and Technology, Osaka University
Abstract — In this paper we propose a new Peer-to-peer searching protocol: Adaptive Probabilistic

Searching Protocol (APSP). It is an efficient extension of the original searching protocol based on Prob-
abilistic Weak Quorum System (PWQS). APSP has much lower message complexity, which is proved the
minimum, than the original protocol. And it is adaptive to network dynamics by estimating system pa-
rameters with an estimation algorithm we present in this paper. The estimation algorithm requires small
additional message cost and the simulation result proves its efficiency. With the estimation algorithm,

APSP keeps the minimum message cost when network environment changes.

1 Introduction

Peer-to-Peer (P2P) network [1] is an overlay net-
work of peer computers without centralized servers.
With the prominent merit of efficient utilizing of
system resource, load distribution, fault tolerance
and low initial investment, P2P network is wildly
used in file sharing; high performance distributed
computing and collaborative user working systems.

P2P file sharing system is a kind of popular P2P
system which develops quickly these years. In such
a system, a user (peer) can exchange his files with
other peers in the system. Files in P2P file shar-
ing systems are distributed in member peers instead
of in a centralized server. To find the peer which
stores a target file, namely, the searching problem
becomes the basic and unique problem of construct-
ing a P2P system. We abstract manual, data sheet,
music file, etc. as object. The term ‘object’ will be
used instead of ‘file’ in this paper.

Because there is no centralized server that main-
tains a list of objects and their location in network,
a peer must find the location of a target object by
communication with other peers. Different from a
system with centralized servers, P2P systems have
dynamic member peer sets. Because peers, with ob-
jects, may join and leave the system at any time, to

keep the information of peer sets and shared objects
up-to-date is necessary in finding an target object.
The dynamic nature makes it difficult to construct a
searching protocol in P2P file sharing systems with
a small overhead.

1.1 Related works

Many solutions of searching problem have been pro-
posed.

Gnutella[2] uses a flooding based searching strat-
egy. In Gnutella, when a peer searches an object,
it broadcasts a query message to neighbor peers
it knows, and the query is forwarded by flooding.
Forwarding of a query will stop when the time-to-
live (TTL) value of the query decreased to zero. If
the target object is in the distance that query can
reach, searching is success. Gnutella is a P2P sys-
tem that is easy to implement, and does not need
maintenance of network structure. But in such a
flooding based search protocol, a target object must
be within a certain distance, and increase of search
range causes an explosion of query message. It is
not scalable in message complexity.

Chords[3], FreeNet[4], and CANJ5] are examples
of distributed hash table (DHT) based P2P sys-
tems. These systems use hash value to identify

0410

島貫
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

島貫
テキストボックス
2006－AL－105（7）
　 2006／3／17

島貫
テキストボックス
－41－

peers and objects. An object in such systems are
stored in the peer which have a contiguous hash
value. By forwarding the searching query to a peer
which have a more contiguous hash value, the query
will arrive the owner peer of the target at last. DHT
based searching algorithms are deterministic algo-
rithms and considered scalable for their sublinear
searching message complexity. But maintaining a
tight DHT structure in a dynamic network is a
heavy work which costs much system resource. In
practical use, because those systems match objects
to peer based on hash value, they are suitable in
the case of searching a particular object. But, it is
difficult to enhance searching performance, such as
fuzzy search, in DHT based searching algorithms.

The searching protocol based on Probabilistic
Weak Quorum System (PWQS)[6] is a new P2P
searching protocol proposed recently. It uses a ran-
domized algorithm which can find a target object
of a high probability. Different from the searching
protocols based on DHT, it does not use an logical
structure and does not use hash value to identify
peers and objects. That makes it easy to maintain
and to enhance searching performance. And it is
also proved scalable and fault tolerant. More detail
of the searching protocol based on PWQS can be
found latter in this paper.

1.2 Our contribution

In this paper we present APSP: Adaptive Proba-
bilistic Searching Protocol, which is an efficiency
and extension of the original searching protocol
based on PWQS.

The original protocol set same system parameter
to each object. Each object will be found with a
same probability and expected to use same number
of query messages in one searching. We focus on
the heterogeneity of objects. In original protocol,
a popular object costs a large amount of searching
query messages because it is searched frequently.
And an unpopular object needs same maintenance
cost but is searched rarely. The object’s searching
rank in P2P file sharing systems is proved following
a Zipf-like distribution[7][8]. That means a part
of objects in the system are searched with a very
high frequency and most of the objects is rarely
searched. Thus, we consider the original protocol
does not have an optimized message complexity.

