
幾何的接尾辞木：タンパク質３次元構造検索のための新しい索
引構造

渋谷 哲朗

東京大学医科学研究所ヒトゲノム解析センター
〒 108-8639 東京都港区白金台 4-6-1

E-mail: tshibuya@hgc.jp

概要: タンパク質構造解析はポストゲノム時代の非常に重要な研究分野であり、非常に多
くのタンパク質構造が次々と解明されるに従いより高速でより正確な３次元構造検索のた
めの索引構造を設計することが急務となっている。本論文ではタンパク質３次元構造を検
索するための幾何的接尾辞木と名づけた新しい索引構造を提案する。このデータ構造を用
いることで、クエリーとする３次元構造に対して、RMSD (root mean square deviation)
あるいはURMSD (unit-vector root mean square deviation)とよばれる指標による指定値
以上に類似するデータベース中のタンパク質の３次元構造の部分構造を効率的にすべて
列挙することができる。データベースのサイズを nとするとそれに含まれる部分構造は
O(n2)存在するにも関わらず、幾何的接尾辞木を記憶するのに必要なメモリサイズはO(n)
である。また、このデータ構造はナイーブに構築するとO(n3)の計算が必要であるが、本
論文ではO(n2)の構築アルゴリズムを提案する。さらに効率的な検索アルゴリズムも提
案する。最後に簡単な計算機実験を通じてこのデータ構造の有用性を検証する。

Geometric Suffix Tree: A New Index Structure for

Protein 3-D Structures

Tetsuo Shibuya

Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

E-mail: tshibuya@hgc.jp

Abstract: Protein structure analysis is one of the most important research issues in
the post-genomic era, and faster and more accurate query data structures for such 3-
D structures are highly desired for research on proteins. This paper proposes a new
data structure called the geometric suffix tree to index protein 3-D structures. By using
the geometric suffix tree for a set of protein structures, we can search for all of their
substructures whose RMSDs (root mean square deviations) or URMSDs (unit-vector root
mean square deviations) to a given query 3-D structure are not larger than a given bound.
Our data structure requires O(n) space where n is the sum of lengths of the set of proteins,
though there are O(n2) substructures. We propose an O(n2) construction algorithm for
it, while a naive algorithm would require O(n3) time to construct it. Moreover we propose
an efficient search algorithm. We also show computational experiments to demonstrate
the practicality of our data structure. The experiments show that the construction time
of the geometric suffix tree is almost linear to the size of the database in practice, when
applied to a protein structure database.

1

島貫
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

島貫
テキストボックス
2006－AL－105（3）　 2006／3／17

島貫
テキストボックス
－17－

1 Introduction

Analyzing 3-D structures of proteins is very
important in molecular biology and more
and more protein structures are solved today
with the aid of state-of-the-art technologies
such as nuclear magnetic resonance (NMR)
techniques, as seen in the increasing num-
ber of PDB [4] entries: 34,626 on January
17, 2006. It is said that structurally similar
proteins tend to have similar functions even
if their amino acid sequences are not similar
to each other. Thus it is very important to
find proteins with similar structures (even in
part) from the growing database to analyze
protein functions.

Structure similarity search methods for
protein structure databases can be classi-
fied into two types. One is by comparing
each database entry with the query. There
are many comparison algorithms for pro-
tein structures [10], and the results could
be very accurate, but it will require enor-
mous amount of time to apply against very
large databases. The other approach is by
indexing with some important features of
structures [1, 3, 6, 5, 8, 12]. In ordinary,
these methods can search queries more effi-
ciently, but with less accuracy than the pair-
wise comparison-based methods. The ac-
curacy of comparison of two protein struc-
tures is often measured by RMSD (root mean
square deviation) [2, 9, 17] or sometimes by
URSMD (unit-vector root mean square devi-
ation [7, 15]; see section 2.1 for more details).
But it has been considered too difficult to
design indexing structures that strictly con-
sider the RMSD or the URMSD.

In this paper, we propose a new data
structure called geometric suffix tree that
succeeds in finding all the substructures
whose RMSD or URMSD to a query is not
larger than some given bound. As the name
implies, our data structure is very similar to
the suffix tree that is very famous as an in-
dexing data structure for strings. The geo-
metric suffix tree can be stored in O(n) space
where n is the sum of the lengths of the pro-
teins in database. It takes O(n3) time if we

construct the data structure naively, but we
propose an O(n2) construction algorithm for
it. Furthermore, the experiments will show
that the construction time of the geometric
suffix tree is almost linear to the size of the
database in practice, when applied to a pro-
tein structure database. Moreover, we pro-
pose an efficient search algorithm for sub-
structure queries. This data structure is also
useful for finding structural motifs, cluster-
ing substructures, and so on.

Organization of this paper is as follows.
In section 2, we explain related work as pre-
liminaries. In section 3, we describe the def-
inition of the proposed geometric suffix tree.
In sections 4 and 5, we explain algorithms
for constructing the data structure and al-
gorithms for searching queries. In section 6,
we demonstrate experimental results. In sec-
tion 7, we conclude our results.

2 Related Work

2.1 RMSD and URMSD

A protein is a chain of amino acids. Each
amino acid has one unique carbon atom
named Cα, and we often use the coordinates
of the Cα atom as the representative posi-
tion of the amino acid. The set of Cα atom
positions of all the amino acids in a protein
is called the backbone of the protein, and is
often used for protein structure analysis in
previous work. We also consider the back-
bone as the target to index in this paper.

The most popular and basic measure to
determine geometric similarity between two
sets of points like the positions of backbone
atoms is the RMSD (root mean square devia-
tion) [2, 9, 17], if we know which atom in one
structure corresponds to which atom in the
other. The measure describes the similarity
of two structures when one of the point sets
is rotated and translated reasonably. Let the
two sets of points to be compared be P =
{�p1, �p2, . . . , �pn} and Q = {�q1, �q2, . . . , �qn},
where �pi and �qj are coordinates in 3-D space,
and we consider �pi corresponds to �qi for each
i. The RMSD is the minimum value of
{(

∑n
i=1 ‖�pi − (R · �qi + �v)‖2)/n}1/2 over possi-

2

島貫
テキストボックス
－18－

ble rotation matrices R and translation vec-
tors �v, where ‖ · ‖ denotes the norm. Let

R̂(P, Q) and �̂v(P,Q) be R and �v that mini-
mizes the value. We call

∑n
i=1 ‖�pi−(R̂(P,Q)·

�qi + �̂v(P, Q))‖2 the MSSD (minimum sum
square distance) of P and Q. It is known

that �̂v(P, Q) =
∑

(�pi − R̂(P,Q) · �qi)/n, i.e.,
the distance is minimized when the centroids
of the two point sets are translated to the
same point. Hence, if both of the point sets
are translated so that their centroids are lo-
cated at the origin of the coordinates, the
RMSD/MSSD problem is reduced to a prob-
lem of finding R that minimizes f(R) =∑n

i=1 ‖�pi −R · �qi‖
2. We can find this R̂(P,Q)

in linear time by using singular value decom-
position (SVD) [2, 17] as follows. Let H =∑n

i=1 �pi · �q
t
i . Then f(R) can be described

as
∑n

i=1 (pT
i pi + qT

i qi) − trace(R · H), and
trace(RH) is maximized when R = V UT ,
where UΛV is the SVD of H. Hence R̂(P,Q)
can be obtained in constant time from H (see
[13] for SVD algorithms). Note that there are
rare degenerate cases where det(V UT) = −1,
which means that V UT is a reflection ma-
trix. We ignore the degenerate cases in this
paper. In this way, we can compute the
RMSD/MSSD values in O(n) time.