The goal of APSP is to optimize the message
complexity of the original searching protocol. Its
principle is simple. In APSP, a popular object is
expected to be found with less query messages by
spent more maintenance cost on it. Although its
maintenance cost is increased, the total messages
will be greatly decreased because it is searched with
a high frequency but maintained in a fixed, much

lower frequency. In the opposite, an unpopular ob-
ject is expected to be found with more query mes-
sages but the maintenance cost of it is decreased.
We also extend the protocol to be an adaptive one.
Make it keeps the minimum message complexity
when network environment changes. This is real-
ized by estimating the varying network parameters
with the estimation algorithms we presented. Our
protocol inherits the fault tolerant nature from the
original and needs almost no additional system cost.

1.3 Organization of this paper

In section 2, we describe the system model and in-
troduce the PWQS and the principle of searching
based on PWQS. In section 3, we introduce APSP.
In section 4, we show our simulation results. And
in section 5, we give concluding remarks.

2 Preliminaries

2.1 System Models

Peer-to-Peer system.

A distributed Peer-to-Peer(P2P) network is a set
of peers U = {p1,p2...pn}. A P2P network is also
appeared as an overlay network. In an overlay net-
work, a peer p, can directly communicate with any
other peer p, through a logical link if p, knows p,’s
name, no matter whether there is physical link be-
tween p, and py. In this paper, the term name
will be used to denote a unilateral link points to p,.
A name can be anything that contain a destination
peer’s location information such as network address
etc.

P2P file sharing system is a kind of application
of P2P network. In a file sharing system, mem-
ber peers exchange their objects (files) with each
other. An object is the abstract of a manual, data
sheet, music file, etc. In P2P file sharing systems,
all object are distribute to peers. Searching for a
object, is the process to find the peer which stores
the target object. For each object, a keyword can be
determined from its title, author or file name etc.
We state the probabilistic P2P searching problem
as follows.

Definition 2.1. The probabilistic peer-to-peer
searching problem is the problem to find a peer that
holds an object of the given keyword with a given
probability 0,0 < o < 1.

2.2 Searching protocol based

PwQS
Probabilistic Weak Quorum System.

on

0420

島貫
テキストボックス
－42－

A Probabilistic Weak Quorum System
(PWQS)[6] is a communication structure be-
tween peers.

Definition 2.2. (Set system [9]) A set system Q
of U is a family of sets of U, i.e., @ = 2V. Each
element) in Q is called a quorum.

A quorum to be accessed is selected probabilisti-
cally. Probability of quorums is defined by access
strategy defined as follows.

Definition 2.3. (Access strategy [9]) Let Q be a
set system of U. Then an access strategy of p; € U
is a probability distribution w; : @ ~ [0,1] such
that ZQEQwi(Q):l.

Definition 2.4. (Access strategy vector) Let Q be
a set system of U and w; be an access strategy for
each p; € U. Then, access strategy vector of U is a
vector @ = (wy,Wa, ..., Wy,).

The definition of PWQS is

Definition 2.5. (Probabilistic weak quorum sys-
tem) For any integer k, a tuple < k, Q,w,c > is a
probabilistic weak quorum system of order k under
U if and only if the following conditions are satis-
fied.

e Qis a set system of U,

o W = (wy,wWs,...,wy) iS an access strategy vec-

tor, and

e For any k+1 P€Ers Pg, Py1,Py2, -+, Pyk € U7

Z {wx(Qz)Hlewyj(Qyj)} >1—¢

where the sum is taken over every combination
of {Qz, Qy1,Qy2,...,Qur} € Q such that Q. N
(le U Qy2 u..u ka) ;é ¢

Intuitively, any quorum is likely to have
nonempty intersection with at least one quorum
among any k quorums, and such an event occurs
with a probability at least 1 — .

Searching based on PWQS. The principle of

searching an object based on PWQS is explained
as follows:

1. Preliminarily, each peer p,; that owns an object
randomly selects a quorum @Qy; € Q. Then, it
sends an index, which contains the keywords of
the object and the name of p,;, to each peer in

Qyi-

2. When a peer p, wishes to search an object, it
randomly selects a quorum @, € Q. Then, it
sends a query message to each peer in @Q,.

3. A peer p; in Q, NQ,; informs p, that p,; owns
the target object by sending the target object’s
index to p,.

4. If the number of peers that hold the target
object is k, there exists such a peer p;, €
Q. N U, Qi with a high probability, o, by
the definition of PWQS.