The URMSD (unit-vector root mean
square deviation) [7, 15] is a variation of the
RMSD. The RMSD is sometimes influenced
badly by very distant pairs of points, and the
URMSD is designed to avoid such influence.
It is the minimum value of {(

∑n−1

i=1 ‖�p′i − R ·
�q′i‖

2)/(n − 1)}1/2 over possible rotation ma-
trices R, where �p′i = (�pi+1 − �pi)/‖�pi+1 − �pi‖
and �q′i = (�qi+1 − �qi)/‖�qi+1 − �qi‖. Let Ř(P,Q)
be R that minimizes the value. We call∑n−1

i=1 ‖�p′i − Ř(P,Q) · �q′i‖
2 the UMSSD (unit-

vector minimum sum square distance). The
URMSD/UMSSD can be computed with the
same strategy in O(n) time, i.e. by comput-
ing the SVD of H ′ =

∑n
i=1 �p′i · (�q

′

i)
t.

2.2 Suffix Trees

The suffix tree [11, 14, 16, 18, 19] of a string
S ∈ Σn is the compacted trie of all the suf-
fixes of S+ = S$ where $ is a character such
that $ /∈ Σ. This data structure can be

stored in O(n) space and moreover is known
to be buildable in O(n) time. Each leaf repre-
sents a suffix of the string S+, and each node
represents some substring. Figure 1 shows
an example. This data structure is very use-
ful for various problems in sequence pattern
matching. Using it, we can query a substring
of length m in O(m) time, we can find fre-
quently appearing substrings in a given se-
quence in linear time, we can find a common
substring of many sequences in linear time,
and so on [14].

Not much work has been done for apply-
ing this data structure to protein structures.
The PSIST [12] is the only index data struc-
ture for protein structures based on the suf-
fix trees as far as we know. It converts local
features of the amino acid chain into some al-
phabets and constructs suffix trees over the
converted alphabet sequences, without con-
sidering global measures like the RMSD at
all.

3 Geometric Suffix Tree

Data Structure

In this section, we describe the definition
of the geometric suffix tree. We propose
two versions of the data structure. One
is for queries based on the RMSD, which
we call the RMSD geometric suffix tree
(RGST for short). The other is for queries
based on the URMSD, which we call the
URMSD geometric suffix tree (UGST for
short). We suppose a protein structure is
represented by its Cα atom coordinates se-
quence P = {�p1, �p2, . . . , �pn}. Let P [i..j] de-
note {�pi, �pi+1, . . . , �pj}, which we call a sub-
structure of P . Note that there are O(n2)
substructures for P = P [1..n]. We call a
substructure P [i..n] a suffix substructure of
P . Conversely, we call a substructure P [1..i]
a prefix substructure of P . The main aim of
the geometric suffix tree is to find efficiently a
substructure P [i..(i+k−1)] whose RMSD or
URMSD from a given query structure Q[1..k]
is not larger than some given bound.

The geometric suffix tree for P [1..n] is a
rooted tree data structure that has following

3

島貫
テキストボックス
－19－

Figure 1: The suffix tree of a string ‘mississippi’.

features.

1. All the internal nodes have more than one
child, whereas the root has one or more
children. (We call nodes other than the
root and the leaves internal nodes.) The
number of leaves is n. Each leaf corre-
sponds to one suffix substructure of P ,
and no two leaves correspond to the same
suffix substructure. Let leaf(i) denote
the leaf that corresponds to P [i..n].

2. Each edge that does not end at a leaf
is given a positive length. Other edges
are given non-negative lengths. The path
length from the root to a node is called
the depth of the node. Let l(e) denote
the length of the edge e and let depth(v)
denote the depth of the node v. For any
leaf u = leaf(i), depth(u) = n− i + 1 i.e.
the length of P [i..n].

3. Each edge e with positive length has in-
formation of P ’s substructure P (e) whose
length is l(e), a rotation matrix R(e), and
a translation vector �v(e). For the edge e,
let S(e) be a structure that can be ob-
tained by rotating P (e) with the rotation
matrix R(e) and translating it with the
translation vector �v(e) after that. We call
S(e) the edge structure of e. Edges with
zero lengths do not have the information.

4. The ‘node structure’ S(x) for a node x is
a structure that can be obtained by con-
catenating edge structures of the edges
on the path from the root to the node
x. For any leaf v = leaf(i) and its ar-

bitrary ancestor w (w can be v itself),
the MSSD (in case of RGSTs, or UMSSD
in case of UGSTs) between S(w) and
P [i..(i+depth(w)−1)] must not be larger
than some given fixed bound b.

5. For an edge e = (v, w) with a positive
length (where v is the parent of w), the
‘branching structure’ str(e) is a structure
that is obtained by concatenating S(v)
and the first coordinates of S(e). For
any internal node v with more than two
outgoing edges with positive lengths, the
MSSD (in case of RGSTs, or UMSSD
in case of UGSTs) between str(e1) and
str(e2) must be larger than b, where e1

and e2 are arbitrary two of the edges.

We can store the substructure informa-
tion for each edge by just remembering the
indices, which means we need only O(1)
memory for each edge. Thus the total mem-
ory space for storing the data structure is
only O(n), as there are at most O(n) edges
and nodes in the tree. Note that we can
easily extend this data structure for multi-
ple protein structures, as we extend the or-
dinary suffix tree to the generalized suffix
trees for strings of alphabets [14]. We call
the extended data structure the generalized
geometric suffix tree.

4 Constructing Geomet-

ric Suffix Trees

Given a coordinates list P of a protein back-
bone structure and some given MSSD (for

4

島貫
テキストボックス
－20－

RGSTs or UMSSD for UGSTs) bound b, we
can naively construct the geometric suffix
tree by adding suffix substructures one by
one as follows.

Algorithm 1 At first, construct a tree with
only the root node. For each suffix substruc-
ture P [i..n] (1 ≤ i ≤ n) of the protein, set
the root to v and do the following.

1. From a set of v’s outgoing edges with pos-
itive lengths, find an edge e such that
the MSSD (for RGSTs, or UMSSD for
UGSTs) between P [i..(i + depth(v))] and
the branching structure str(e) is smaller
than b. If no such edge exists, go to step
2. Otherwise go to step 3.

2. Add a new outgoing edge e′ = (v, w) to
v, where the new leaf w corresponds to
the suffix P [i..n]. Let P (e′) be P [(i +
depth(v))..n]. If v is the root, let R(e′) be
the identity matrix and let �v(e′) be a zero
vector. Otherwise, in case of RGSTs, let
R(e′) be R̂(S(v), P [i..(i+ depth(v)− 1)]),

and let �v(e′) be �̂v(S(v), P [i..(i+depth(v)−
1)]). In case of UGSTs, let R(e′) be
Ř(S(v), P [i..(i + depth(v) − 1)]), and let
�v(e′) be (S(v)[depth(v)] − R(e′) · P [i +
depth(v) − 1]). Then stop.

3. Let w be the node where the edge e
ends. Find the longest prefix substruc-
tures of S(w) and P [i..n] whose MSSD
(for RGSTs, or UMSSD for UGSTs) is
not larger than b, and let the length be
l. If l < depth(w) go to step 4. If
l = depth(w) and l < n − i + 1, set w
to v and go to step 1. Otherwise, add a
new outgoing edge (w, u) whose length is
0, where u corresponds to the suffix sub-
structure P [i..n]. Then stop.

4. Insert a new node u between v and w.
Let e1 = (v, u) and let e2 = (u,w). Let
P (e1) be the prefix substructure of P (e)
of length (l − depth(v)), and P (e2) be
the suffix substructure of P (e) of length
(depth(w) − l). Let R(e1) and R(e2) be
the same matrix as R(e), and �v(e1) and
�v(e2) be the same vector as �v(e). Add a
new outgoing edge e′′ = (u, x) to u, where
the new leaf x corresponds to the suffix

substructure P [i..n]. If l = n − i + 1, Let
the length of e′′ be 0. Otherwise, let P (e′′)
be P [(i + l)..n]. In case of RGSTs, let
R(e′′) be R̂(S(u), P [i..(i + l − 1)]) and let

�v(e′′) be �̂v(S(u), P [i..(i + l− 1)]). In case
of UGSTs, let R(e′′) be Ř(S(u), P [i..(i +
l − 1)]) and let �v(e′′) be (S(u)[l]−R(e′′) ·
P [i + l − 1]). Then stop.