In [6], a protocol based on the searching princi-
ple above is presented. It executes three threads in
parallel at each peer.

o Name thread collects a set of peers’ name. The
size of the set will be larger than quorum size ¢
and each name in it is randomly selected from
U(t). So we can obtain a quorum which is ap-
proximately regard as being randomly selected
randomly from U(t) by randomly selecting ¢
peers from the name set.

o Indexr thread broadcasts objects’ indexes to
other peers and manages received indexes. For
fault tolerant, all indexes are refreshed in a cy-
cle of TTL;. We call the cycle TTL; as the
maintenance cycle of index.

o Query thread sends queries to other peers when
searching and answers received query.

Theorem 2.1. The success probability [6] of the
searching protocol is

a>k

c>1l—e 5, (2.1)

where
o is success probability,
n is the total number of peer in network,
q is the size of quorum (A preliminarily
decided system parameter),
k is the number of replicates of the goal
object.

3 Efficiency of the searching
protocol based on PWQS

In this section, we present a efficient solution to
optimize the message complexity of the searching
protocol. The new protocol optimizes the system
message complexity by updating system parameter
adapting to network environment changes.

3.1 Message complexity

The system message complexity M of the searching
protocol based on PWQS is

M = M, + M, + M, (3.1)

0430

島貫
テキストボックス
－43－

M,, is the messages cost for collecting

peer’s name by name thread,
M; is the messages cost for broadcasting

and maintenance of index by index thread,
M, is the messages cost for searching

objects by query thread.

Because each object is searched independently
and its indexes are broadcasted and maintained in-
dependently, we have

lobject| lobject|
M = M,+ Y Mg+ > M,
j=1 j=1
lobject|
= M.+ Y (Mj+M,), (3.2)
j=1
where
M;; is the messages cost for broadcasting

and maintenance of object 0;’s index
is the messages cost for searching
object o;

sJ

We define the message complexity of an object o;
as M; = M;; + M,; and rewrite equality 3.2 to

|object|
M=M,+ > M,

j=1

(3.3)

According to the principle of searching based on
PWQS, we know the original protocol broadcasts
q index for each of k replicates of each object in
a cycle of TTL; and sends ¢ query messages when
searching for an object.

For simplicity and without losing of generality,
we divide continuous time to TTL; periods. The
system message complexity in a period time TTL;
is

lobject|

M=M,+ > (k-q+fs-9),

Jj=1

(3.4)

where, f5; is the number of times an object o; is
searched in TTL;.

3.2 Optimizing strategy
We present our optimizing strategy as follows.

1. Optimizing system message complexity by
minimizing every object’s message complexity
M; separately.

2. Each object’s message complexity is minimized
by adjusting the number of its index based on
how often it is searched.

e Popular objects have more index so that
they will be found easier.

e Unpopular object have less index so that
they have less index cost.

Because each object is searched independently
and its indexes are also broadcasted and maintained
independently, the system message complexity M
is the minimum when every object’s message com-
plexity M; is the minimized

|object|

min (M) = M, + Z min (M;) (3.5)

APSP no longer uses the fixed parameter ¢ and
k- q as the number of query messages used to search
object and the number of indexes of o;. We use
¢s; and ¢;; instead of them respectively. Then, we
redefine the object’s message complexity in TTL;
as

Mj = qij + foj - qs; (3.6)

In APSP, each object’s index number is decided
by its searching frequency. Therefore, before find
the object, a searcher peer is not able not know how
many indexes of the target object there are in the
system and how many query messages are necessary
to meet a given success searching probability. We
change our searching method to: continue searching
randomly selected peers until the target object is
found.

Theorem 3.1. The expectation of the number of
messages used to find an object o; is:

Elg.;] = —

o (3.7)

Proof. Because every peer to search is randomly se-
lected and the searching will be finished as long as
the first index is found. The probability of finding
an index with each search query message is ¢;;/n,
and the number of messages cost, g¢s;, follows a
geometric(al) distribution[10] of probability g¢;;/n.
Thus, the expectation of gs; is n/q;;. O

Merge equality 3.5 and 3.6, we have the following
theorem trivially.

Theorem 3.2. An object’s message cost’s expec-
tation is the minimum:

when its index number is set to:

45 =/n- fs

0440

島貫
テキストボックス
－44－

Summary of optimizing strategy

The principle of APSP is describe as follows:

1. Preliminarily, each peer p, that owns an ob-
ject o; randomly selects a set of \/n - f5; peers.
Then, it sends the object’s index to all of them.