Figure 2 shows an example of the tree
data structure just after adding two different
suffix substructures (of different structures)
P = {�p1, . . . , �p11} and Q = {�q1, . . . , �q11} in
this order to the root, to construct some gen-
eralized RGST. In the figure, we consider
the MSSD of P [1..7] and Q[1..7] is not larger
than b, while the MSSD between P [1..8] and
Q[1..8] is larger than b.

As the MSSD or the UMSSD between
two structures of size m can be computed in
O(m) time, it takes O(n2) time to add one
suffix to the tree if we compute it naively,
which means the above naive algorithm re-
quires O(n3) time in total. But we can re-
duce it to O(n2) time as follows. Recall that
the MSSD of two protein structures P [1..j]
and Q[1..j] can be obtained by computing
the SVD of H =

∑j
i=1 (�pi − �cp) · (�qi − �cq)

t

where �cp and �cq are the centroids of P and
Q. H can be computed in constant time
if we are given followings: fP (j) =

∑j
i �pi,

fQ(j) =
∑n

i �qi, and g(j) =
∑n

i �pi · �q
t
i . Add

to these values, we need hP (j) =
∑n

i=1 �pt
i�pi

and hQ(j) =
∑

2

i=1 �qt
i�qi to compute the MSSD

or RMSD values in constant time. Notice
that all of these can be computed incre-
mentally in constant time from fP (j − 1),
fQ(j − 1), g(j − 1), hP (j − 1), and hQ(j − 1).
It means that we can add a suffix to the
tree in O(n) time, and therefore we can con-
struct the RGST in O(n2) time. Similarly,
we can compute the UMSSD of two pro-
tein structures P [1..j] and Q[1..j] in con-
stant time if we have the following values:
g′(j) =

∑j
i=1 �p′i · (�q

′

i)
t, h′

P (j) =
∑j

i=1 (�p′i)
t�p′i,

and h′

Q(j) =
∑j

i=1 (�q′i)
t�q′i. We can easily

see that these can also be computed from
g′(j − 1), h′

P (j) and h′

Q(j) in constant time,
and therefore we conclude that the UGST

5

島貫
テキストボックス
－21－

Figure 2: Constructing a geometric suffix tree.

can also be constructed in O(n2) time.

5 Geometric Suffix Tree

Applications

Consider an edge e = (u, v) in a geometric
suffix tree. We call the node structure of v
a representative structure on e. Furthermore
we also call a structure that is obtained by
concatenating node structure of u and some
prefix substructure of edge structure of e a
representative structure on e.

Let S and T be two representative struc-
tures where S is a prefix substructure of T .
Then it is easy to see that the MSSD (or
UMSSD) of T and Q[1..|T |] is always larger
or equal to that of S and Q[1..|S|]. Using
this feature, all maximal substructures whose
RMSD (or URMSD) to a query Q[1..m] is
within some bound d can be computed ef-
ficiently as follows. First we find all the
maximal representative substructures whose
RMSD (or URMSD) to the query Q is within√

b/n+d, where b is the MSSD (or UMSSD)
bound used for constructing the geometric
suffix tree. Let E be the set of edges to
which the collected representative substruc-
tures correspond. After that, find all the
leaves that are descendants of the edges in
E. Then the suffixes that correspond to the
collected leaves are candidates of the answer
substructures, whose RMSDs (or URMSDs)
must be checked one by one.

Ordinary suffix trees have tremendous

number of applications in string pattern
matching [14]. Like them, applications of
geometric suffix trees are not limited to the
database search. A long representative struc-
tures whose corresponding edge has many de-
scendants is a repeated structure in a protein
structure, which could have some meaning.
By constructing the generalized geometric
suffix tree of two or more functionally-related
protein structures, we could find structural
motifs. We could further use this fundamen-
tal data structure for designing more com-
plicated combinatorial matching algorithms
on protein structures, such as clustering al-
gorithms and classifier algorithms.