2. When a peer p, wishes to search an object, it
continues sending query messages to randomly
selected peers until find it.

3. The expectation of message complexity of ob-
ject oj in TTL; is 24/n - fs;. And it is proved
the minimum.

4. By minimize every object’s message complex-
ity, the system message complexity is also min-

imized. My = M, + S0 2\ /uf;

3.3 Estimation of dynamic network
parameters

According to theorem 3.2, we know the core of
APSP is to set the index number of each object
0; to y/n- fs;. But in a dynamic P2P system the
values of n and f; are varying with time. In or-
der to realize out protocol, we present estimation
algorithms to estimate n and fs.

Estimation of f;

In our estimation algorithm, we divide continuous
time to separate time period, the length each period
is equals to TTL;. We assume in a period of time,
labeled ¢, network environment is transitorily static
and it changes only when time label changes. The
algorithm is described as follows:

e The peer which is the owner of object o; count
the number of the times that o; is accessed in
time period ¢. The number is marked as fs;(#).

e In time period t + 1, f;(¢) is used as the esti-
mated value of f,;(t+ 1), marked as f{,(t+1).

However, when the search frequency of o; varies
impetuously, f{;(t+ 1) may be distinctly different
from f,;(t + 1). But this just results the object
cost a bit more messages and it is proved in most
of time, network environment does not change so
impetuously[11].

This algorithm costs no additional messages.

Estimation of n

The algorithm of estimate n is mainly based on
Theorem 3.2. It is considered if we know EJgs;] of
an object o;, the owner of 0; can estimate n through
equality 3.6. The algorithm is described as follows:

e The time model used in the estimation algo-
rithm of f;; is continue to be used.

e In time ¢, f(;(t) is estimated with the algo-
rithms above and every object have the esti-
mated amount of indexes ¢;;(t).

e When a peer searches for an object o;, it counts
the query messages sent, marked as §s;(t), and
give §s;(t) to the owner of o; when asks for the
object.

e The owner of an object o; compute 7(t) by
multiplying gs;(t) and f;(t). 7(t) is considered
as an sample of n(t)

e When time label changes, peers who have ob-
jects compute n'(t) by taking the average of
n(t)s.

¢ In the next time period, n'(t) is used as n(t+1).

If we do not consider the change between n(t)
and n(t + 1), the correctness of the estimated value
n'(t + 1) is related to how many samples n'(t) is
used.

Theorem 3.3. With the assume that n(t) is static
in a period of time labeled ¢, estimation n(t) by
taking the average of n'(t), n’(¢) is the sample of
n(t), the relationship among n(t), n'(t), and the
number of samples s can be described as follows.
(For simple, time label is omitted.)

Pr(jn' =n| > én) < —

(3.9)

Proof.
First, we prove the expectation[10] of n' is E[n] =
n:

E[ijl nj]

E[375_,]
S
B35 1 aij + 4551
S

E[n'] =

Because each searching is independent[10],

22:1 aij - Elds;]

E[n'] = .

And according to equality 3.6

s R L
E[n'] _ Zj:l Qi Qij
S
_ 22:1 n
o S
= n

0450

島貫
テキストボックス
－45－

Next, we prove the variance[10] of n’ is VAR[n'] =
2
n

S

S
VAR[] = VAR[LJ? °]
VAR[Y S, 5]
52

Because each searching is independent[10],
52

25=1 VAR[pi; - psj]

2

VAR[n/]

s
ijl pz’? - VAR|[ps,]
32

Because g¢s follows a geometric distribution[10] of
probability 1/qi:

1—q
VAR|[qs] = e
Therefore,
S pi (1—P?g)n2]
VAR = —/—— 1"
s
Z;:l n?
< =
s
v
s

Finally, according to Chebyshev’s Inequality[10]:

VAR[n'
Prlp ~ B 2) < A
Let n = 0E[n'], we have:
! ! ! VAR[n/]
_ > iiabiaied vl
Pr(’ =~ Bl 2 0B <
VAR[n']
Pr(n' —n|>én) < T
n?/s
- 0%n?
_ 1
02

For example.
If we want our estimation n/(t+ 1) is bounded by
+0.1n(t) with a probability higher than 90%, we
1
h f at 1 — =
need compute the average of at least 012 x 01
1000 samples.

In implementation, some peer which have few ob-
jects may not be able to collect so much samples in
TTL;. This can be solved by exchange the data of
fi; among peers.

4 Simulation results

In this section, we present our simulation results
to show the efficiency of our protocol by compare
its message complexity with the original’s. We also
test our estimation algorithm to see how it works by
comparing the simulation result with the theoretical
result.

In our simulation, we use the same time model
with the estimation algorithms’.

e Continuous time is divide to time periods of the
length TTL;. Every period is called a round.

e In round ¢, network environment is transito-
rily static and changes only when time label
changes.

We test a system with about 10000 peers, which
is variable in the simulation of dynamic system en-
vironment, and a fixed number, 10000, of objects.

We do not test the performance of name thread
and assume it works ideally. This means when se-
lect a name, as a destination of sending query or
broadcasting index, it is uniformly random selected
form system. And the message cost of name thread
will not appear in our results.

In our simulations, the searching frequency of ob-
jects will follow a Zipf-like distribution[7] of an «
between 0.63 and 1.24. It is proved that the search-
ing frequency of real P2P systems follows such a
distribution by the study of Gnutella[7].

4.1 Simulation results of the proto-
col’s efficiency

In this subsection, we test the efficiency of our pro-
tocol by comparing the message complexity with
the original.

First, we compare the message complexity of two
protocols in a static environment. The number
of peers is 10000 and the distribution of object’s
searching frequency follows a Zipf distribution with
aZipfa=1.

It should be point out that, the original search-
ing protocol uses a fixed number ¢ to search for
an object. It does not mean every search costs ex-
actly ¢ messages. The query thread will stop sending
query messages when an index of the target object
is found. And the success probability of the orig-
inal protocol greatly effects our result. We simu-
late the original protocol with a probability of 1. It

0460

島貫
テキストボックス
－46－

I—O'ig‘r'ra\ — APSP
3500000
30000000
25000000
§ 20000000
2 15000000
10000000
500000
o
S 2228288888888 28284¢
— NN M 5 O -~ O ® 8 o M o © W0 G
Indexes used inorignal protocol

Figure 1: Message complexity in a round

means we search for an object until it is found in
the simulation of original protocol. This is reason-
able because the searcher peer may try again when
the target object is not found.

Figure 1 is the result of the two protocol’s mes-
sage complexity work in a static environment we
defined above. The value of Y axis is the massages
cost in a round of two protocols. The value of X
axis is the number of indexes used of the original
protocol. To the new protocol, the value of X axis
is pointless because it decides the number of indexes
of every object based its searching frequency.

From the result we find the original protocol cost
the least messages when the index number is set
to 260, which is the value we expected. Compare
the message complexity of our protocol, marked
as Mpew, and the message complexity of origi-
nal protocol, marked as M,,, at the index num-
ber of 260, we have the lowest improvement rate,
min (p) = (min (Morg) — Maew)/ min (Myrg), of our
protocol. In this case, it is about 25%. This result
proves our protocol has an obviously lower message
complexity.

Next, we test the lowest improvement rate min (p)
of our protocol in different environments. In this
test, the rank of objects follow Zipf distributions of
different Zipf a[7]. Because the study of Gnutella[7]
shows that «a is between 0.63 and 1.24, we test the
case a € {0.6,0.8,1,1.2}. The message complex-
ity of APSP, the lowest message complexity of the
original protocol and the lowest improvement rate
of is shown in figure 2. It shows that the lowest
improvement rate of our protocol is better when «
is higher. That is the result we expected.

4.2 Simulation results of the estima-
tion algorithm

In this subsection we test the estimation algorithm
of the number of peers, n(t), in system. We take

@ APSP M Original O Improvement rate

7000000

6000000

5000000

4000000

9
by
w
0
o
D
£

3000000

2000000

1000000

0
&4 =06

Figure 2: message complexity with different a

16000

14000

12000

Wi N
/7 N\
Vi N
i ,

S
V

10000

—n(t)
—n

8000

number of peers

1 23 4567 8 91011121314151617181920

round

Figure 3: Estimation of n

the average of 1000 samples and expects in most
of times, about 90%, the estimation n’(¢) is in the
range of 0.9n(t) and 1.1n(t).

The result is shown in figure 3. In order to see
how our estimation algorithm works in a varying
environment, we set the number of peers to n(t) =
10000 + 5000sin (27¢/1000). In the result, we can
clearly see n/(t) has a delay of about one round from
n(t). This is reasonable because we use the average
of date collected in n(t — 1) as the estimation of

n(t).