6 Experimental Results

In this section, we demonstrate the perfor-
mance of the generalized geometric suffix
trees through experiments on a Sun Fire 15K
super computer with 288 GB memory and
96 UltraSPARC III Cu CPUs running at
1.2GHz. Note that we used only one CPU
for each experiment. As a data for exper-
iments, we used a set of 228 myoglobin or
myoglobin-related PDB data files containing
275 protein structures. The total number of
amino acids in the protein set is 41,719.

Table 1 shows the computation time
for constructing generalized RGST against
databases of different sizes, setting 400Å2 to
the MSSD bound. In the experiment (1),
we used all the 275 proteins to index. In

6

島貫
テキストボックス
－22－

Table 1: Computation time for constructing generalized GSTs. (b = 400Å2)
Database #sequence (#a.a.) Time (sec) GST Size

(1) Entire database 275 (41,719) 53.15 57,241
(2) Subset A 111 (16,983) 17.68 25,942
(3) Subset B 54 (8,267) 7.91 13,050

the experiments (2) and (3), we used differ-
ent subsets of them. The ‘#sequence(#a.a.)’
column shows the numbers of sequences and
amino acids contained in the protein sets.
The ‘Time’ column shows the computation
time, while the ‘GST Size’ column shows the
numbers of nodes in the constructed geomet-
ric suffix trees. According to the table, The
computation time is almost linear to the size
of the databases, though the theoretical time
bound is O(n2). We consider that it is be-
cause there is a bound on protein lengths.

Next, we examined the query speed on
the RGSTs with different MSSD bounds. Ta-
ble 2 shows the results, where ‘b = . . .’ de-
notes the MSSD bound in Å2. We used
two protein substructures of same length as
queries: In experiment (a), we used as a
query a substructure from the 20th amino
acid to the 69th amino acid of a myo-
globin’s structure obtained from the PDB en-
try named 103M. In experiment (b), we used
a protein that is unrelated to myoglobins:
A substructure from the 20th amino acid to
the 69th amino acid of a rhodopsin’s struc-
ture obtained from the PDB entry named
1F88. In both experiments, we examined
query time by setting two different RMSD
bounds: d = 1.0Å and d = 5.0Å. In the table,
the ‘#found’ column shows the numbers of
found substructures similar to the query. Ac-
cording to the experiments, the query is very
fast when the RMSD bound for the query is
small. The best setting for the MSSD bound
of the geometric suffix tree is different for the
two queries. If a lot of similar substructures
to the query exist, it is better to use a lit-
tle smaller MSSD bounds, which is observed
also in other experiments not shown on this
paper.

7 Concluding Remarks

We proposed a new data structure called the
geometric suffix tree for indexing the protein
3-D structures. The data structure can be
stored in O(n) space where n is the database
size, and we presented an O(n2) construc-
tion algorithm for it. Moreover, we showed
through experiments that we can build the
data structure in quasi-linear time in prac-
tice. We also showed that we can search
for queries very efficiently with the geometric
suffix tree.

It is an open problem whether we can im-
prove the theoretical time bound for building
the geometric suffix tree. As future work,
we are now working on utilizing this data
structure for further combinatorial matching
problems and machine learning problems on
protein structures.

Acknowledgement

The author would like to thank Prof. Tat-
suya Akutsu for fruitful discussions on pro-
tein comparison algorithms. All the com-
putational experiments in this research was
done on the Super Computer System, Hu-
man Genome Center, Institute of Medical
Science, University of Tokyo.

References

[1] T. Akutsu, K. Onizuka, and M.
Ishikawa. New hashing techniques and
their application to a protein database
system, Proc. Hawaii Int. Conf. System
Sciences (HICSS-28), Vol. 5, pp. 197-
206, 1995.

[2] K. S. Arun, T. S. Huang, and S. D.
Blostein, Least-squares fitting of two 3-
D point sets. IEEE Trans Pattern Anal.

7

島貫
テキストボックス
－23－

Table 2: Query time (sec) using generalized GSTs with various MSSD bounds.
Queries b = 1 b = 100 b = 400 b = 900 b = 1600 b = 2500 #found

(a) d = 1.0Å 1.63 0.56 0.39 0.43 0.60 0.87 19
d = 5.0Å 11.70 5.08 5.66 6.55 6.63 6.63 217

(b) d = 1.0Å 1.63 0.73 0.48 0.33 0.19 0.21 0
d = 5.0Å 16.13 7.83 7.93 8.00 7.58 7.20 0

Machine Intell., Vol. 9, pp. 698-700.
1987.

[3] Z. Aung, W. Fu and K. Tan. An efficient
index-based protein structure database
searching method. Proc. Intl. Conf. on
Database Systems for Advanced Appli-
cations, pp. 311-318, 2003.

[4] H. M. Berman, J. Westbrook, Z. Feng,
et al. The protein data bank. Nucl.
Acids Res., Vol. 28, pp. 235-242, 2000.

[5] O. Çamoğlu, T. Kahveci and A. Singh.
Towards index-based similarity search
for protein structure databases. IEEE
Computer Society Bioinformatics Con-
ference, pp. 148-158, 2003.

[6] T. Can and Y. Wang. CTSS: a ro-
bust and efficient method for protein
structure alignment based on local ge-
ometrical and biological features. IEEE
Computer Society Bioinformatics Con-
ference, pp. 169-179, 2003.

[7] L. P. Chew, D. Huttenlocher, K. Kedem
and J. Kleinberg. Fast detection of com-
mon geometric substructure in proteins.
J. Comput. Biol., Vol. 6, No. 3, pp. 313-
325. 1999.

[8] I. Choi, J. Kwon and S. Kim. Local
feature frequency profile: A method
to measure structural similarity in pro-
teins. Proc. Natl. Acad. Sci, Vol. 101,
No. 11, pp. 3797-3802, 2004.

[9] D. W. Eggert, A. Lorusso and R. B.
Fisher. Estimating 3-D rigid body trans-
formations: a comparison of four major
algorithms. Machine Vision and Appli-
cations, Vol. 9, pp. 272-290. 1997.

[10] I. Eidhammer, I. Jonassen, and W.
R. Taylor. Structure Comparison and
Structure Patterns. J. Computational

Biology, Vol. 7, No. 5, pp. 685-716. 2000.

[11] M. Farach. Optimal suffix tree construc-
tion with large alphabets. Proc. 38th
IEEE Symp. Foundations of Computer
Science, pp. 137-143. 1997.

[12] F. Gao and M. J. Zaki. PSIST: In-
dexing Protein Structures using Suffix
Trees. Proc. IEEE Computational Sys-
tems Bioinformatics Conference (CSB),
pp. 212-222. 2005.

[13] G. H. Golub and C. F. Van Loan. Ma-
trix Computation. 3rd eds. John Hop-
kins University Press. 1996.

[14] D. Gusfield. Algorithms on strings,
trees, and sequences: computer science
and computational biology, Cambridge
University Press. 1997.

[15] K. Kedem, P. Chew and R. Elber. Unit-
vector RMS (URMS) as a tool to an-
alyze molecular dynamics trajectories.
Proteins: Struct. Funct. Genet., Vol. 38,
pp. 1-12. 1999.

[16] E. M. McCreight. A space-economical
suffix tree construction algorithm. J.
ACM., Vol. 23, pp. 262-272. 1976.

[17] J. T. Schwartz and M. Sharir. Identifica-
tion of partially obscured objects in two
and three dimensions by matching noisy
characteristic curves. Intl. J. of Robotics
Res., Vol. 6, pp. 29-44. 1987.

[18] E. Ukkonen. On-line construction of
suffix-trees. Algorithmica, Vol. 14, pp.
249-260. 1995.

[19] P. Weiner. Linear pattern matching
algorithms. Proc. 14th Symposium on
Switching and Automata Theory, pp. 1-
11. 1973.

8

島貫
テキストボックス
－24－