5 Conclusions

In this paper, we proposed APSP, a new P2P
searching protocol, which is an efficiency of the orig-
inal searching protocol based on PWQS. It opti-
mizes the system message complexity by adjust the
number of indexes of every object based on the fre-
quency the object is searched. The core of our pro-
tocol is to set an object o;’s number of indexes to
v/ fs;n, and the the object’s message complexity in
a period time TTL;, is 24/ fs;n, which is proved the
minimum. Here, TTL; is the maintenance cycle of

0470

島貫
テキストボックス
－47－

all indexes, fs; is the number of times the object is
searched in TTL; and n is the number of peers in
system.

The simulation result shows that the our protocol
used obviously less message than the original and
almost equals to the theoretical value.

We also extend the protocol to be adaptive to
network dynamics. In a dynamic network environ-
ment, n and f;; is varying with time. It is difficult
to know these two global system parameter in a dis-
tributed system, especially n. We proposed an algo-
rithm to estimate them. The estimation algorithm
cost almost no additional messages and is proved
collect and efficient by the simulation result.

Future work.

The problem we must solve in the future is to
decide how long the TTL; is. The problem will
be considered with the research of the time a peer
continues connect to a system. Set TTL; too long
makes it difficult to keep the amount of indexes be-
tween index refreshes. Set TTL; too short makes it
cost much messages to maintain indexes.

The searching protocol based on PWQS has many
excellent features which makes it easy to improve
searching performance. For example, replicate sys-
tem and caching system will be easier to construct
in such an system without a logical structure. And
because we do not use hash value to identify objects,
fuzzy searching can be realized in our protocol nat-
urally. These work will be discussed and researched
in the future.

Acknowledgement

This work is supported in part by MEXT: ”The
21st Century Center of Excellence Program”, JSPS:
Grant-in-Aid for Scientific Research ((B)15300017,
Young Scientists (B) 15700017), MEXT: Grant-
in-Aid for Scientific Research on Priority Areas
(16092215) and MIC: Strategic Information and
Communications R& D Promotion Programme
(SCOPE).

References

[1] D. S. Milojicic, V. Kalogeraki, R. Lukose,
K. Nagaraja, J. Pruyne, S. Rollins, and
Z. Xu. Peer-to-peer computing. Technical Re-
port HPL-2002-57, HP Laboratories Palo Alto,
March 2002.

M. Repeanu. Peer-to-peer architecture case
study: Gnutella network. In First Interna-

tional Conference on Peer-to-Peer Computing
(P2P’°01), page 0099, 2001.

Ion Stoica, Robert Morris, and David Karger.
Chord: A scalable peer-to-peer lookup service

[5]

[7]

[8]

[9]

[10]

[11]

0480

for internet application. In Proceedings of SIG-
COMM, pages 149-160, 2001.

Tan Clarke, Oskar Sandberg, Brandon Wiley,
and Theodore Hong, W. Freenet: A dis-
tributed anonymous information storage and
retrieval system. In Proceedings of the Work-
shop on Design Issues in Anonymity and Un-
observabilty, pages 44-66, 2000.

Sylvia Ratnasamy, Paul Francis, Mark Hand-
ley, M. Karp, Frans, and Scott Schenker. A
scalable content-addressable network. In Pro-
ceedings of SIGCOMM, pages 161-172, 2001.

K. Miura, T. Tagawa, H. Kakugawa, and
IEEE Computer Society. A quorum-based pro-
tocol for searching objects in peer-to-peer net-
works. IEEFE Transactions on Parallel and Dis-
tributed Systems, 17(1):25-37, January 2006.

Kunwadee Sripanidkulchai. The popular-
ity of gnutella queries and its implications
on scalability. URL http://www.cs.cmu.
edu/~kunwadee/research/p2p/paper.html,
2001.

E. Adar and B. Huberman. Free riding on
gnutella. In First Monday, volume 5, October
2000.

Moni Naor and Avishai Wool. The load, capac-
ity and availability of quorum systems. SIAM
Journal on Computing, 27(2):423-447, 1998.

Michael Mitzenmacher and Eli Upfal. Proba-
bility and Computing. CAMBERIDGE, 2005.

Ismail Ari, Bo Hong, Ethan L. Miller, Scott A.
Brandt, and Darrell D. E. Long. Manag-
ing flash crowds on the internet. In the 11th
IEEE/ACM International Symposium on Mod-
eling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS
2003), 2003.

島貫
テキストボックス
－48－

